Details of APL64 Project Update May 2019

This report provides detailed information pertaining to the progress of the APL64 Project in the following areas:

e APL64 Project team’s approach to evaluating performance
e Operations in which the APL64 Project system outperforms APL+Win
e Improvements and enhancements in the modernized APL64 Project Programmer Session

APL64 Project Performance Tests

In most cases tested, the APL64 Project is as fast or in some instances, substantially faster than APL+Win. The APL64 Project development team was able to take
advantage of the state-of-the-art development tools and superior methodology used in the APL64 Project to perform optimizations. In every case where
optimization was applied, performance increased such that the APL64 Project speed was as fast or faster than APL+Win. It is our goal to optimize all the APL64
Project primitives to ensure that the performance of the APL64 Project will match or be consistently faster than APL+Win.

The optimization process is on-going. Our experience suggests we can successfully optimize all primitives to make the APL64 Project run significantly faster than
APL+Win. At this time we are sharing with you the results of some APL64 Project performance tests. All of the results shown in the charts that follow are for cases
where optimized APL64 Project operations run faster than APL+Win. Un-optimized cases are not shown in this report. APL2000 will provide updates on the
performance of these cases as additional optimizations are completed.

In the accompanying charts, average elapsed execution time is always shown on the vertical axis in milliseconds. Lower average elapsed time values correspond
to faster performance. The “winner” of each comparison is always marked with a yellow star to emphasize the better performing system, with a lower average
elapsed time value. Remember in reviewing these charts that “Lower Time is Better”.

Argument size is shown on the horizontal axis. In general, this indicates the number of elements in argument arrays. In a few cases this axis indicates the number
of elements in the result (for example, the deal primitive, n?m, uses scalar values for both arguments but the result size is controlled by the value of the left
argument). In all cases the horizontal axis value indicates how much work was done for the operation. As the amount of work (i.e., number of elements) increases,
the corresponding time also increases for both APL+Win and the APL64 Project. In most cases there is a linear relationship between the amount of work being
done and the execution time. This linear relationship between argument size and execution time is highlighted by a line of best fit on each chart.

However, in a few cases note that APL+Win and the APL64 Project values converge to roughly the same value as the argument size increases and the differences
seem to be due to statistical variations. In such cases, the critical factor limiting performance is memory access time. Memory access time is workstation
dependent and relatively independent of the APL implementation. The speed observed on different workstations for such cases will be heavily influenced by the
amount of L1, L2, and L3 memory cache on the machine. These are hardware limitations that constrain the speed that data can be moved in memory and would
be difficult or impossible to transcend for algorithms implemented in any computer language whether compiled or interpreted.

The chart showing FLOAT+FLOAT operation is a good example of the effect of memory access time for large argument sizes. Up to about 75,000 elements the
APL64 Project is faster than APL+Win, but by 100,000 elements in the argument sizes the systems run at roughly the same speed because the time it takes to
access memory has become the dominate factor constraining calculation throughput.

Performance results are calculated by executing a test expression over thousands of iterations and averaging the execution time. This is done to reduce statistical
variations and to make sure “Garbage Collection” costs are also factored into the run times. The performance test workspace executes the expressions for varying
size argument arrays of different types. For example, for the INT+INT operation, integer vectors are added together. Argument arrays are calculated using the
following data values:

float « count p 0.08296339080035192 2.570828471411902 0.8041284604922564
Afloat « ¢ float
floatScalar « [Jfirst float
int « count p 2 3 4

Aint « ¢ int

intScalar « [Jfirst int
bool « count p 1 0

Abool « ¢ bool

ones « count p 1

Aones « count p 1

zeros « count p O

Azeros « count p O

The variable count in the expressions above varies in a : FOR loop that repeats each test over the following set of argument sizes:1 2 5 7 10 25 50 75
100 250 500 750 1000 2500 5000 7500 10000 25000 50000 75000 100000.

