

A Beginners Guide to
APL2000 Web Services

Brian Chizever
2005 APL2000 User Conference

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Overview ... 1
What is APL Web Services? ... 1
A Picture Is Worth A Thousand Words .. 1
How Does This Differ From []NI? ... 2

Web Servers .. 2
IP Address ... 2
localhost .. 2
Ports .. 3
Home Directory .. 3
Virtual Directories .. 4
Default Pages .. 4

Web Browsers ... 4
Installing APL Web Services .. 5
Configuring APL Web Services ... 6

Home Directory .. 6
Adding a Web Server .. 6
Web Server Properties .. 7

Starting and Testing the Server ... 10
Using APL to Return Content ... 10

Adding a Workspace ... 10
Setting Workspace Properties ... 11
Connecting a URI to an APL Function ... 12

Testing the APL Function ... 13
Looking at the Running Code ... 14

Modifying the Running Code ... 15
APL Functions with Arguments ... 15
How Browsers Pass Data to Web Servers .. 16

GET ... 16
POST ... 16

URI Name Matching ... 17
Common Argument Types .. 18
Setting up a Second Web Server ... 22

Starting and Testing the Second Server .. 22
Dynamic Default Pages ... 22
Virtual Directory Names ... 22

Virtual Directories That Look Like Files.. 23
Virtual Directories Deeper Than One Level ... 23

Additional Argument Types ... 24
Common Result Types .. 25
Adding a Second Workspace .. 26
Using Your Existing Code .. 27
Load Balancing ... 27
Cookies ... 28
Uploading Files ... 31
Topics Not Covered In This Paper .. 33

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 1 of 34

Overview
Web Services is a way of exposing applications and data over the web in a standard way.
This paper will focus on some of the basics of APL2000 Web Services and how to use it
to handle requests from a web browser.

What is APL Web Services?
APL Web Services is APL2000’s means of exposing Web Services to the APL
programmer. (This may be referred to as AplServices or APL+WebServices in some
contexts.) It is an NT service which means that it can run in the background, even if you
are not logged in, and generally does not interact with the user.

APL Web Services is also a container. It manages and configures multiple web servers.
It also manages APL+Win COM objects which will load workspaces. And finally it ties
requests to its web servers to functions within these managed workspaces. (Note that a
single machine can only run a single instance of APL Web Services, but that APL Web
Services can run multiple web servers.)

A Picture Is Worth A Thousand Words
• a user types a request into an internet browser
• the request goes over the internet to its destination server which may be in APL

Web Services
• APL Web Services handles the request by doing one of the following:

o return a static page
o call a function in one of its workspaces

 create an APL+Win COM object (if needed)
 load the workspace (if the COM object was just created)
 call the function with any arguments specified in the configuration
 get the function result and return it to the browser based on any

settings in the configuration
o some other operation

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 2 of 34

How Does This Differ From []NI?
[]NI, a fairly thin cover for Winsock, was released in version 3.0 of APL+Win. A beta
was distributed at the 1997 User Conference. []NI is much more generalized than APL
Web Services, but also requires more effort on the part of the APL programmer.

APL Web Services []NI
high level low level
runs as a service does not run as a service
automatically handles load balancing
between multiple processes on a single
machine

does no automatic load balancing

only handles web services handles any protocol
server only client and server

Web Servers
All web servers are uniquely identified by two attributes, an IP address and a port.
Together, these determine the machine being queried, and what server on that machine.

IP Address
All computers accessible via the internet have a unique IP address. This address takes the
form of four sets of numbers separated by dots. Each number is in the range from zero to
255. For example, Yahoo’s web site has an IP address of 216.109.118.65. To make
these addresses easier to remember, most web sites also get a friendly name, such as
www.Yahoo.com. When you type a friendly name into your browser, the Domain Name
Server (DNS) resolves the friendly name to the IP address. This IP address is then used
to find the machine hosting that web site.

A single physical computer can have more than one IP address, but any single IP address
specifies a single machine. You can think of it this way. A building might have only a
single mailing address, which is the case in a single family home, or it could have
multiple mailing addresses, such as in an apartment building. Similarly, a computer may
have a single IP address, or it may have multiple IP addresses. (A machine with multiple
IP addressed is called a “multi-homed host”.) In the same way that you can determine
the building from a mailing address, you can identify the computer from the IP address.

localhost
The friendly name localhost, which resolves to 127.0.0.1 is always the local machine.
This is also known as the loopback adapter because is only accessible when the client and
server are on the same machine. If you set up a server on 127.0.0.1, you can test it from a
client on the same machine, but no other machines will be able to access that server.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 3 of 34

When a server is used in a production environment, an IP address that is accessible from
other machines is required

Ports
A server communicates on a specific port. The port is specified as an integer between
one and 65535. Port numbers less than 1024 are “well known” or standard ports. For
example, most web servers use port 80 and most FTP servers use port 21. There is no
requirement to use these numbers, but most web browsers default to port 80. If the web
server were to use a different port, you would need to specify that port number when
browsing to that server.

You cannot have two servers with the same IP address use the same port. When the first
server starts it will bind to that port so, when the second one starts, the port will be
unavailable and the second server will fail. For this reason, if you are running multiple
web servers on a single machine, but that machine has only a single IP address, each web
server will need to use its own port.

Home Directory
A home directory is a mapping from a web server to a directory on the host machine.
Your domain name or IP address is mapped directly to this directory. The home
directory is the top of your web publishing tree so paths specified in the web browser are
sub-folders of the home directory.

