
Exposing a VisualAPL Class Library as COM to APL+Win 
 

From the Visual Studio 2008 main form, use “File > New > Project > VisualAPL > 

AplNext > Class Library” dialog to create a new VisualAPL class library project (.Net 

assembly). 

 

The “Name:” field on this dialog will be used as the project namespace name, so enter it 

in the format “BusinessEntityMnemonic.ProjectMnemonic”. 

 

The “Location:” field on this dialog initially pointes to the Visual Studio 2008 default 

location for a project. You may select any other location, as long as you can find it later! 

 

If you don’t see this dialog, go to http://forum.apl2000.com/viewtopic.php?t=443. 

 

Click the “OK” button to continue creating the project. 

 

 



The VisualAPL “Class Library” template is used to create default “Class1”. 

 

The VisualAPL method definitions for the application system are typed or copy/pasted by 

the programmer inside the ‘Class1” code block “public class Class1{…}” 

 

 



To define Class1 type or copy/paste the illustrated code statements in the VisualAPL 

Class1.apl code window. 

 

In the “Using directives” region the “using System.Runtime.InteropServices;” namespace 

is required to expose the public methods in the class as COM. 

 

Depending on the project there may be other .Net namespaces which need to be 

referenced in the VisualAPL project. Microsoft .Net is well-documented, there are many 

web-based examples available and the VisualAPL Cielo Explorer makes learning about 

the .Net framework easy. 

 

 



The “[Guid(…]” attribute is also required to uniquely identify the COM object when it is 

registered. Do not use the Guid (globally unique identifier) illustrated, instead use the 

Visual Studio Guid Tool to obtain a new Guid as follows: 

 

 

 



When the following dialog is presented, click the “Copy” button to put the new Guid into 

the Windows Clipboard and then paste it into the Class1.apl “[Guid(…]” attribute code 

statement. It will be necessary to remove the “{}” delimiting the Guid after it is pasted 

into the VisualAPL Class1 code block as the “{}” are not used in the “Guid(…)]” 

attribute. 

 

 



In the Class1.apl, the “[ClassInterface(…)]” is also an attribute required to expose the 

public methods in the class as COM. The “AutoDual” option means that a separate COM 

interface class in addition to the Class1 class will not be necessary. 

 

The “[ProgId(“APLN.Area”)]” value “APLN.Area” is selected by the programmer as the 

name of the COM object which will be exposed. It does not have to match the namespace 

name, but it should be selected carefully to avoid conflicts with other COM object names. 

 

The public function “Area” has been defined with strong (explicit) data types (vectors of 

doubles) for the result and the argument. This is necessary so that the program which 

calls this function as a COM object will know the type of objects which must be supplied 

and will be returned. 

 

The public function “Area_NoStrongType” does not provide strong data types for the 

result and the argument. When this function is called as a COM object, the calling 

environment will see the argument and result data types as the default “object” types. In 

most cases the calling environment will not be able to properly handle the “object” data 

type, as it is too general, and it will only have a pointer to the object available. 

 

In some cases it is beneficial to have an underlying VisualAPL function which is not 

strongly typed. It can be called by cover functions which are strongly typed, but have 

different signatures for varying data type arguments or results. For example the “Area” 

function is strongly typed for vectors of doubles and could call the 

“Area_NoStrongType” function and another function “Area” could be strongly typed for 

a double and also call the “Area”NoStrongType”. The two “Area” function signatures 

differ by data type and are considered “overloads” of each other. The non-strongly-typed 

“Area_NoStrongType” function utilized the “dynamic data typing” of VisualAPL to 

support both overloaded functions. 

 

In the case of all of these functions, the formula for the area of a circle (in this example) 

is expressed in standard APL code statements, including the “circular” function for Pi. 



Another step is required to expose Class1 as COM. Using the Visual Studio Solution 

Explorer again, right click on the “APLN.Area” project and select the “Properties” pop-

up menu item: 

 

 



In the “Properties” window, click the “Assembly Info*” tab and check the “Make 

assembly COM-Visible” option: 

 

 



In the “Properties” window, click the “Build” tab and use the “Register for COM 

Interop” list box to select the “True” option: 

 

 



 

Now that the above steps have been carried out, click the Visual Studio “Build” menu 

item and click the “Build Solution” sub-menu item. 

 

Look for the “Build succeeded” message in the Visual Studio status bar. If there are 

programmer coding errors, they will be listed in the “Error List” window of Visual 

Studio. The programmer will correct the coding errors and try the “Build” option again. 

 

If VisualAPL has not been activated yet or if the VisualAPL license is close to expiration, 

a reminder message may be presented when the “Build Solution” sub-menu item is 

clicked. 

 

 



Now that the “Build” has been completed for the VisualAPL class library project, the 

Class1 class has been exposed as COM and registered using the Guid and the 

programmer-selected “ProgId” of “APLN.Area”. 

 

Open a session of a Win32 application such as Visual Basic 6 or, in this case, APL+Win 

to access the methods in Class1. In APL+Win the COM methods are prefixed by “X”. 

 

APL+Win displays the strongly-typed function signature of the “XArea” function using 

the “A []wi “??XArea” syntax and the default ‘object’ data types in the function signature 

of the “XArea_NoStrongType” function. 

 

When the “XArea” function is called with the argument 100, APL+Win automatically 

coerces the singleton 100 to a one-element vector to satisfy the argument data type of the 

“XArea” function. Calling the “XArea” function with the argument (1 10 100 1000) 

illustrates the vector of doubles argument and result data types of the “XArea” function. 

 

 

 


