
Legacy []WI Legacy []WI Legacy []WI Legacy []WI GUI GUI GUI GUI in VisualAPLin VisualAPLin VisualAPLin VisualAPL

The legacy []wi feature was used to support APL+Win access to Win32 Forms and Controls for GUI

(graphical user interface) development.

For compatibility with legacy APL application systems, VisualAPL has implemented the []wi feature as a
.Net assembly, “APLNext.Qwi.dll” that is installed with VisualAPL and is based upon the
System.Windows.Forms namespace.

To use the []wi feature in a VisualAPL project or a Cielo Explorer session or script, a reference to this .Net
assembly must be made. For example:

 refbyname APLNext.Qwi
 using APLNext

 using System
 using APLNext.Qwi.WindowsInterface

Once this reference is made, the []wi feature may be used to implement a GUI for the application system,
for example:

The form is presented and when the button is clicked the form appears as:

Summary of []wi Feature Support in VisualAPLSummary of []wi Feature Support in VisualAPLSummary of []wi Feature Support in VisualAPLSummary of []wi Feature Support in VisualAPL

In VisualAPL, the underlying objects covered by the []wi-feature are fully accessible, so that the legacy
GUI controls now include many new properties, methods and events in the VisualAPL environment. Use
the ‘object’ property of the GUI control to access all its members.

In addition, many new GUI controls are available because all GUI controls supported by the
System.Windows.Forms .Net namespace can be accessed by the []wi feature.

Legacy []wi Features Summary

For proper understanding the []wi feature, refer to the APL+Win documentation.

Bracketed items, “[…]”, indicate those legacy features which are not available in the VisualAPL .Net environment,

however in most cases there is a .Net method, property or event which provide functionality similar to the legacy

feature which is not available.

In case a control has a property or method with the same name as the legacy []wi

member, the legacy []wi member is accessed through []wi and the same-named, .Net property or method

is accessed directly using the ‘object’ property of the GUI control.

 [][][][]----operators operators operators operators associatedassociatedassociatedassociated with the []wiwith the []wiwith the []wiwith the []wi feature:feature:feature:feature:

Same as in APL+Win:

[]wself

[]warg

[]wres

[]wevent

Enhancements to []wi in VisualAPL”

[]wsender The object control that can be used to access the members on the control which

raised the event

[]wievent The event object that can be used to access all of the EventArgs members.

 General []wi features:

Same as in APL+Win:

[]wi supports arbitrary APL scripts for events, e.g. "fm.b" []wi "onClick" "a=1+1"

[]wi supports the events: onNew, onAction, onEvent, onDefer

Controls and Members:

Button

caption

style 0 1 2 4 8 [16 32 64] 128 256 512 768 4096 8192 12288

[imagespace]

imagelist

imageindex

value

Check - CheckBox

caption

order

style 0 1 2

value

Combo

autocomplete [32] 16 8 4 2 1

style [4096 n/a in .Net] , 2048, 1024, 512, [256], [128 16 8 automatic in .Net], [64, 32], 4, 2, 1

list

imagelist

limit

name

value

[text]

CommandBar

bitmap

caption

captiondock

captionfloat

dock

dockable

[dockbreak]

dockheader

dockideal

docklength

dockmargin (read only property)

 dockmax

dockmin

dockmindepth

dockside

dockvert (read only property)

floatlayout

floatsize

floatwhere

imagelist

imagelistdiabled

imagelisthot

normsize // read only

order

showtext

siblings (read only property)

style

 0 1 [2] 4 8 [16] [32] [64] [128] [256] 512

CommandButton

caption

image

size (read only property)

style

 0 1 2 [4] 8 16 [32] 64

value

width

[wrap]

DateTime

style

 0 1 2 3 4 8 16 32 64 128 256

value

limit

today

range

firstday

monthdelta

color

dropfont

text

format

tooltip

[minsize]

[text]

[today]

Edit

text

range

selection

style

 0 1 2 4 8 16 [32] 64 128 256 512 1024 2048 4096 8192 16384

border

seltext

LineToChar

Form

border

caption

visible

value

Frame

style

 0 [1] 2 [3] [4] 5 [6] [7]

caption

Imagelist

style

 can not be set, is always 0

imagesize

imagealloc [obsolete]

imagenames

maskcolor

overlays

colordepth

AddImages

imagecount

himage

Label

caption

edge

style

 0 1 2 4 8 32 64

List

list

style

 0 1 2 16 32 64 128 [256]

value

Listview

viewmode

 largeimage smallimage list report

viewalign

 top left none

imagelistlarge

imagelist

imagelistuser

highlightfocus

list

style

 1 [2] 4 8 [16] 32 [64] 128 [256] 512 1024 2048 4096 8192 [16384] [32768] 65536

columndisplay

sortorder

value

AddRows

InsertRows

DeleteRows

SetRows

SetImages

[SetChecks]