Since a single computer may host more than one web site (using either multiple IP
addresses and/or multiple ports), each web server gets its own home directory. For
example, if you set up your computer with the following web servers:

IP Address Port Home Directory
10.10.10.1 80 C:\web\one
10.10.10.2 80 C:\web\two
10.10.10.2 8080 C:\web\three

A web request of http://10.10.10.1/page.htm will be interpreted by the web server as a
request for the C:\web\one\page.htm file. A request of http://10.10.10.2/picture.gif will
be interpreted by the web server as a request for the C:\web\two\picture.gif file. Finally a
request for http://10.10.10.2:8080/photo.jpg is a request for the C:\web\three\photo.jpg
file.

Note that in the third example we needed to specify the port. Internet Explorer, Firefox,
Netscape Navigator, and most other web browsers will default to port 80 if not specified.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 4 of 34

Virtual Directories
A virtual directory is a directory that exists outside of the home directory tree. For APL
Web Services, instead of being a physical directory, it is instead a pointer to a function in
a particular workspace. The virtual directory appears to client browsers as though it were
a physical directory.

A virtual directory is an alias that does not reveal any information about either the
workspace location or the real name of the function which it references.

Default Pages
If the browser makes a request but does not include a specific page, the web server will
generally return a default page. For example, the Yahoo web site is configured to return
the index.html file if no file is specified. That means that http://www.Yahoo.com and
http://www.Yahoo.com/index.html, will both be interpreted by the web server as a
request for the index.html file in its home directory.

Web Browsers
Web browsers do two things. They make requests of web servers and they display the
response.

The simplest way to make a request is to type a URI (Uniform Resource Identifier) into
the address field. The simplest form of this URI is www.apl2000.com. A more complete
URI is http://IPaddress:port/path/file. The pieces of the request are as follows:
http The protocol, or agreed upon language of communication. It stands for

HyperText Transfer Protocol. Most web browsers will supply this if it is not
specified.

IPaddress The IP address or friendly name of the server.
port The port the server is using. If omitted, it defaults to 80.
path The subdirectory of the home directory to use. The path may also map to a

function in an APL workspace.
file The requested file. If not specified, the default page in that path, if it exists,

is returned.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 5 of 34

Installing APL Web Services
Before installing APL Web Services, make sure you have the correct system
requirements and that APL+Win is installed

The minimum system requirements are Windows NT 4.0 SP6a or Windows
2000/XP/2003, Microsoft .NET Framework version 1.1, and IE 5.01 or greater.

You also need APL+Win version 5 or 6, and the APL+Win COM object installed. To
ensure you have APL+Win correctly installed, follow these steps:

• Check the version of APL+Win by starting APL and looking at the result of
[]SYSVER.

• Check that APL+Win is a valid COM object by typing:
 '#' Œwi '®Info' 'APLW'
If the result is not empty, APL+Win is a COM object.

• Check the version of the APL+Win COM object by creating an instance of it and
checking its []SYSVER variable:
 'x' Œwi 'New' 'APLW.WSEngine'
 'x' Œwi 'SysVariable' 'SYSVER'

• Determine if the APL+Win COM object is runtime or not by looking at the 21st
element of the []SYS variable:
 ('x' Œwi 'SysVariable' 'SYS')[21]
If the result is 1, the runtime is installed. If the result is 0, it’s the non-runtime.

If any of the above checks fail, you can fix it by re-installed APL+Win. You can also
register APL+Win as a COM object manually by registering the aplwCo.dll file

regsvr32.exe d:\path\aplwco.dll
In a production environment, you would want to use the runtime APL. For development,
and for this session, you’ll want to use the non-runtime version:

d:\path\aplw.exe arguments /RegServer

To install APL Web Services, simply double-click the AplServicesSetup.msi icon. The
installation program will create the C:\Program Files\APL2000\AplWebServices
directory and place icons on your desktop and in your Start menu for the APL Web
Services Admin program, which will allow you to administer APL Web Services, and for
the APL Web Services help. A second help file, AplWebServicesReference.chm, is also
installed but, since it’s a reference help file, a link to it is not put on your start menu.

It also creates the AplServices service. To see this, open the Windows Service Control
Manager. Depending on the version of your operating system and how you have it
configured, it may be found in different places. You can first try opening the Start menu
and choosing Settings – Control Panel – Administrative Tools – Services. You should
see a row with the name “AplServices” whose status is blank and whose Startup Type is
“automatic”. The startup type indicates that this service will start automatically every
time you boot your computer. It’s not yet started because we just installed it. Start it
now by highlighting the row and pressing the start button in the toolbar.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 6 of 34

Configuring APL Web Services
Now that we have installed APL Web Services, we need to create our first server.

Home Directory
We first create a home directory to hold the static content for our web service. You can
choose any location on your machine as your home directory. Remember that the home
directory and its contents, including files and sub-folders, will be accessible to the
internet. It will not be possible for anyone on the internet to access any other location on
your hard drives using APL Web Services other the home directory.

All the files needed in this paper are found in the BeginnerWebServices.exe self-
extracting zip file. To follow the examples in this paper, unzip the files and subfolders to
the root of your C-drive so that it looks like this:

Adding a Web Server
Start APL Web Services Admin by double-clicking its icon on the desktop or in the Start
menu.

Add a new web server by right-clicking the “Web Servers” node and choosing New
Server. This will create a new item called defaultwebsite.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 7 of 34

Web Server Properties
Set the properties of this server by right-clicking it and choosing Properties.

Web Site
The Web Site tab is where you specify the IP address and port. We will use localhost
(the local machine) because the server and browser are on the same machine. Remember
that in a production environment, you would need to use an actual IP address. We will
use port 2000 because it is above the range of well known ports and because it is unlikely
to be in use.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 8 of 34

Documents
The Documents tab lets us specify if our server will return a default page, and if so, what
file name to use. Check Enable Default Documents and put default.htm in the list. Note
that you can list multiple files and the server will search for each file in the order listed
until one is found.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 9 of 34

Home Directory
The Home Directory tab is where you specify the location on the disk drive from which
the server should retrieve static contents. Enter the path to the WebHome directory
which we created earlier.

