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Dear friends,

APL Press is a new business formed gor the purpose of
publishing books, pamphlets, and other material nelated to APL.

This newsletter is the §inst 0f a series of occasional
publications to be devoted to announcements and heviews of
books, information about meetings, brief articles, problems
and solutions, definitions of functions, correspondence, ete.

We would be pleased to receive manuscripts on outlines
of profected books, material fon the newsletter, comments and
duggestions.

If you wish 2o continue to neceive the newsletten please
send us your name and address. We will also be glad to mail a.
copy of this issue to anyone you wish to suggest.

Sincenely,

ﬂ@mo@mw

APL WORKSHOP

An APL workshop was held May 16-18 at Queen's University,
Kingston, Ontario, under the sponsorship of the Department
of Computing and Information Science and the SIGPLAN Tech-
nical Committee on APL (STAPL). The 35 invited participants
included representatives from some of the manufacturers who
support APL (IBM, Burroughs, Digital Equipment Corporation),
several time-sharing services and the academic community.
The major topics discussed were the development of an APL
standard, a standard information format for workspace inter-
change, and the need for language extensions in the areas of
general arrays, control structures, and error handling and
event control. A fuller report of the workshop activities
and a list of addresses of the participants will be submitted
to APL Quote Quad, or is available on request from the work-
shop organizer, M.A. Jenkins, Computing and Information
Science, Queen's University, Kingston, Canada, K7L 3N6.
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The symbol t will be used to assert that the APL
expression immediately following it is a well-defined
logical array with no zero entry, so that tEXPR is
equivalent to tA/,EXPR. We shall use zero origin
throughout.

We shall be concerned with arrays C satisfying the
following three non-independent conditions:

(1) t(pC)=N,N,N tCe1N*3 t(1V%3)eC

so that ¢ is an arrangement of the elements of 1V*3 in the
form of a cube.

Our definition of a magic cube is far more stringent
than that usually given. For us a magic cube of order y§ is
an array ¢ satisfying (1) and such that, in each of the
thirteen possible directions, every set of N elements of ¢
forming a straight line in the cube ¢ has the same sum. 1In
the usual definition, even when the cube is described as
"pandiagonal", only seven directions are considered, namely
the three orthogonal directions and the four directions of
the space diagonals. Occasionally our magic cube has been
referred to as a perfect magic cube.

A pandiagonal cube is an array ¢ such that for any
choice of integers X,7,Z the array X¢é[0]Y[1]1zd[2]1C is a
magic cube.

An associated cube is a magic cube ¢ for which

(2) A/ (T14x/p0C)=(,C)+0,C

The theory below provides a general method for the
construction of magic cubes, including the following four
examples:

(3) (3p7)p7L71(3 343 5p4 5 6)+.x(3p7)T17%3

(4) (3p8)p8L0 1 2 3 7 6 5 4[8](3 343 5p2 3 4)+.%x(3p8)T18%3]
(5) (3p9)p911 2 0 3 4 5 8 6 7[9](3 343 5p2 3 5)+.%(3p9)T19%3]
(6) (3p11)p211111(3 343 5p3 4 5)+.x(3p11)T111%3

Of these examples, (3) is associated, (4) is
pandiagonal, and each of (5), (6) is an associated
pandiagonal perfect magic cube.




THE THEORY

Tt is convenient to encode the elements of C and of
1§%3 by using the matrices MI and M¢ defined below:

(7) MI <« (3pN)T1l*3 tMC=(3pN)T.C

Observe that

(8) t(1N*3)=N1MT tC=(3pN)pNLMC

and that

(9) tMIellN tMCe NV t((pMC)=pMI)A(pMI)=3,N*3

Taking X (t3 3=pK) to be a suitably chosen matrix,
subject to the constraints below, we define C by using (8)
and (7) in conjunction with
(10) MC <+ N|K+.xMI
so that the array C is in fact defined by
(11) C « (3pN)pNLIN|K+.x(3pN)T1N*3

Then ¢ will satisfy (1) if and only if X is invertible
modulo N, which is equivalent to the condition

(12) t1=N GCD DET K

where DET is the determinant and GCD is the greatest common
divisor function.

