
VisualAPL – Application-shared Datastore

VisualAPL implements the "Application-shared Datastore" so that it is easy, efficient

and safe to share data within an application system across classes.

Before delving into the VisualAPL Application-shared Datastore, here is some

background information on “global” variables in .Net.

When building a .Net application system each component is implemented

within a class and that class is encapsulated so that only the public
members, e.g. methods, properties and events that have the public

attribute, are available for access by other classes.

This application system structure means that methods need to have explicit

arguments and results and data is shared between classes only by passing
via the values of these arguments and results. Sometimes classes use

properties instead of methods, but these are equivalent since properties are
designed with explicit arguments (for properties whose values can be set)

and results (for properties whose value can be gotten).

Programmers using legacy APL language implementations have employed
explicit arguments and results, just as described above, but they have also

used variables and data which are global (or implicit).

Because .Net programming languages adhere to OOP (object-oriented
programming) principles, the concept of global or explicit data and variables

is not directly implemented. In fact, this restriction on global variables

implicitly shared among classes is often the subject of vitriolic debate among
.Net programmers. Here are a few samples of that kind of ‘debate’:

• http://bytes.com/groups/net-c/226096-global-variables

• http://www.vbforums.com/showthread.php?p=1287485

Note that C# does implement a keyword global, but it is not used to specify

a global variable. See here for the use of this key word in C# to prevent
namespace conflicts: http://msdn.microsoft.com/en-

us/library/cc713620.aspx

Note that VB.Net does implement a keyword global, but the ‘static’ property
implementation described subsequently in this document, underlies

implementation.

Just what are the ‘bad’ things about designing an application system with a
global variable? Not surprisingly, the ‘dangers’ of global variables are exactly

the same in .Net languages and in legacy APL language implementations:

• Potential conflicting variable names is the essential “bad” thing about global

variables. For example, two different classes, or APL functions, create a

global variable with the same name but for different purposes.

• Potential lack of “type safety”. For example, two different classes attempt to

modify a strongly-typed global variable with values which are of a different

data type.

• Potential conflicting dependencies among classes. For example, a class is

designed which uses the value of a global variable, but when that class is

used in a different application system without the global variable present, the

functionality fails.

In .Net languages there are several ways to indirectly implement global
variables:

• Adding a variable to the “Application” class which exists in every .Net project

and is available within any class used by the same thread as that project. A

good example of this is the start-up parameters list in the Windows short-cut

for an .exe, which once captured can b e made available to any class used by

that application system. Here is an example of that type of C# code:

//Establish get/set methods for the application system's data class, so
it is modifiable throughout the application worksession's lifetime

 private App_CmdLineArgs _ACLA = new App_CmdLineArgs();

 public App_CmdLineArgs ACLA
 {

 get { return _ACLA; }
 set { _ACLA = value; }

 }

 private void Application_Startup(object sender, StartupEventArgs e)
 {

 ((App)Application.Current).ACLA.Stringvec = e.Args;
 }

• Creating a class with a “static” property. A property may have the static

keyword added so that, even if no instance of the class exists, the value of

the property is the same fixed value for any class which references that static

property. Essentially the data has been encapsulated into the class is thus

shared by any other class. The class name instead of the class instance name

is use to reference a static property, e.g. “ClassName.StaticVariableName”.

See here for more information:

http://msdn.microsoft.com/en-us/library/w86s7x04(VS.71).aspx

http://www.c-

sharpcorner.com/UploadFile/rajeshvs/PropertiesInCS11122005001040AM/Pr

opertiesInCS.aspx

• An assembly can specify a non-mutual, intransitive

‘trust relationship’ so that the trusted assembly

may access all the non-public types of the trusting

assembly.

o The trusting assembly must reference the

System.Runtime.ComplierServices

namespace

o The trusting assembly must include the

attribute [assembly:

InternalsVisibleTo("AssemblyXPublicKeyToke

n=…”)]

• Using explicit arguments and results for all methods in a class, i.e. avoiding

global variables entirely.

Finally we can get back to discussing the VisualAPL “Application-shared

Datastore” which provides an additional method for sharing of any object
between classes. This is done in a “safe” way by requiring that any class that

uses a global object must declare that global use within the class in which
the sharing will occur: svglobal My_Variable

One can immediately see how easy creating a global variable is in VisualAPL

compared to other methods previously described in this document.

Once the object has been added to the Application-shared Datastore, any
other namespace, class or project in the Visual Studio solution will be able to

reference the object using the same syntax.

Objects which have the svglobal attribute are global with respect to all
functions within the class and only need to be defined using svglobal once in

that class.

VisualAPL precisely defines the order of name resolution for objects in the

Application-shared Datastore. In any class when an object is referenced,
VisualAPL “looks for” local variables with the same name first, then global

variables (within the class) with the same name and finally svglobal objects
with the same name.

There are some additional VisualAPL ⎕-functions available to manage the

Application-shared Datastore:
• ⎕svc “My_Obj” returns the changed status [0/Not changed 1/changed] of

the “My_Obj” entry in the Application-shared Datastore since the local class’

last reference or assignment of that entry was performed.

• ⎕svs “My_Obj” returns the shared status [0/Not shared 1/shared] of the

“My_Obj” entry in the Application-shared Datastore.

• ⎕svd “My_Obj” deletes the “My_Obj” entry from the Application-shared

Datastore.

• ”EH_FN”⎕svget “My_Obj” subscribes to the event that the “My_Obj” entry in

the Application-shared Datastore has been referenced in which case the

“EH_FN” event handler VisualAPL function will be executed.

The required function signature of the “EH_FN” event handler function is:

• Function EH_FN(name, value)

• “name” is the (string) name of the entry, e.g. “My_Obj”

• “value” is the value of the entry

• ”EH_FN”⎕svset “My_Obj” subscribes to the event that the “My_Obj” entry in

the Application-shared Datastore has been assigned in which case the

“EH_FN” event handler VisualAPL function will be executed.

The required function signature of the “EH_FN” event handler function is:
• Function EH_FN(name, oldvalue, newvalue)

• “name” is the (string) name of the entry, e.g. “My_Obj”

• “oldvalue” is the value of the entry before assignment

• “newvalue” is the value of the entry after assignment