You then click OK to save these settings.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 10 of 34

Starting and Testing the Server
We already started APL Web Services from the Windows Service Control Manager. We
now need to start the web server, defaultwebsite, that we just created. To do this,
highlight defaultwebsite and start it using the Start menu on the Action menu.

Open a web browser and try the following addresses:

http://localhost:2000 You should see the default web page in the

home directory.
http://localhost:2000/static.htm You should see a static page in the home

directory.
http://localhost:2000/yellow/static.htm You should see a static page in the Yellow

subfolder of the home directory.
http://localhost:2000/yellow/ You should see the default page in the Yellow

subfolder of the home directory.
http://localhost:2000/yellow You should get an error. Since there’s no

trailing slash, it’s looking for the “yellow”
page in the home folder, which doesn’t exist.

http://localhost:2000/green/static.htm You should see a static page in the Green
subfolder of the home directory.

http://localhost:2000/green/ You should see an error because there is no
default page in the green subfolder of the
home directory.

http://localhost:2000/green You should see an error because there is no
green page in the home directory

Using APL to Return Content
So far all we’ve done is show that we can use APL Web Services to serve up static pages.
This could have been done using any number of free web servers. What we want to do is
have APL Web Services call a function in an APL workspace, instead of just returning a
file from the hard drive.

Adding a Workspace
In APL Web Services Configuration, right-click on the Workspaces node and select New
Workspace to add a new node to the tree called defaultworkspace. Right-click on
defaultworkspace, select Rename and type “basic1”. This is the name by which we will
reference this workspace.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 11 of 34

Setting Workspace Properties
The most important property to set is wslocation. Right-click on wslocation in the
listview, select modify, and type in the full path and name (or browse to) the workspace
you wish to use. For our examples we’ll use the BASIC.w3 workspace in the
C:\APLConf\WebWorkspaces directory.

The other properties that we’ll set at this time are debug and visible. Remember that APL
Web Services will start an APL+Win COM object and then load the specified workspace
into it. The APL+Win COM object is generally hidden, but when developing, it’s often
helpful to see the APL+Win COM object so that you can modify, trace, and debug the
functions in the running workspace.

If the visible property is set to one, the APL+Win COM object and workspace will be
shown. If visible is zero, but debug is one, then the COM object starts out hidden, but
will be made visible if a function suspends due to error or a []STOP in the function.

After setting the wslocation, debug, and visible properties, the APL Web Services
Configuration screen should look like the following:

Some of the other properties, such as minpool and maxpool, will be discussed later in this
paper.

Right-click on “basic1” and choose “Start” to make this workspace available.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 12 of 34

Connecting a URI to an APL Function
We now need to tell the web server that some requests should call functions in that
workspace instead of simply looking for a specific file. Right-click defaultwebsite and
choose New Virtual Directory. You should now see “/default” appear under
defaultwebsite. Right-click it, choose Rename, and type “/simple”.

wsid
Click on the wsid node in the tree, then right-click the top row in the listview, choose
Modify, and set the name to “basic1”. This is the name we used in the previous step
when adding the workspace

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 13 of 34

function
Click the function node of the tree, right-click the top row of the listview, choose Modify,
and type “wDynamic” as the name.

wDynamic is the name of a function in the BASIC.w3 workspace. It takes no arguments
and returns a valid html document so there is no need to modify the rarg, larg, or result.

 Þ z„wDynamic
[1] © create a simple dynamic page
[2] © return a complete html page
[3]
[4] z„'<html>' © html docs start with this tag
[5] z„z,'<head>' © start of the head section
[6] z„z,'<title>Dynamic</title>' © the text for the title bar
[7] z„z,'</head>' © end of the head section
[8] z„z,'<body>' © start of the body section
[9] z„z,'Generated at ',•ŒTS © the text to display
[10] z„z,'</body>' © end of the body section
[11] z„z,'</html>' © end of the html document
 Þ

Testing the APL Function
In your web browser, type http://localhost:2000/simple and you should see some simple
text with the current date and time. If you refresh the page the time should update.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 14 of 34

Looking at the Running Code
Even though we set the visible property of basic1 to one, the APL workspace was not
shown. The reason for this is that, by default, processes running as services cannot
interact with the user. To change this, follow these steps:

1. Open Windows Services.
2. Highlight the AplServices row.
3. Right-click and choose Properties.
4. Go to the Log On tab.
5. Check the “Allow service to interact with desktop” option.

6. Click the OK button to save your settings.
7. Restart the service by right-clicking and selecting Restart.

An APL+Win ActiveX Server session with BASIC.w3 loaded should now be visible.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 15 of 34

Modifying the Running Code
Confirm that everything is still working by typing http://localhost:2000/simple into your
web browser. Now go to the running APL+Win ActiveX Server session and put a stop
on line 10 of the wDynamic function. Refresh your browser and you’ll see that it’s
waiting for a response. Go to the APL session and you’ll see that you’re stopped at
wDynamic[10]. In the session type:
 z„z,' (about)'
and then branch to []LC. Go back to the browser to see that this change has taken affect.

We’ve now shown that we can modify APL code used by APL Web Services in the same
way as we can when running under Windows. If you are modifying code in this way,
don’t forget to save any changes. If you stop APL Web Services, it will close the open
APL+Win COM objects which will lose any unsaved changes in your workspace. In
most cases, since)SI is empty, you can simply do a)SAVE at any point.

Don’t forget to remove the stop on wDynamic[10].

APL Functions with Arguments
APL functions take only a single right argument and a single left argument. We often get
around this limitation by making one or both of the arguments an array of values. The
definition of the function may be that it has a single right argument called rarg, but if the
first line of the function is something like
 (num1 num2 name)„rarg
then we know that we are converting that single right argument into three separate values.
Whatever is calling this function, needs to call it with a three element right argument. In
addition, the caller must use the correct type of argument (it shouldn’t pass a character
matrix when a scalar number is expected).