The array ¢ satisfying (1) will be a pandiagonal magic
cube if K satisfies the condition

(13) tA/,1=F GCD K+.x1-(3p3)T113

wherein columns 0 2 6 8 correspond to the four space
diagonals.

The condition (2) for ¢ to be an associated cube (if
magic) will be satisfied if and only if

(14) tA/1=N]+/K

Since (13), (14) depend only and independently on the
sets of numbers in each row of X, it is convenient to take X
to be a circulant matrix:

(15) K« 0 2 163 3pV

(which may also be written K<«3 343 507) where V (t3=pV) 1is a
suitably chosen vector.




If tA/022 3 5]V and if we define
(16) K <« 3 343 5p V « (13)+ R <« (3]-N)xLN+3

we find t1=N|+/V and t1=N|3%x1+R so that XK has the mod W
inverse (3 343 5p0 2 1x1+R) and consequently X satisfies
(12) and (14) and C satisfies (1) and (2).

Since, except for columns 2 6 8, (13) is easily
verified, it follows that in this case (t0=22 3 5|¥) (16)
yields an associated magic cube, which is pandiagonal if
also t0#7|N. By taking V<7 or N<«11 in (11) and (16) we
obtain the examples (3) and (6).

If tv/0=2 3 5 7|F it is impossible to satisfy (13),
but we may obtain examples such as (4) and (5) by
incorporating the step MC<«W[MC] where W is a rearrangement
of 1N such that, for any integers 4 and D,

(17) t0zN|D implies t(+/W)=+/WIN|A+Dx1N]
and, in the case t0=3|FN, by modifying V.

We close with seven problems, of which the last two
are by far the most challenging.

CHALLENGES TO THE READER

A. Construct a magic cube of order 25.

B. Prove that t20uu4=+/,(XoU)/[01(YoU)/[11(Z¢U)/[2]1C,
where ¢ is given by (4) and X,Y,Z,J are integers such that
t2=+/U«(18)e0,J/. Interpret this result, and find other
similar results.

C. Construct a four-dimensional analogue of a magic cube.
Observe that the linear sums are the same in no fewer than
forty different directions.

D. Construct a strongly associated magic cube of order 8,
where a magic cube C is strongly associated if
(18) tA/ ((1x/pC)=,C) v ((1x/pC)=b,C)

E. Construct a 5x5x5 cube on 1125 in which more than 100
lines of length 5 have the same sum.

F. Determine whether or not there exists a magic cube of
order 15

G. Determine whether or not there exists a
four-dimensional magic cube whose order is less than 16.

[0BET[?(?1E6)ppaBET]]

What capital city was transformed to Eastern Capital
by “2¢ ?

APL programmer Bob Hankey of DSG, 133 South 36 Street,
Philadelphia, now combines programming with the perm-

anent repair of typeballs, a business he invented when
his only APL typeball suffered a broken biscupid.




ON FUNCTION DEFINITION

A form of function definition particularly suited to
exposition is defined and illustrated below in excerpts from
Iverson's Elementary Analysis (APL Press, 1976). We would be
pleased to publish any interesting and efficient APL program
capable of fixing the definition of a function presented to
it (as a character vector) in the ow form here described.

Consider a dyadic function F defined informally as
follows: ‘the result is the sum of the right argument and
the product of the left argument and the square of the right
argument. In other words, the result of the expression
X F Y is Y+XxY%2; specifically, 2 F 3 equals 3+2x3%2 or 21.

A formal definition is one which can be interpreted by
a mechanical application of known rules, requiring no
judgement or subtle interpretation. For example, the
function F defined informally above can be defined formally
as:

F:iotoxwk?2

using the following rules: to interpret any expression of
the form X F Y, substitute the first argument X for each
occurrence of a (the first letter of the Greek alphabet) in
the expression, and the Ilast argument Y for each occurrence
of w (the last letter of the Greek alphabet). For example,
the steps in the interpretation of the expression 4 F 3 can
be shown as follows:

4 F 3
3+4Xx3%2
39

If the symbols ¢ and « do not both occur in a
definition, the function defined is monadic. For example:

SQRT :w* .5 PITIMES :3.1416%w

The colon in a function definition may be read aloud

as "is". Thus, F:a+w may be read as "F is o plus w".

A variable which Is assigned a value within a function
definition is local to the function.