When performance is measured for dyadic scalar primitives such as INT+INT where both arguments have the same shape and data type, the left argument uses
the data variable with the value matching the data type (int for integer data, f 1o0at for floating point data, etc.) and the right argument uses the data variable
with a A prefix (Aint for integer data, Af 1oat for floating point data, etc.). This is done so that the calculation is accessing data at different memory addresses
for the left and right arguments. This is important so that memory caching effects on performance are properly taken into consideration. While the chart for
adding two integer arrays is labeled as Operation: INT+INT that calculation is done using the expression:

int + Aint
For operations that mix data type such as INT+FLOAT we execute the non-delta variable names such as:

int + float

Operations that indicate one of the arguments is a scalar use the corresponding Scalar suffixed variable name. For example, the chart for
Operation: INT+INT Scalar is computed using expression:

int + intScalar

The optimizations achieved in the APL64 Project are largely dependent on the efforts of the APL64 Project team members to utilize the significant improvements
in the tools and techniques available in the development environment of the APL64 Project.

Thus far Optimized APL64 Project vs. Production APL+Win Performance results

The charts below are representative of system performance for some of the APL primitives that have been optimized in the APL64 Project. They illustrate
performance of the APL64 Project relative to APL+Win version 19. APL+Win data points use gray squares and APL64 Project data points use green circles in these
charts.

Operation: INT + INT Operation: INT + INT Scalar
(Lower Time is Better¥) (Lower Time is Better %)
0.120 0.180
u 0.160 u
= 0.100 =
e T 0.140
3 3
9 0.080 —M $ 0.120 =
E 0.060 e oX E 0100 -
g L o ® APL64 Project* 2 0.080 a ® APL64 Project*
= - o =
5 0.040 - B APL+Win Soo0 et oK B APL+Win
Q - o b} T e
g - 8 0.040 e °
& 0.020 e Y . e
-8 0.020 R
0.000 } 0.000 ﬁ
0 25,000 50,000 75,000 100,000 0 25,000 50,000 75,000 100,000
Number of Elements Number of Elements

Elapsed Time (milliseconds)

Elapsed Time (milliseconds)

0.120

0.100

0.080

0.060

0.040

0.020

0.300

0.250

0.200

0.150

0.100

0.050

0

0.000 "

Operation: INT + FLOAT

(Lower Time is Better)

.'....
- e
.’. e
i "‘.
25,000 50,000 75,000

Number of Elements

100,000

Operation: BOOL + BOOL

(Lower Time is Betterst)

0.000 "

I..
- %
e ®
R
-
. ...'
25,000 50,000 75,000 100,000

Number of Elements

© APL64 Project W
W APL+Win

® APL64 Project ¥
Bl APL+Win

Elapsed Time (milliseconds)

Elapsed Time (milliseconds)

0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.000

0.200
0.180
0.160
0.140
0.120
0.100
0.080
0.060
0.040
0.020
0.000

Operation: FLOAT + FLOAT
(Lower Time is Betters)

A
ol
. 4 ® APLE4 Project W
B APL+Win
L
R
0 25,000 50,000 75,000 100,000
Number of Elements
Operation: INT + BOOL
(Lower Time is BetterX)
.'-
-
e @ APL64 Project*
e B APL+Win

. e
.,
LR

0 25,000 50,000 75,000 100,000
Number of Elements

0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020

Elapsed Time (milliseconds)

0.010
0.000

0.180
0.160
0.140
0.120
0.100
0.080
0.060
0.040

Elapsed Time (milliseconds)

0.020
0.000

0

Operation: FLOAT x FLOAT

(Lower Time is Better3t)

e

L
.'.3-.’. ®
.-:-’i
o
25,000 50,000 75,000

Number of Elements

100,000

Operation: BOOL x FLOAT

(Lower Time is Betteryy)

"‘ i

0

-"..
‘....
e
e
25000 50,000 75,000

Number of Elements

.-‘. *

100,000

® APL64 Project W
B APL+Win

® APL64 Project *
W APL+Win

Elapsed Time (milliseconds)

Elapsed Time (milliseconds)

0.120

o
s
o
S

0.080

0.060

0.040

0.020

0.350

0.300

0.250

0.200

0.150

0.100

0.000 i

Operation: INT x FLOAT

(Lower Time is Better X)

ot
.
.

ot
.
.
.

o
.e
.
o

25,000 50,000 75,000
Number of Elements

100,000

Operation: FLOAT + FLOAT

(Lower Time is Bettersk)

_.I"
-‘..‘
e PO
IR "
........ .
25,000 50,000 15,000

Number of Elements

100,000

@ APL64 Project *
W APL+Win

® APL64 Project*
M APL+Win

Elapsed Time (milliseconds)

Elapsed Time (milliseconds)