When APL Web Services calls an APL function that takes arguments, it must be told how
to compose those arguments. It also needs to be told what information to use.

Math1
Right-click on defaultwebsite and choose New Virtual Directory. Right-click on that
virtual directory to rename it to “/Math1”. In the same way we did for the /simple virtual
directory, set the wsid to “basic1” and the function to “wMath1”.

Next right-click on rarg and choose New Value. You can use anything for the name, but
set the type to “entity-body” (more about that later).

Now go to http://localhost:2000/math1.htm. This is just a static html page with a form.
When you click the “Submit Query” button, the form uses the /Math1 virtual directory.
Put in some numbers, choose add or multiply, and click the button. You should get back

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 16 of 34

a simple page with a single number on it (either the sum or the product of the numbers
you typed).

Put a stop on line one of wMath1, go back to the math1.htm form, enter the numbers two,
three, and four in the boxes and press the submit button. When we stop on line one, we
can see that the right argument is:
 n1=2&n2=3&n3=4&op=add
(Branch to []LC to allow the function to finish.)

If we look at the math1.htm file in a text viewer, we’ll see that the form has five fields.
The three boxes are called “n1”, “n2”, and “n3”; the two radio buttons both have the
name “op” but have values of “add” and “mult”, and the submit button has no name.
Also note that the form has a method of “GET” and an action of “/Math1”.

The action determines what virtual path to use, and therefore what function to call in the
workspace. Each named field gets passed to the server. The text fields use the numbers
typed in as the values while the radio buttons pass the value of the checked item.

How Browsers Pass Data to Web Servers
A browser can make a request to a web server using one of two methods: GET or POST.
Anything typed in the address bar as well as normal links use the GET method. Forms
can be designed to use either method. Which method the form uses is determined by the
form designer and the web server administrator.

GET
If the browser uses the GET method, it passes a header and the URI to the server. Any
additional data needed by the server must be included in the URI.

Earlier, I said that a URI is of the form http://IPaddress:port/path/file. You can put
additional data in the URI by putting a question mark after the file and then putting in
“name=value” pairs. Multiple name/value pairs are separated by ampersands. This
means your URI may look like http://IPaddress:port/path/file?name1=val1&name2=val2.

This has the advantage that you can simply type it into the address bar, but it means that
the user can see the values. Also, there is a limit to the number of characters allowed in a
URI.

POST
If the browser uses the POST method, in addition to the header and URI, it also passes
additional data to the server which is not visible to the user. In general, this information
is from the fields on a web form.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 17 of 34

Math1 – revisited
If we run the Math1 example again, we see how the data in the form is put into the URI.
If I put the numbers two, three, and four into the text boxes, the URI becomes
http://localhost:2000/Math1?n1=2&n2=3&n3=4&op=add. Without going back to the
form, simply change the numbers in the address field (for example change the “n3=4” to
“n3=44”), and press enter. The page will be updated with the new sum.

Now edit the math1.htm file in a text editor. Change the method from “GET” to “POST”
and save the file. Now go back to http://localhost:2000/math1.htm, fill in the form and
press the submit button. You still get back a valid number, but the arguments are no
longer part of the URI.

The wMath1 function is written such that it will accept data from either a GET or a
POST. So even though you just did a post, if you now type in an address of
http://localhost:2000/math1?n1=5&n2=10&op=add and press enter, you’ll get a response
of 15 and the address will show the arguments. That’s because typing in an address is the
same as a GET. If you wanted your customers to be required to use the form and not be
able to just type in the values, you would need to change wMath1 to return an error
message if a GET method was used.

The rarg for Math1 is set to entity-body. For a GET, the entity-body is everything
following the question mark in the URI. For a POST, it is the entity-body field of the
POST data (hence its name). In either case, it is a text vector of name=value pairs
separated by ampersands.

URI Name Matching
If you type in the URI http://localhost:2000/math1.htm, you get our Math1 form. If you
type in the address http://localhost:2000/math1, you get back a page that says “Invalid
Operation”.

The http://localhost:2000 portion of the URI identifies the server and is identical in the
two cases. In the first case, “/math1.htm” matches a file in the home directory and so that
file is returned. In the second case, “/math1” matches a virtual directory and so calls the
wMath1 function in the BASIC.w3 workspace. That function returns “Invalid
Operation” if the “op” argument is not either “add” or “mult”. Since it was not specified,
we get back that error message from the function.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 18 of 34

Common Argument Types
There are many argument types available for rarg and larg. I will not cover them all, but
will cover some of the common types.

entity-body
This is the argument we used for the /Math1 virtual directory. It is a character vector of
“name=value” pairs separated by ampersands.

entity-body-decoded
This is similar to entity-body, but it is passed to APL as an Nx2 matrix where the first
column contains the names and the second column contains the values.

Math2
Right-click on the “/Math1” virtual directory and choose Copy, then right-click on
defaultwebsite and choose Paste Virtual Directory. This creates a new virtual directory
which is a copy of the original one. Right-click the new virtual directory and rename it to
“/Math2”. We can leave the wsid alone, but change the function to “wMath2” and
change the rarg from “entity-body” to “entity-body-decoded”.

Now use your browser to navigate to http://localhost:2000/math2.htm. This is identical
to the math1.htm file except that its action is set to “/Math2”. Fill in the fields on the
form, press submit, and it should appear identical to the previous example.