A function definition is said to be recursive if the
function being defined recurs in the expression defining it.
This notion may be familiar from informal definitions. For
example, the power function X*V may be said to equal X times
X*N-1, and the factorial function !N may be said to equal
Nx!N-1,




Let us attempt to define the factorial function FAC in
this manner:

FAC :wxFAC w-1

To interpret the expression FAC 4 we would proceed by
substitution as usual:

FAC 4

uLxFAC 3
Ux3xFAC 2
Lx3x2xFAC 1

It is clear that this procedure can be terminated
meaningfully only if we know the value of FAC X for some
value of the argument X. In this case, FAC 1 is equal to 1,
and with this knowledge we can terminate the interpretation
as follows:

4x3x2x1
2y

In general, it is necessary to know a second
expression for the function (in this case the simple
expression 1) and the condition under which it is to be
applied (in this case when w=1). The recursive definition
of factorial therefore requires the following three pieces
of information:

The primary expression: wxF w-1
A proposition 2 w=1
A secondary expression: 1

In a formal definition these three data are presented
in the foregoing order with colons separating them. Thus:

FAC :wxFAC w-1:w=1:1

FAC 4
24

Area of a closed figure. A figure is closed if the last
point ~in~ its matrix representation equals the first.
However, if a figure is known to be closed, it can also be
represented more briefly by dropping the last point and
requiring that the connection of the points be cyclic, i.e.,
the last connects to the first. Figure 5.19 shows the
pentagon so represented by the following 5-column matrix:

The area of a closed polygon so represented is given
by the following single function:

AREA: .5%x+/ (x40 1¢w)-x£1 0dw [5.9.6]




Perimeter of a closed figure. If P is a two by V matrix
representing the coordinates of the ~N vertices of a closed
polygon, then the ¥ displacements from vertex to vertex are
given by the expression D«P-"1¢P. For example, if P is the

matrix of Figure 5.19, then ¥ is 5, and:

B “14P D
7 10 6 3 &4 4 7 10 6 3 8 3 T4 T3 4
2 5 8 6 3 3 2 5 8 6 1 & B 263

Moreover, the length of any displacement (according to
the theorem of Pythagoras) is the square root of the sum of
the squares of the displacements along the ¥ and Y axes.
Consequently, the ¥ lengths are given by SQRT +/D%2, where
S@RI:w*.5. The lengths of the sides of a polygon are
therefore given by the following function applied to the
matrix representation of its vertices:

LP:SQRT +/(w-"10bw)*2 [5.9.7]

The entire set of functions developed for handling
polynomials is collected below:

P:+/axwx1lNa

N:it+/w=w

PLUS : (ML4oa )+ (ML« (Na)[Nw)tw

MINUS:0 PLUS-w

TIMES: (ax14w) PLUS 0,0 TIMES 13%w:0=Nw:0

INTO: (14w3lta).a INTO 1Yw MINUS oxltwslta: (No)>Nw:10
LINTO:$(da) INTO duw

CURT:(-+/1L\0=0bw)Yw

PVRA:(a P 14w),a PVRA 14w:0=Nw:10

Many of the properties of a function can be expressed
in terms of the properties of the component functions used
in its definition. Thus if H:(Fw)+(Gw), then (as shown in
Sec 2.3 and 3.3) the additive function for FH is given by
AH:(0dFw)+(adGw), and the derivative is DH: (DFw)+(DGw).
Rules for obtaining the derivatives of composite functions
are listed below, using DF and DG to denote the derivatives
of F and G, and IF and IG to denote their inverses:

NAME COMPOSITE FORM DERIVATIVE
SUM (Fuw)+Guw (DF w)+DG w E6idined ]
PRODUCT (Fu)xGw ((Fw)xDG w)+(DF w)xGw [6.1.2]
RECIPROCAL +Fuw -(DF w)+(Fuw)*2 65131
COMPOSITION FGuw (DF Guw)xDG w [6.1.4]
INVERSE IF w :DF IF o [f61.5 ]
POWER w*N NxwxN-1 [6.1.6]

4,61 If Vv 4is any two-element
vector, show that:

a) 2 o +/vV . b) 1 o +/v
--/x/1 20.0 V +/%X40 161 20,0 V