Operation: FLOAT = INT Operation: INT + FLOAT

(Lower Time is Better %) (Lower Time is Better %)
0.350 . 0.350 .
0.300 — 0.300
- 2 -
0.250 L S 0.250 A
0.200 ‘g 0.200 .
. ~— ..-
0.150 o © APL64 Project X £ 0.150 " ® APL64 Project*
o K mAPLWin 5 ST 07 mAPL+Win
0.100 e @ 0.100 o
A o =3 A e
0.050 S e | i 0.050 ST e L
@ # o
0.000 0.000
0 25,000 50,000 75,000 100,000 0 25,000 50,000 75,000 100,000
Number of Elements Number of Elements
Operation: INT = INT Operation: BOOL = BOOL
(Lower Time is Better *) (Lower Time is Better *)
0.350 = 0.120
0.300 Z 0100
c
0.250 . 5 o
g 0.080 o
0.200 - z :
= 0.060
0.150 . ® APL64 Project* g ® APL64 Project *
ST .* B APL+Win 5 0.040 l B APL+Win
0.100 — Py o
S e o e
0.050 T L A i 0.020 -
ﬁ o N ° DA ¢
0.000 0.000 i’...‘... @
0 25,000 50,000 75,000 100,000 0 1000 2000 3000 4000 5000

Number of Elements Number of Elements

Elapsed Time (milliseconds)

Elapsed Time (milliseconds)

0.100
0.090
0.080
0.070
0.060
0.050
0.040
0.030
0.020
0.010
0.000

0

Operation: +/INT

(Lower Time is Bettert)

n'.‘.
o °
o
o".-.c'..
"o
25,000 50,000 75,000

Number of Elements

Lk

100,000

Operation: INT +.x INT

(Lower Time is Better X)

.
.
.
....... ...
25,000 50,000 75,000

Number of Elements

100,000

® APL64 Project *
W APL+Win

® APL64 Project *
MW APL+Win

0.300

o
N
a
o

0.200

0.150

0.100

Elapsed Time (milliseconds)

o
o
G
o

0.000

0.450
0.400
0.350
0.300
0.250
0.200
0.150
0.100

Elapsed Time (milliseconds)

0.050
0.000

.*

Operation: +/FLOAT
(Lower Time is BetterX)
.
l’
"
T o*
ST e o
. o
..... o
0 25,000 50,000 75,000 100,000
Number of Elements
Operation: FLOAT +.x FLOAT
(Lower Time is Better *)
u'.
..’.'..
...... .
.' o
‘c """""
0 25,000 50,000 75,000

Number of Elements

100,000

® APL64 Project*
W APL+Win

® APL64 Project*
MW APL+Win

Elapsed Time (milliseconds)

Elapsed Time (milliseconds)

Operation: INT -.x INT
(Lower Time is Betteri)

0.700
0.600 .
0.500 .
.".
0.400 :
0.300 - ® APL64 Project *
' B APL+Win
0.200 -
a ¥
0100 e @)
......... o
teesese &

0.000

0 25,000 50,000 75,000 100,000

Number of Elements
Operation: BRANCH Loop
(Lower Time is Bettersk)
0.700
0.600 -
0.500
0'.‘.
0.400 :
0.300 . ® APL64 Project W
W APL+Win
0.200 -
S o*
0.100 e PR
EURRRRPPTLE &

£ @
0.000

0 20 40 60 80 100

Number of Iterations

Elapsed Time (milliseconds)

10.000
9.000
8.000
7.000
6.000
5.000
4.000
3.000
2.000

Elapsed Time (milliseconds)

1.000 i
0.000

0

25.000

20.000

15.000

10.000

5.000

0.000 —J

Operation: FOR Loop

(Lower Time is Better¥)

.e®
o

® APL64 Project*
....... W APL+Win

20000 40000 60000 80000 100000

Number of Elements

Operation: DEAL: N?10000000
(Lower Time is Better)

- ® APL64 Project*

MW APL+Win

25000 50000 75000 100000

Number of Elements

Elapsed Time (milliseconds)

3.500

3.000

2.500

2.000

1.500

Operation: ROLL: ?INT
(Lower Time is Better ¥)

. e
T o
........... {2
25000 50000 -

Number of Elements

® APL64 Project*

B APL+Win

100000

APL64 Project Programmer Session Improvements and Enhancements

The APL64 Project Graphical User Interface (GUI) includes all the features available in APL+Win and more. This section highlights areas of the Programmer Session
which have been improved by taking advantage of the up-to-date APL64 Project implementation environment.