Put a stop on line one of the wMath2 function and re-run the form. Now look at the right
argument to the wMath2 function:
]display arg
.…--------.
‡.…-..…. |
||n1||2| |
|'--''-' |
|.…-..…. |
||n2||3| |
|'--''-' |
|.…-..…. |
||n3||4| |
|'--''-' |
|.…-..…--.|
||op||add||
|'--''---'|
'¹--------'

It has the same information as in entity-body but it has been converted from a simple text
vector into a nested array.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 19 of 34

int / float / string
These types are passed just as you would expect. String is a character vector. Float and
int are numeric vectors. Unlike the previous two types, the name assigned to these types
is important. APL Web Services will look for a name in the request which matches the
name specified in the APL Web Services Configuration screen. If it finds it and it is the
correct type, it passes that value. If it cannot find a value with that name, or the value is
not the correct type (it’s “abc” when we specified int), it will return a value of an empty
character vector (even if one of the numeric types was specified).

Math3
Create a new virtual directory by copying the “/Math1” virtual directory, pasting the new
one, and renaming it to “/Math3”. The wsid remains “basic1” but change the function to
“wMath3”. Right-click on rarg and choose edit values. Highlight the first row and click
the remove button. Then double-click “[new name]”, put in a name of “n1”, and set its
type to “int”. Repeat the process to add “n2” and “n3” as integers. When the screen
looks like the picture below, press OK

Right-click larg, choose New Value and put in a name of “op” and a type of string.

When finished, use your browser to navigate to http://localhost:2000/math3.htm, fill in
the form, and press the submit button. Math3.htm is identical to math1.htm other than
having its action set to “/Math3”.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 20 of 34

The result should appear identical to the previous two examples. Put a stop on line one of
the wMath3 function, re-run the form, and look at the right and left arguments.

]display op
.…--.
|add|
'---'
]display arg
.…----.
|2 3 4|
'~----'
 …ŒLC

There is only one left argument, so it’s a simple vector. There are three right arguments,
so arg is a three element vector. Each element is an simple integer.

Re-run the math3.htm form, but only fill in the first two boxes, and then look at the
arguments.

]display op
.…--.
|add|
'---'
]display arg
.…--------.
| .´.|
| 2 3 | ||
| '-'|
'¹--------'
 …ŒLC

The left argument and the first two elements of the right argument have not changed.
The third element of the right argument is an empty vector.

Although the code in the previous example correctly handled empty fields, it was fairly
straightforward (the entity-body would be “n1=5&n2=6&n3=&op=add”). Now, because
we are explicitly asking for the “n3” argument but could not find it, APL Web Services
passes an empty character vector as the value.

If you re-run the form again, fill in the first two fields but put “abc” into the third field (so
the entity-body is “n1=2&n2=3&n3=abc&op=add”), you’ll see that arg has not changed.
Since we declared n3 as int, and “abc” is not a valid integer, it is the same as omitting it.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 21 of 34

Math4
Create a new virtual directory by copying the “/Math3” virtual directory, pasting the new
one, and renaming it to “/Math4”. The wsid remains “basic1” but change the function to
“wMath4”. Highlight rarg and then right-click on n2 and choose Delete. Right-click on
n3 and choose Delete. You should now be left with a single rarg with name “n1” and
type int. The larg should remain unchanged.

Use your browser to navigate to http://localhost:2000/math4.htm, fill in the form, and
press the submit button. Math4.htm is identical to math1.htm except that its action is set
to “/Math4” and all three input boxes are named “n1”.

The result should appear identical to the previous two examples. Put a stop on line one of
the wMath4 function, re-run the form, and look at the right and left arguments.

]display op
.…--.
|add|
'---'
]display arg
.…----.
|2 3 4|
'~----'
 …ŒLC

The arguments are identical to the Math3 example. If we re-run this example, but either
leave the third box empty or put text instead of a number into that field, the third element
of the right argument becomes an empty character vector

]display arg
.…--------.
| .´.|
| 2 3 | ||
| '-'|
'¹--------'

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 22 of 34

Setting up a Second Web Server
Right-click on “Web Servers” and choose New Server. Then right-click that web server
(called defaultwebsite1) and choose Properties.

Web Site
Go to the Web Site tab, change Description to “server2”, put in “localhost” for the IP
Address, and set the TCP Port to 2002. Since I’m using the same IP address for my two
servers (defaultwebsite and server2), I need to ensure that I don’t use the same port.

Home Directory
On the Home Directory tab, set the path to C:\APLconf\WebHome2.

Press OK to save your changes

Starting and Testing the Second Server
To start this server, right-click server2 and choose Start. Then test this server by using
your browser to navigate to http://localhost:2002/titles.htm.

Dynamic Default Pages
In defaultwebsite we set a default page so that if the user did not specify a file name in
the URI, they would get the default.htm file, if it exists, in the requested directory. For
server2 we did not set a default page. Instead we’ll create a virtual directory for the case
where no file is specified.

Add a virtual directory by right-clicking server2 and choosing New Virtual Directory.
Rename it from “/default” to “/” (a single slash). Set wsid to “basic1” and set the
function to “wWSinfo”. This function takes no arguments so no other parameters need to
change.

If you now navigate to http://localhost:2002 (no page specified), you’ll get information
returned from APL.

Virtual Directory Names
All of the virtual directories created so far look like a path which is one level below the
root web path. We can also have them look like files or look as though they are deeper in
the directory tree.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 23 of 34

Virtual Directories That Look Like Files
Under server2, create a new virtual directory and rename it to “/header.htm”. Set the
wsid to “basic1” and the function to “wHeader”. Create a rarg with any name and with
the type of “header”.

Now navigate to http://localhost:2002/header.htm, which to the end user will look like a
file name, and see the result returned from APL.

Virtual Directories Deeper Than One Level
Under server2, create a new virtual directory and rename it to “/lev1/lev2/lev3/sysinfo”.
Set the wsid to “basic1” and the function to “wWebInfo”. Create your rarg to look like
the following (note that the names are unimportant, only the types matter):

Now navigate to http://localhost:2002/lev1/lev2/lev3/sysinfo to see the result returned
from APL.