SetCells

GetRows

GetCells

EnsureVisible

[Arrange]

[AutoFit]

count

roworigin

searchstring

[sourceformats]

[targetformats]

[dragimage]

[SetLinks]

MDIForm

Arrange

Menu

caption

value

style

 0 1 2 3 8

separator

shortcut

enabled

visible

order

imagelist

imageindex

opened

Page

style

order

extent

visible

[imageindex]

Close

border

Option

caption

value

style

 0 1

order

To group the Options, use the Panel, for example:

"fm.panel" []wi "Create" "Panel"

"fm.panel.op1" []wi "Create" "Option"

"fm.panel.op2" []wi "Create" "Option"

etc.

Picture
style

 0 2 4 16 64

bitmap

[origin]

[imagesize]

[image]

[bitmapsize]

[hdc]

ProgressBar

style

 0 1 2 3

value

[Stepit]

RichEdit

style

 0 4 8 16 32 64 1024 [2048] 4096 8192 16384 32768 65536 131072

range

rtf

selcolor

text

selection

seltext

selalign

selbullet

selfont

selindents

selrtf

selstyle

zoom

[msversion]

[canpaste]

[canredo]

[canunder]

[selnumstart]

[selnumstyle]

[selnumtab]

[selpargall]

[seltabs]

[undolimit]

[undoname]

[redoname]

border

font

CharToLine

LineToChar

[Undo]

[Redo]

[ScrollCaret]

Selector

style

 0 1 2 8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

fixedtabsize

padding

imagelist

color

border

value

tabrows

pages

Spinner

range

value

border

style

 0 1 4 8 16 32 64

[wrap]

[buddy] Use NumericUpDown .Net class for equivalent,

in general, the NumericUpDown has so much more functionality,

it should replace any Spinners in code

"fm.nd" []wi "Create" "NumericUpDown"

Many, many properties, methods, options.

Status

imagelist

status

 Column 4:

 0 1 2 8 16 32 64

color

HitTest

SetStatus

PaneWhere

where

extent

size

[status]

Toolbox

list

style

 0 1 16 [32]

value

TrackBar

style

 0 1 2 4 8 [16] [32]

range

value

tickinterval

increment

color

[ticks]

[selection]

[sliderlen]

[tickpos]

value

[channelwhere]

[sliderwhere]

Tree

imagelist

imagelistuser

[dragimage]

[labeledithwnd]

list

indent

style

 0 1 2 [4] 8 16 32

InsertNodes

DeleteNodes

FindNode

ShowNode

Expand

SortChildren

EnsureVisible

[GetInfo]

[SetInfo]

count

border

[searchstring] // always returns ""

User Defined Classes

onAction

Event

Defer

"#"

newclasses

onNew

Defer

Event

General

size

where

caption

text

limitwhere

scale

tooltip

name

visible

enabled

font

pointer

 [-1] 0 1 2 3 [4] 5 6 7 8 9 10 11 12 13 14 15

color

children

properties

methods

events

order

opened

self

<delta>udp

data

value

[keys]

[instance]

[links]

[mode]

[modified]

[modifystop]

[noredraw]

[scrollaccel]

[scrollmargin]

[state]

[suppress]

[tabgroup]

[tabparent]

[tabstop]

[targetformats]

translate

 1 5

[Hide]

Differences from the legacy []warg for events:

Selector:

onChange

 []warg[1] = []warg[0]

Treeview:

onClick:

 []warg[1] = "label"

 []warg[2] = 0

onExpanding:

onExpanded:
 []warg[1] = 1

onCollapsing: [new event]

onCollapsed: [new event]
 []warg[1] = 0

General events:

onMouseXXX:

 []warg[3] = []warg[2]

onKeyDown:

 []warg[1] = 1

 []warg[4] = 0

 []warg[5] = 0 // to be supported in .Net 3.0

 Unsupported virtual keys:

 3

onExit event:

 []warg = "#"

onClose event:

The right argument to the 'Close' method is not assigned into []wres in the 'onClose' event.