Debugger
e The APL64 Project Debugger has been implemented:

% APLE4 Project: CLEAR WS - m| ><

File Edit Session Objects Debug Tools Options Help
FRd& NEH=2¢XDAESE AT T EHNPPLHE ST ohalldV,

2] w[2] #{2] 2
0 iZ+L foe R State Indicator 4=
$1 I-L+R

[> fool1] *
H ’ [Immediate Execution]

a !

L [— _]
0 ledit vfoo

1 10 foo 100

2 foo[1]

3 Jedit vgoo

.| | New Row

Suspended (Callbacks disabled)

Hist: Ln: 3 Col: 16 | | classic| | num

10

Debugger menus and toolbar items have been implemented:

% APL64 Project: CLEAR WS - O X
File Edit Session Objects | Debug | Tools Options Help
o e H 1] 4+ (11 it 1] i]
EbajEentogeiane GikD [P E . “ | ¥ l::z] o g v o+ ‘f‘ o fm bz | be V -
Event Stops.. F8 State Indicator 4= ¥
Set Watch Points... Ctrl+W ,—D foo[1]*
Debug Pane Opens When Interpreter Suspends ’ [Immediate Execution]
Stop
Pause (suspend) Ctrl+Shift+EBreak
Run (resume) F5
Run with Event Stops SUPPRESSED shift+F5)
Step to next LINE Shift+=F10
Step to next STATEMENT F10
Step INTO function F11
Step OUT of function Shift+=F11
Set next statement Ctrl+F5
Run to cursor or below Ctrl+F7
Run to cursor Ctrl+Shift+F7
Copy pending code to APL F12
” MNew Row |
Edit pending function Ctrl+F12
fEneing Hist: Ln: 3 Col: 16 | |crassic| | Mum
Top Sl level Ctrl+Num *
Up one 5l level Ctrl+MNum -
Down cne Sl level Ctrl+Num +
Bottom Sl level Ctrl+MNum /

Robust Syntax Checking

Syntax checking and syntax coloring have been implemented in the APL64 Project for function editors and the session command line.

% APLE4 Project: CLEAR W5 — O ®

File Edit Session Objects Debug Tools Options Help

FRdeNH=2¢tDbaSN AR T EHNPP¥LIIY

VFOO n x|
Edit

LINRY

0 ¢ I-FOO X

Vo SUNE 0 S

< (16) =1k
LENGTH ERROR
[imm] (16)+14

B LTI L O

g Jedit ¥FOO

.l){*-'a:b:d' 'par

|| MNew Row |
Ready Cmd: Ln: 0 Col: 13| |classic|

Flexible Session Panes Layout

e The user may float object editor and state indicator panes anywhere on any connected display, independently of the pane containing the session history,

session command line and debugged function listing.
e All panes docked with object editors vertically tiled:

% APL64 Project: CLEAR WS — O b

File Edit 5Session Objects Debug Tools Options Help
FRA&NO=2¢XDaE MMaa. T EHINP ¥ LL.

0 iI+L feo R State Indicator &=
&1 Z-L+R

1l

[>fool1] "
’ [Immediate Execution]
Voo n x\ s
Edit
HRAX 2C Y DR R EE MW
0 I+L foo R
@®: I-L+R
(. J
0 Jedit wfoo
| 10 foo 100
2 foo[1]

.| || Mew Row |

Suspended {(Callbacks disabled) Hist: Lnm: 2 Col: 6|

|Class’|c| |Nu11

13

e Some panes Floating:

% APLG64 Project: CLEAR WS State Indicator

File Edit Session Objects Debug Tools Options Help > foolt] =
FRYa D= QY MR nﬁuﬁ;g— ERI»F E;}«;"b; >[|mmed.ateaemun]

0 I-L feo R

AT 1 z-L+R

IAAX2C¢sDbmE fhat (G)) o

0 I+«L foo R

9! o ILeR Vgoo
; Edit

IRAxX2¢EDhnE R

0 goo

Jedit ¥foo

10 foo 100
foo[1]

Jedit vgoo

.| || New Row

Suspended (Callbacks disabled) : Ln: 3 Col: 16 | classic]| | Hum

e The Objects menu provides convenient options to close, dock, cascade, horizontal tile, vertical tile and autohide object editor panes.