APL Web Services does not care what you call the virtual directory. It simply does an
exact match of the request-uri (up to the first question mark), to the virtual directories
assigned to that server. If it finds a match, it uses that virtual directory.

In this URI:
 http://IPaddress:port/path1/path2/…/pathN/page?data
the underlined, bold portion is checked against the virtual directories you have created.
You can see, therefore, that all virtual directories must start with a slash and cannot
contain a question mark.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 24 of 34

Additional Argument Types
These argument types all convey information about either the browser, the server, or the
request. They have been shown in the http://localhost:2002/lev1/lev2/lev3/sysinfo or
http://localhost:2002/header.htm examples. All these types, and others, are also
documented in the help files distributed with APL Web Services.

client-ip
This is the IP address of the client browser. In our examples, it was displayed as
127.0.0.1 (localhost). Be aware that if the user is coming through a proxy, this may be
the IP address of the proxy.

header and header-parsed
This is the entire HTTP header as either a flat text string (as shown in the header.htm
example) or an Nx2 matrix of name/value pairs.

method
This is the method used to send the URI. In most of the examples in this paper, it was
“GET”. In some of the examples using forms, we also used “POST”. Other methods
such as “HEAD” are also defined.

publichttpdir
This is the path to the home directory as defined in the property sheet for the web server.

request-uri
This is the URI with the IP address and port removed. In includes any additional
parameters (the text after any question mark).

serverid
This is the name of the web server as defined in APL Web Services Configuration.

user-agent
This is the type of browser being used. You would use this field if you wish to customize
your content based on the browser being used.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 25 of 34

Common Result Types
So far, all of our virtual directories have returned a result of type “document” but other
types are available.

document
When using this result type, you should return a character vector. This can either be a
valid HTML document, or simply plain text which will be displayed without decoration
in the browser screen.

document-filename
The document-filename result type allows you to specify a filename which APL Web
Services will return. This allows you to dynamically decide on the file to return, return
files which are not in subfolders of your home directory, or return files of other content
types (such as Excel, PowerPoint, or Word files).

Returning a File
Add a new virtual directory to server2, and rename it to “/yellow”. Set the wsid to
“basic1”, the function to “wYellowFile”, and the result type to “document-filename”.
Now navigate to http://localhost:2002/yellow. Even though this server’s home directory
is C:\APLConf\WebHome2, you will see the C:\APLConf\WebHome\Yellow\default.htm
page. If you look at the wYellowFile function, it simply returns the name of this file.

content type
The content-type is returned with document-filename in order to tell the browser what
type of document is being returned. APL Web Services will determine the type
automatically based on the filename extension for some types (such as .GIF, .JPG, .XLS,
etc.). For file types not handled automatically, or if you wish to override the default type,
you can return the content type as a text string.

You can also set the content type based on extension globally for each server on the
Documents tab of the server properties dialog.

document-filename-delete
This is a flag returned with document-filename to indicate whether APL Web Services
should delete the file after returning it. The file will be deleted if this is set to one, but
will not be deleted if it is set to zero.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 26 of 34

Adding a Second Workspace
So far, both of our web servers are using functions in the same APL workspace. You do
not need to put all of your web related functions into a single workspace. You can add
additional workspaces, accessible by any web server, so that your APL functions are
partitioned between workspaces in whatever manner you like. In fact, this is one of the
benefits of APL Web Services. Other than adding some HTML output routines, many of
your functions should be usable from the web with little or no change.

Right-click on Workspaces and choose New Workspace. Right click the new workspace
and rename it to “excel”. Then set minpool to “0”, debug to “1”, and visible to “1”.

Set wslocation to the C:\APLconf\WebWorkspaces\IronAXL.w3 file. This is the
“Ironing Out the Wrinkles in APL+Excel” from the 2003 user conference with the
wXLShow from function added to it. You could instead use XLAPL01.w3 (“Secrets of
the APL+Excel Interface” from the 2001 user conference). The workspace can be in any
directory, but I have put it into the same directory as BASIC.w3.

Once you have added the workspace and set its properties, right-click on it and choose
Start. The excel workspace is now available for use from your web servers.

Right-click on server2 and choose New Virtual Directory. Then rename it to “/xl”. Set
the wsid to “excel”, the function to “wXLShow”, the rarg to a type of “header-parsed”,
and larg to a type of “entity-body-decoded”. The result will have two values, the first of
type “document-filename” and the second of type “document-filename-delete”.

Now navigate to http://localhost:2002/xl?name1=value1.

Three things should happen:

1. A webtemp.xls file is created in the temporary directory.
2. A two sheet Excel workbook appears in the browser.
3. An APL+Win COM object with the excel workspace loaded appears.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 27 of 34

Modify the wXLShow function in the excel workspace, so that the second element of the
result is a one (instead of a zero). This will cause APL Web Services to delete the file
after returning it to the browser. Now navigate to http://localhost:2002/xl. You will get a
new Excel workbook in your browser, but the webtemp.xls file is no longer in the
temporary directory.

Using Your Existing Code
The wXLShow function in the excel workspace calls seven standard functions in that
workspace, and then returns the name of the Excel file that was just created and a flag of
whether APL Web Services should delete the file after sending it to the browser. You
will often find that you can migrate your existing workspaces to APL Web Services by
adding some cover functions, removing the user interface, and doing some simple HTML
formatting.

Load Balancing
An instance of APL can only do one thing at a time. If you have a virtual directory which
calls a long-running APL function, then any other requests to that workspace will have to
wait until the first request is done. To help with this problem, you can have Workspaces
in APL Web Services that load multiple APL+Win COM objects. This way, if the first
one is busy, a second (or third, or fourth, …) can be opened to process the request.

