
VisualAPL with Strong Data Typing Yields Significant Performance Advantages

Timing of operations can often be used to compare alternate implementations of a solution to an

application requirement. For the purposes of this illustration, thousands of timing trials of the addition

of two vectors of one million floating point numbers was observed. The performance of an APL+Win

(Win32) function using dynamic data types is compared to the performance of VisualAPL (.Net)

functions using strong data types and using dynamic data types. The timing values illustrated were

obtained using the same machine and using functions designed in essentially the same way in each

environment. A more skillful programmer may be able to improve the performance of the illustrated

functions. Timing other operations might yield different performance results. The VisualAPL solution

provided with this analysis may be easily modified to time other operations. The timing results in

milliseconds are summarized below:

 Dynamically

Typed - Debug

Dynamically

Typed -

Release

Strongly Typed

- Debug

Strongly Typed

- Release

APL+Win 15004 15004 Not available

in APL+Win

Not available

in APL+Win

VisualAPL 17774 16202 10431 6614

Relative performance is summarized below (smaller values are more desirable):

 Dynamically

Typed - Debug

Dynamically

Typed -

Release

Strongly Typed

- Debug

Strongly Typed

- Release

VisualAPL time

compared to

APL+Win time

118.5% 107.9% 69.5% 44.1%

 Debug Release

VisualAPL

Strong Typing

compared to

VisualAPL

Dynamic

Typing

58.7% 40.8%

These results suggest that for this operation VisualAPL using dynamic data typing has a slight

performance disadvantage compared to APL+Win which supports only dynamic data typing.

These results also suggest that for this operation VisualAPL using strong data typing has a very

significant performance advantage (more than twice as fast) over APL+Win or over VisualAPL using

dynamic data typing.

The VisualAPL Console project implements the timing experiment with strong data types:

The TestAddition() function, which is also called by the VisualAPL console project, implements the timing

experiment using dynamic data typing:

Typical output from the VisualAPL console project, run in “debug” mode, by using the Visual Studio 2008

“Debug > Start Debugging” menu item:

Average Time for 3000 VisualAPL trials in Debug mode:

 Strong Types: 10431

 Dynamic Types: 17774

Typical output from the VisualAPL console project, run in “release” mode, by double-clicking the

“…\VectorProcessTiming\bin\Release\VectorProcessTiming.exe” file:

Average Time for 3000 VisualAPL trials in Release mode:

 Strong Types: 6614

 Dynamic Types: 16202

APL+Win timing results on the same machine::

Average Time for 4000 APL+Win trials in Release (same as Debug) mode:

 Strong Types: not available in APL+Win

 Dynamic Types: 15004