% APL64 Project: CLEAR WS - m| 4

File Edit Session | Objects | Debug Tools Options Help

o B[§ % E A EEINY.

Function... State Indicator 4= ¥
Variable... ,—':51; M1~
00
Cpen.. Cul-0 ’ [Immediate Execution]
Open Object Named At Caret... Ctrl+Shift+O
Fetch... Ctrl+G

+ | Display Row Numbers in Function Editor
+ | Display Row Mumbers in Variable Editor]

+ | Prompt Before Creating Duplicate Edit Session -
Expand Tab To Spaces In Variable Editor
% Expand Tab To Spaces In Function Editor
4

Expand Tab To Spaces In Session Command Line

Number Of Spaces In Tab —-——.---------------

Default Edit Session Type:| Function ~

Editor Pane Label Tab Width ——@)

Close Function & Variable Editor Panes

4l

Dock Floating Function & Variable Editor Panes

Cascade Function & Variable Editor Panes

Horizontally Tile Function & Variable Editor Panes
Vertically Tile Function & Vanable Editor Panes
Dock and Autohide Editor Panes

Recent Object Names | goo
foo

z

MNumber Of Recent Object Names To Retain =4+ + +* * * +°

.| | New Row

Suspended (Callbacks disabled) Hist: Ln: 3 Col: 16 | |classic | | Num

15

e Horizontally tiled object editors:

% APL64 Project: CLEAR WS

- O

X

File Edit Session Objects Debug Tools Options Help

FRd & [H=2¢xXDeESE AN, T

EHINP¥LE ST 10

1] 1] | {11
(2] 'siz) V;

0 iI-L foo R (] State Indicator & T
$1 I-L=R
[>>fool1] *
H > [Immediate Execution]
J
Vfoo L] | 5 |Vgoo = | =
Edit Edit
AAX V¢ DhoES i DERE | TRAX ¢ Do S b Qe
0 I+L foo R 0 goo
9! I+L=+R
0 Jedit vfoo
1 10 foo 100
2 foo[1]
3 Jedit vgoo
.| || New Row |
Suspended (Callbacks disabled) Hist: Ln: 3 Col: 16| |classic| ||~|u1_1£I

16

e All Panes Docked and Object Editors in Auto-hide mode:

3 roject: —
% APL64 Project; CLEAR W5 O x

File Edit Session Objects Debug Tools Options Help

FRUYB =9 %xboaxME&%, " E

LY I ES AT AT A
'

0 iI+L foo R State Indicator 48 v
Tt LR
| >foo[1] *
H ’ [Immediate Execution]

[— J
’T‘meo v &

=y 5

o | Edit

. g

SiAAX Y i

0 I+L foo R
@: I-L=R

[— J
0 ledit vfoo

1 10 foo 100

2 foo[1]

3 ledit vgoo

Select text or click a row and click Enter to execute that text or row.
Select text or click a row and use Shift+Enter to copy that text or row to the Session Command Line TextBox.

] [New Row |

Suspended (Callbacks disabled) Hist: Ln: 3 Col: 16| |crassic| | Num

Toolbars
e Debugger and Editor toolbars have been implemented

Menus
e The Load and Xload menus will transparently load the APL64 Project workspace and a previously-saved APL+Win workspace.
e The Find and Replace dialogs have been unified providing the search target option and searched text format options for plain text, wild card and regex.

% APL64 Project: CLEAR WS — O x
File Edit Session Objects Debug Tools Options Help
q e H e 1]
FREd&[OE=2¢XDESMAN. T ERINIPE LI ES,
Vgoo o x ¥
Edit
HAX2C Y DoES R EEE D E R W,
0 goo R
B Search - O bt
i Find Replace)
o Odef 'Z+L foo R' |y,
1 igd Odef 'goo R
2 foo =
] & BlEE
: ﬁ .2 Scope
5 ¥+2 dp1é e I
6 <||J| Yfns @ all O ToEnd) selection | | Not Collapsed |§|
7 foo goo
8 fi+'abcde c . !
g % Yedit goo Status: Match found!
10 i Search Target: Classic Session Histary
.| Search/Replace Target: Ses.smn Fommar‘cl Line ” New Row |
Search Target: Classic Session History i
Ready | |Class1c| |Nur|1