The maxpool setting is the maximum number of APL+Win COM objects that will be
used by that workspace. We set this to one for both basic1 and excel, but you can set it as
high as you need, up to whatever limit your machine can handle. (A machine with 64MB
of memory cannot run as many processes as one with 1GB.) APL Web Services will
open new APL+Win COM objects, up to the maxpool setting, as they are needed. If it is
unused for a certain amount of time, they will be closed.

The minpool setting is the minimum number of APL+Win COM objects that will be
opened by that workspace. This was set to one for basic1, but was set to zero for excel.
If you know that one of your workspaces will usually need to run multiple copies, then it
is more efficient to set this number higher than one so that APL Web Services won’t
close them if they happen to be unused. This saves the time of re-opening them.

The basic1 workspace is always visible, because its minpool is one. Since the excel
workspace had a minpool of zero, it was not opened until it was needed. In addition, if it
is not used for a while, it will be closed down.

During development, it is often best to set both of these values to one. If multiple copies
are open, changing code in one copy of the workspace will require you to re-load it in the
other copies. Also, if minpool is zero and you make a change, APL Web Services may
close that copy before you save your changes.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 28 of 34

Cookies
A cookie is a small piece of information which a web server can store on the browser’s
machine. Most web browsers allow you to set whether you want to accept cookies all the
time, reject them all the time, or be asked each time a cookie is saved. Cookies are
generally used to store information which the web server wants saved from one session to
another or, within a session, between pages of the web site.

Cookies do have a number of limitations:

• Cookies can only be seen by the domain which saved them.
• Each domain can save at most 20 cookies.
• Each domain is limited to 4kb total for all their cookies.

Because of the last two limits, if you have a large amount of information you want saved
for a user, you would generally store it on the web server and have the cookie be a unique
ID to get that information.

Each cookie must have a name and a value. In addition cookies can have optional
parameters of expires, path, domain, and secure.

expires
The date and time at which the cookie will be removed from the client machine. If this is
not set, the cookie is called a “session” cookie and will expire (be removed) when the
browser is closed. The date must be expressed in Greenwich Mean Time as

DAY, DD-MMM-YYYY HH:MM:SS GMT
where DAY is the day of the week (Sun, Mon, Tue, Wed, Thu, Fri, Sat), DD is the day in
the month (01, 02, 03, …, 31), MMM is the three-letter abbreviation for the month (Jan,
Feb, Mar, …), YYYY is the year, HH is the hour in military (24-hour) time, MM is the
minute value, and SS is the second value. For example:
 Sun, 07-Nov-2004 13:05:00 GMT

To delete a cookie, set its expiration in the past such as:
 expires=Thu, 01-Jan-1970 00:00:00 GMT

path
Setting the path parameter specifies that the cookie can be returned only for paths that are
at the path level specified or below. If path is not set, then it defaults to the URL path of
the document creating the cookie.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 29 of 34

domain
The domain parameter sets the domain or machine for which the cookie is valid.

If this is not set and support.microsoft.com sets the cookie, then only
support.microsoft.com can see the cookie. If this was set to
 domain=microsoft.com
then support.microsoft.com, home.microsoft.com, www.microsoft.com, etc. would all be
able to see the cookie.

For security reasons, the domain name must have at least two or three periods and only
hosts within the specified domain can set a cookie for a domain.

secure
The secure parameter is a flag indicating that a cookie should only be used under a secure
server condition, such as SSL. This parameter defaults to FALSE.

ShowCookies
Add a new web server by right-clicking on “Web Servers” and choosing New Server.
Open its properties to set its name to “CookieDemo”, the IP address to “localhost” and
the port to 2003. On the Home Directory tab, set the path to C:\APLconf\WebHome2
(the same as we used for server2). Click OK and then right-click CookieDemo and
choose Start.

Create a new virtual directory in the CookieDemo web service called “/ShowCookies”.
Set its wsid to “basic1”, its function to “wCookieShow”, and a rarg with any name of
type “cookie”.

Navigate to http://localhost:2003/ShowCookies and you should see all the cookies in the
“localhost” domain (which is probably empty). The wCookieShow function returns the
unformatted cookie information (a simple text vector of name=value pairs separated by
semi-colons) as well as a formatted version where each name/value pair is on its own
line.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 30 of 34

AddCookie
Create another virtual directory called “/AddCookie” with a wsid of “basic1”, a function
of “wCookieAdd”, a rarg of type “string” with the name “cook_name” and a larg of type
“string” with the name “cook_value”. Set the result to have two items: the first is a
“document” type and the second is a “cookie” type (the names do not matter).

Navigate to http://localhost:2003/AddCookie.htm (by either typing it in or clicking the
link on the Show Cookies page). This is a static page in the C:\APLConf\WebHome2
directory with two input fields and a button. If you fill in the name and value fields and
press the “Add Cookie” button, it will set the value of that cookie. If the cookie already
exists, it will reset the value. You can use the Show Cookies link to see that it has been
added.

DeleteCookie
Create another virtual directory called “/DeleteCookie” by copying the “/AddCookie”
virtual directory and renaming it. Remove the larg, but keep everything else the same.
Navigate to http://localhost:2003/DelCookie.htm. This is a static page with a single input
field and a button. Type in a name of a cookie you have added and press the “Delete
Cookie” button.

This calls the same function as AddCookie, but does not pass a left argument. The
wCookieAdd function detects that no left argument (cookie value) was passed and so
deletes the cookie. The cookie is deleted by setting its expiration in the past.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 31 of 34

Uploading Files
When you upload files or other large data, instead of passing it to an APL function, APL
Web Services will put the data into a temporary file and pass the name of that file to the
APL function.

