VisualAPL Component File System

The VisualAPL component file system represents a significant improvement over legacy APL
implementations of ‘component’ files. New features of the VisualAPL component file system include:

e Allocate components

e Catenate t o a component

e Improved remove/dropping of components

e Erase a component

e Index read/replace component

e Share file associated with multiple component files within a virtual directory
e Retrieve file stream

e Read/ Write ISerializable objects

The documentation file “..\ApINext\VisualAPLProfessional\Documentation\Language_Interaction.chm”
installed when VisualAPL is installed to the programmer’s machine incorporates a “Component File
Access” section:

L%) New Window Captio_ =ANC X

e = S
Hide Back Forward Print

Corterts] Search l

Native File Access

@ Ciclo Explorer

@ Code Flow Contraol

@ Syrtae Characters

@ System Functions, Constants, and Variz
@ Primitive Scalar Operators

= @ Component File Access
?| Allocate Components

E Append Component

E Catenate to a Compaonent

E Dirop Components

2] Ersse a Component File

E Create a Component File

E Index Component Read

E Index Component Replace

2] Tied Componert Names

E Component Tie Numbers

__J Read Component

:] Replace Component

2] Comporent File Size Information
E Release Unused Library Space
E Release Unused Share File Space
__J Remove A Component

:] Retrieve File Stream

2] Share Tie Component File

2] Urtie Component File

2] File Library

2] File in File Library

:] File in File Library Share Information
2] File in File Library Share Control
E File Library Directory

[T b

The Share File System

The ShareFileSystem in Visual APL is a next generation component file system.

Mot only does the ShareFileSystem support the legacy syntax commaon to share file systems, but it
extends share file systems with virtual directories. This means you can place more than one share
file in a single physical file.

To use the Share File System in your application, you will need to add a reference to the Visual APL
Share/Native File System assembly. Here is an example of "referencing” and "using” the assembly
by its strong name:

refbyname APINext.APL.LegacyOps

using APLNext.Legacy.ShareFileSystem

The more Share Files that are placed in a virtual directory the better the space management
becomes.

Additionally, because the ShareFileSystem uses the [Serializer .Net methodeology for the 10 of
nested or object data types, shared and native files can read and write not only simple APL
variables, but nested APL variables which even include Hashtables, Dictionaries, etc.

You can also write out the Hashtables or Dictionaries without including them in an AFL variable.

Any class that inherits from ISerializable can be written to the share or native files and retrieved
with the instance being automatically recreated.

A careful study of this documentation will explain the features of the VisualAPL component file system.

Of particular importance is the fact that since a VisualAPL .Net assembly (class library) is compiled by the
Microsoft JIT compiler and a .Net manifest is automatically created, the VisualAPL component file
system tools are not included in the manifest by default. Instead, the VisualAPL programmer must
indicate that the VisualAPL component file system tools are necessary for the project being programmed
by adding the appropriate reference and using statements to the source code:

refbyname APLNext.APL.LegacyOps

using APLNext.Legacy.ShareFileSystem;

Note that since the VisualAPL installer puts the “ApINext.Apl.LegacyOps.dll” in the GAC (.Net global
assembly cache), the “APLNext.APL.LegacyOps” namespace can be referenced by name in the above
statements.

The VisualAPL component file is deemed part of the legacy APL features implemented in VisualAPL. To
understand this philosophy, some facts about any current or prior implementation of an APL component
file system need to be stated:

e APL component files are inherently non-hierarchial, non-indexed files in which each
component’s structure and contents are independent of all other components.

e Essentially APL component files support ‘blob’ data, i.e. each component can accept any type of
data and no inherent or consistent record structure is required when utilizing APL component
files in an application system.

e APL component files have a proprietary underlying format, so they cannot be conveniently
accessed by mainstream file access tools.

e Anyindex or record structure imposed upon an APL component file is purely a construct of the
application software programmer.

Generally, in .Net applications, application data is stored in a format which permits wider use and future
re-purposing of that data by multiple application systems and users, without the limitation of a format
which is proprietary to a specific programming language. This generally means that a commercial
database, such as Microsoft SQL Server, IBM DB2 or Oracle, or a mainstream data format, such as XML,
Microsoft Excel, etc., are selected for data storage.

In cases where the data to be stored is entirely heterogeneous and limited in use to the current
application system, the APL component file may still be appropriate.

Since every APL component file system uses a proprietary format, the APL+Win colossal component file
system and its predecessor APL+Win component file system are not compatible with the VisualAPL
component file system. To exchange data in APL component files between the APL+Win and VisualAPL
systems, the data should be converted by the source system to a format which is compatible with the
target system such as Microsoft Excel, Microsoft SQL Server, XML serialization or native (Unicode) text
files, etc.