Search/Replace Target: Function editor: goo

% APL64 Project: CLEAR W5 — O X

File Edit Session Objects Debug Tools Options Help

FRd&[N=2¢xDEE MAN.
S EHINPE L YT i ahalyV,

0 Z-L fes R State Indicator 4= ¥
$1 z-L:R
| >fool1] *
H > [Immediate Execution]
—]

Jedit vfoo

10 foo 100
foo[1]

Jedit vgoo

(AR =T

.| || New Row

Suspended (Callbacks disabled) Hist: Ln: 2 Col: 6| |Class"|c| |Num

B Result Statements History - O X

foo[1]

The list includes APL statements from the Session History of the type selected.
(a) Select one or more, possibly non-contiguous, APL statements in the list.

(b) Multiple selection is done via Shift+Up/Down Cursor keystrokes to
select contiguous statements and Ctrl+Up/Down or Ctrl+MouseClick to
select non-contiguous statements. The order of multiple selections

is significant.

(c) Double [left] click to copy the selected, APL statements
to the 'copy target', e.g. session command line, Windows Clipboard.
The double click action will close this dialogue if it is not pinned.

The Gather menu provides an enhanced dialog to select and use APL statements from the Session History pane. Selections can be filtered by Executed, Result
and all Session History statements. The copy target can be the Session Command Line or the Windows Clipboard. The dialog may be pinned and located
anywhere on a connected display.

19

e The Session History Formats have been renamed to Classic, Sequential, Grouped, Separated:

% APL64 Project: CLEAR WS
File Edit | Session | Objects Debug Tools Options Help

% Standard Toolbar &) g “%" =
v’

Debug Toolbar

Show Status Bar
View Scale -—. ' ! ' '

| Session History Format: | Classic *

Select the session history format which controls how results are associated with input:
Sequential: An array of rows with input and results in execution order, .
Grouped: An array of rows of input with the results of each input in an associated scrollable array
Separated: An array of rows of input with a separated array of rows for the selected input row.
Classic: The histonical APL document-style format with input and results in execution order.

Iil Confirm Exit

Save Settings on Exit

Save Settings Now
Export Settings...
Settings File Path
Import Settings...

APL Wirtual Keyboard Ctrl+B

Clear Session History

Clear Current Workspace Ctrl+5Shift+R

Tooltips Enabled

Customize Toolbars...

e Because the APL64 Project Session supports multi-row entries in the Session Command Line the Session Command Line Maximum Height menu item is available
to control when vertical scrolling of a multi-row text in the Session Command Line will occur.

e The Tooltips Enabled menu option has been implemented to activate/de-activate tooltips which are now available for most APL64 Project Session features.

20

e Numerous Objects menu features have been implemented:

% APLE4 Project CLEAR WS *
j

File Edit Session | Objects | Debug Toocls Options Help

New Ctrl+N ’ y E:;i &} g "% -

Function...

Variable...

Open... Ctrl+O
Open Object Named At Caret... Ctrl+Shift+0
Fetch... Ctrl+3

Display Row Numbers in Function Editor
Display Row Numbers in Variable Editor

[«[<]<]

Prompt Before Creating Duplicate Edit Session
Expand Tab To Spaces In Variable Editer
Expand Tab To Spaces In Function Editor

[<]<]

Expand Tab To Spaces In Session Command Line

Number Of Spaces In Tab ———.
Default Edit Session Type:| Function *

Editor Pane Label TabWidth ——@) .

Close Function & Variable Editor Panes

Dock Floating Function & Variable Editor Panes ' ”WI
ew Row
Cascade Function 8 Variable Editor Panes B |

|Class"|c| |Nur|1

Horizontally Tile Function & Variable Editor Panes
Wertically Tile Function & Variable Editor Panes
Dock and Autchide Editor Panes

Recent Object Names | goo
foa

-
L

MNumber Of Recent Object Names To Retain =~ ———vigg : +

e The Open object dialog is enhanced:
o The list of available objects includes the objects name and value tip information.