Upload1
Add a new virtual directory in defaultwebsite called “/upload1”. Set its wsid to “basic1”,
its function to “wUpload1”, and a single rarg with a type of “entity-body-filename”.
Give it two largs of types “header-parsed” and “method” (the names for all of these are
unimportant). Leave the result as a single item of type “document”.

Navigate to http://localhost:2000/upload1.htm, fill in the form and press the “Do It”
button. The response shows the header information, including that the content-type is
“multipart/form-data”. The result also shows that the uploaded information was written
to a temporary file. If you look at that file in Notepad, you’ll see that it has four sections.
The first three correspond to the contents of the three edit boxes and the fourth to the
button.

Now navigate to http://localhost:2000/upload2.htm, fill in the form and press the “Do It
Again” button. If you look at that temporary file, you’ll see that it only has two sections.
This is because the file will only contain information for those form elements which have
names. In upload1.htm, all four controls were named. In upload2.htm, the bottom edit
box and the button, were not given names and so they were not written to the temporary
file.

The other thing to note in these two examples is that the content-type in the header also
lists a value for boundary. That value is the separator in the temporary file between the
fields of information. The browser finds some string value which is not in the data being
uploaded, uses that as a separator and then puts it in the header. This will allow us to
parse the temporary file into its components.

Now navigate to http://localhost:2000/upload3.htm, fill in the form and press the button.
This page is the same as the upload1.htm page, except that the middle edit box has been
replaced by a file box. (I suggest using a small text file for this example.) When you
look at the temporary file, you should note that the middle section contains the name of
the uploaded file as well as its contents.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 32 of 34

Upload2
Rather than just displaying the header and informing you of the location of the temporary
file, we want to parse the information in that file. You can either remove the comments
on lines 10 and 11 of wUpload1 (which will simply call wUpload2 with the same
arguments and return its result, or you can modify the “/upload1” virtual path so that its
function is “wUpload2”.

Again navigate to http://localhost:2000/upload3.htm, fill in the form and press the button.
The response page will tell you the values in all the edit boxes as well as the location of
the file created from the uploaded file. (The function wUpload2 puts all uploaded files
into the C:\APLConf\UploadFiles directory.)

If you look at the wUpload2 function, you’ll see that it does the following steps:

• Read the contents of the temporary file into a variable and erase the temporary file
• Read the header to get the boundary string
• Partition the data at the boundary string into a nested vector
• Process each piece of the data by doing the following:

o Split the piece into its header and data
o Get the name from the header
o Get the value from the data portion
o From the header, determine if it’s a file and if so

 Get the original file name
 Get the content-type of the file
 Create the file in the UploadFiles directory

• Return the information about that piece of the form’s data

You can now navigate to http://localhost:2000/upload4.htm which will allow you to
upload multiple files with descriptions.

Limitations in the examples of uploading files
Although these examples show how to upload files or other large pieces of data, the APL
function wUpload2 was simplified for readability and is not suitable for a production
environment. None of the functions in the sample workspace should be used in
production without modification (error handling, edge conditions, etc.). There are
additional specific changes which should be made to this function.

• This function reads in the entire temporary file. Since uploaded files may be huge
(many megabytes or gigabytes), you would want to read the file in manageable
chunks to process it.

• This function writes out all uploaded files into a single directory. Since different
people may upload different files with the same name, or a single person may
upload files from different directories with the same file name, you would want to
segregate files by person uploading them and then by directory (or some other
mechanism).

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 33 of 34

Topics Not Covered In This Paper
There are a great many topics that are beyond the scope of this paper, but you should be
aware of some of them so that you can get more information on them before you put your
web application into production.

Stateless vs. Statefull Connections
Most web sessions are stateless. That means that each request creates a connection,
transfers information, and then breaks the connection. This is very useful for web servers
because the amount of time satisfying a request is much less than the time spent by the
user looking at the result. If I ask for a static page, the web server delivers it in under a
second, the transmission time over the network may take 10 seconds, and then I may
spend a minute reading it before making another request. In a stateless connection, the
web server is only tied up for the time to deliver the page (less than a second). In a
statefull connection, the server is busy until the connection is broken, so it cannot satisfy
other requests during the time that I’m reading the result. You can handle many more
users in a stateless environment.

Unfortunately, there are drawbacks to a stateless connection. When programming for
Windows, we often keep information such as the user name, what security rights they
have, and any other global information, which you cannot keep with a stateless
connection. You need to ensure that your application does not keep global variables
about the user. If this is not possible, and you have a small number of users, you can
create a statefull connection by using the one-to-one result type.

Busy Workspaces
If a workspace already has as many APL+Win COM objects as set in its maxpool
property, and another request is made, the server will wait for a little while but will
eventually timeout. You can set the busyid property on a workspace to a virtual path to
use when all the APL+Win COM objects are unavailable. This virtual path may be as
simple (a static page that says “busy, try again later”) or as complex as you wish.

A Beginners Guide to APL2000 Web Services 2005 APL2000 User Conference

Page 34 of 34

Using APL Web Services with IIS
In this paper, we have used APL Web Services as our web server. If you are installing at
a customer site, they may already be using another web server such as Microsoft Internet
Information Server (IIS).

In the simplest scenario, you may just modify the pages served by IIS so that they contain
links and form actions which point to APL Web Services. However, some IT
departments may require that all web access go through IIS. In that case, you can make
APL Web Services an ISAPI (Internet Server API) extension to IIS. This is a means by
which IIS can call your application in APL Web Services but all the information still
goes through IIS allowing the customer to use their existing IIS experience and tools (to
monitor, log, filter, etc the information being passes.)

SSL and Security
If you are running APL Web Services as an ISAPI service behind IIS, then IIS handles all
SSL issues. If you are running as your own web server, secure sockets are only
supported in the advanced version of APL Web Services.