Status onClick:

 []warg[1] = "pane"

Event 0otes:

[]wres for onKeyPress, onKeyDown, and onKeyUp accepts:

[-2] -1 0 [>0 is not supported]

Setting []wres in onExit cancels the focus change, but does not allow the redirection of focus to another

control.

[DDE] DDE is essentially obsolete since ActiveX was implemented by Microsoft.

Using System.Windows.Forms Directly in VisualAPL

The legacy []wi feature has limited support for newer Windows GUI controls, for example “ToolStrips”. A

better solution would be to use these newer controls directly.

Since each GUI control is an independent object, it can be used and re-used in various contexts, such as

on different forms, throughout the application.

In the following example do not click on the form’s [X] button while experimenting with this example,

otherwise it will be necessary to re-run the code each time.

It is necessary t o reference the applicable .Net assemblies so that they are accessible in the Cielo

Explorer session, script or VisualAPL project:

refbyname System.Drawing

using System.Drawing

Type the following in the Cielo Explorer session:

 a = Form()

 ms = MenuStrip()

 file = ToolStripMenuItem()

 open = ToolStripMenuItem()

 exit = ToolStripMenuItem()

 help = ToolStripMenuItem()

 about = ToolStripMenuItem()

 ms.Items.AddRange(file help)

 refbyname System.Drawing

 using System.Drawing

 ms.Location = Point(0,0)

 ms.Name= "menuStrip1"

 ms.Size= Size(292,24)

 ms.TabIndex = 0

 file.DropDownItems.AddRange(open exit)

 a.Show()

 a.Controls.Add(ms)

 file.Name= "File"

 file.Size = Size(35,20)

 file.Text = "File"

 open.Name= "open"

 open.Size= Size(152,22)

 open.Text= "Open"

 exit.Name= "exit"

 exit.Size= Size(152,22)

 exit.Text = "Exit"

 file.DropDownItems.Remove(open)

 file.DropDownItems.Insert(0, open)

//VisualAPL arrays may be used to create an modify these controls:

a = Form()

ms = MenuStrip()

tsm = ToolStripMenuItem() ToolStripMenuItem()

ToolStripMenuItem() ToolStripMenuItem() ToolStripMenuItem()

file = 0

open = 1

exit = 2

help = 3

about = 4

ms.Items.AddRange(tsm[file] tsm[open])

refbyname System.Drawing

using System.Drawing

ms.Location = Point(0,0)

ms.Name= "menuStrip1"

ms.Size= Size(292,24)

ms.TabIndex = 0

tsm[file].DropDownItems.AddRange(tsm[open] tsm[exit])

a.Show()

a.Controls.Add(ms)

tsm[file].Name= "File"

tsm[file].Size = Size(35,20)

tsm[file].Text = "File"

tsm[open].Name= "open"

tsm[open].Size= Size(152,22)

tsm[open].Text= "Open"

Windows Windows Windows Windows Presentation Foundation (WPF) Recommended:Presentation Foundation (WPF) Recommended:Presentation Foundation (WPF) Recommended:Presentation Foundation (WPF) Recommended:
Microsoft expends tremendous resources to upgrade the features of .Net. As a result, better options for
GUI construction have become available to the application system programmer.

Win32 forms and controls, as well as the System.Windows.Forms .Net namespace, have been
deprecated by Microsoft because of the availability of Windows Presentation FoundationWindows Presentation FoundationWindows Presentation FoundationWindows Presentation Foundation (WPF and

XAML-format GUI specification) in .Net 3.5. When developing an application system’s GUI, WPF should
be seriously considered. It provides superior GUI presentation and graphics options for end users and
provides the option to separately develop the GUI from the application system business rules. Microsoft
has developed new GUI development tools which use WPF.

ActiveX Support in Visual Studio:ActiveX Support in Visual Studio:ActiveX Support in Visual Studio:ActiveX Support in Visual Studio:
The legacy []wi feasture in APL+Win was also used to access ActiveX (COM) components. In VisualAPL
this can be done directly, without the need for the overhead of []wi.

To support the transition from Win32 to .Net, Microsoft implemented robust support for ActiveX so that a
reference to an ActiveX (COM) .dll can be made in any .Net language project. ActiveX GUI controls can
be added to the Windows Forms toolbar too.

It is still possible to use the VisualAPL implementation of []wi to access ActiveX controls and ActiveX
objects. Since VisualAPL is object oriented, the legacy re-directions syntax, using “>” is no longer
necessary. Instead the dot syntax, using “name.member” is preferred. In addition the object itself can be
returned and used rather than the legacy integer pointer to the object.