*

File Edit Session Objects Debug Tools Options Help

FRA&OH=2¢XDbas5Maa. CEHINPB L ES,

o Odef 'I-L foo
1 i Odef 'goo R
2 foo
3 goo
g o X-12
5 ¥+2 3dpib = .
& Vs ' ? Open Object — O b4
7 f
B <}ﬂ o g?cln‘_ abcde Text to match in the list of object names:
| o]
1 Variable {fl}: 5 p CharA "abcde™
foo Function {foo} V Z—L foo R)
goo Function {goc): V goa R 'I Functions
X Variable {¥}: Int 12) Veriables
¥ Varisble {23 plnt 122455 @ Both
[Exact Match
[] Mateh Case

o || Mew Raw

|Cmd: : 0 Col: D| |Class"|c| |Nur|1

o The object list is automatically filtered as the user types in the selection text box where filtering can be user selected among Exact Match and Match

Case.

T Aot Project CLEAR i -0

File Edit Session Objects Debug Tools Options

FRd&®[H=2¢xDbasAda. CERINPE GLHES,

[=]
(]
[«9
1]
-+
P
1
o o—h
a
a
5]

?:Z‘E":Z‘:Eii - O X

f
ﬂﬂ °e 9??4_ abcde Text to match in the list of object names:

f [o]
fl Variable {f1}: 5 p CharA "abcde”

foo Function {fook ¥ Z—Lfoo R

0 =1 O L L RO e
-
t
[
[
)
-
o

) Functicns
) Variahles
@ Bath

[Exact Match
[] Match Case

= || New Row

d: Ln: 0 Col: Dl |Class"|c| |Num

El
i
Bl
=

-

]

23

e The Options > Colors ... dialog has been enhanced:

o Multiple stored color schemes are supported

o Cloning of existing color schemes is supported
o Current color scheme list includes Element Description and currently-selected color selections

Blank Arza

Charscter Litera

Coding Error
Collapzed Region
Comment

Controd Structure
Current Function
Diamond
Execution Hilite
Function Session
Global Quad-Varisble
Global Variable
Lakel

Line Continuation
Line Mumbers
Local Functions
Local Quad-Variable
Locsl Varisble
hlatch Hilite
Matrix Session
Murneric Literal
Murneric Session
Primitive

CQuad Function
Search Region
Session Input
Session Cutput
String Litera
Systern Command
Undsfined Mams
Vector Seszion

% Edit System Colors

el EEals

Elements to Color

Coding Error
Collapsed Region
Comment

Control Structure
Current Function
Diamomnd

Execution Hilite
Function Session
Global Quad-Vvarisble
Global Variable
Labe!

Line Contiuation
Line Mumbers

Locsl Functions
Local Quad-\ariskble
Locsl Variable
hdatch Hilite

Ilstric Session
Mumeric Litsral
Mumeric Session
Primitive

Cuad Function
Search Region
Seszion Input

Seszion Output

ng Litera
Systern Command
Undefined Mame

\ector Sezzion

Options for the Selected Color Set

Color Sample: Local Functions

Background Color: |E| Systemn Defauly
oreground coce | [~ | 5= o=

W] Color In User-defined Functions
[Color In Szssion

Color Set My Personal Color Scheme #1 ™

24

The APL Session Log Options dialog is enhanced:

B APL Session Log Options —

Logging State
[] Currently Logging
[| Commence Logging at Session Start

Logging Threshold
#Unlogged Session History Statements Threshold: | 20000 %I

Overwrite Log File
[] Issue Alert when %Threshold is Exceeded

%Threshold for Alert: | 90 @

Log File

Log File Prefix: |AplSessionLog

Log File Path: |C\Users\Joe\AppData‘Local |Browse

Recent Log File: N/A

Log Import Options

Import Command Line Executed APL Statements
Import Result Type APL Statements

Import Callback Type APL Statements

Import All Other APL Statement Types

Cancel

25

e The Keyboard Definition dialog has been implemented to support user specification of the Unicode glyphs associated with keyboard keys when the user has
installed the associated Windows language preference component on the target workstation.

B ' Keyboard Definition

c n||lv v |lb 1o

Selected Row: 3 Selected Col: 5

Key Position Applies to this Keyboard Definition

Glyph for Base Modifier Key State:

Glyph for Shift Modifier Key State:

Glyph for ALt Modifier Key 5tate: del

Glyph for ALt 5hift Modifier Key State: Ne APL glyph

|AppLy Glyphs To Selected Row E Col

|Save Keyboard Definition

|Applv Selected Keyboard Definition EN-US

[] Butteon positions unavailable for some key E:_g: Finitions
ALtGr glyphs are controlled by the insta dows

Languzge Preference and are mot illustra

26

