
Variable Scoping in VisualAPL Operator Function Signatures

When a VisualAPL function using the operator (traditional APL) function signature is defined,
variables which are named in the function header and separated by semi-colons (“;”), persist
after the function call, whereas variables which are not named in the function header are local to
the function in scope and do not persist after the function call.

The “My_Add10_Fn” is defined in the “sc1” Cielo Explorer script and uses the operator function
signature. This function names the “ABC” variable in the function header, so that after this
function is called from the Cielo Explorer session, the “ABC” variable now exists in the Cielo
Explorer session.

Conversely, the “My_Mult10_fn” is also defined in the “sc1” Cielo Explorer script and also using
the operator function signature. This function does not name the “PQR” variable in the function
header, so that after this function is called in the Cielo Explorer session, the “PQR” variable
does not exist in the Cielo Explorer session.

The OOP (Object-oriented programming) encapsulation principle remains in force with respect

to named variables in the function header of a VisualAPL function using the operator function

signature. Specifically, only public members of a class are available to another class.

If the function being called is contained in the same class as the calling function, then the

named variable in the header of a VisualAPL operator function will persist. However if the

function being called is in a different class than the calling function, then the named variable in

the header of a VisualAPL operator function will not persist, or even exist, within the calling

class.

In the following VisualAPL console project, observe that the Add10 function is contained in the

same class as the calling function, Main(), but the Mult10 function is contained in a different

class than the calling function Main(). Both the Add10 and the Mult10 functions name a variable

in the function header and both use the VisualAPL operator function signature.

When the console project is run and the Add10 function is called by the Main() function, the

named variable in the header of the Add10 function, ABC, persists after the Add10 function call

because the Add10 function is in the same class as the Main() function, as verified by the

VisualAPL ⎕nc system function result when applied to the variable name “ABC”.

When the Mult10 function is called by the Main() function, the named variable in the header of

the Mult10 function, PQR, does not exist in the class containing the Main() function because the

Mult10 function is not in the same class as the Main() function.

By adding a public property, public_PQR, to the VAPL_ClassLibrary.Class1 and appropriately

setting the underlying Class1.private_PQR variable in the definition of the Mult10 function, the

calling class can access the public property value when the Main() function is called:

