Here is an example of using classes in a Cielo Explorer script to isolate the values of user-defined
variables and function, e.g. my_var and Add10 and Mult100 and also variables in the system ‘state’, e.g.

Oio.

File Edit View Project Build Debug Tools

LYWL

LATL RO

Window Help

@'J'EH@'* EI%@_|'J'?"';H'__$| p Debug
EI= 2|0 8G 048560

* X 7 my_ script.apl

= Any CPU

DS E RSH % B
Cielo 1.0.7001
Copyright © VisualCielo.

clear session

Jedit my_script

xog|oo] ¢ [1al0jdx3 Janas

c2.Multl00({1234)
123400

cl.Add1io({1234)
1244

Oio

Cielo Explorer for Visual Studio - Profe=.

All rights reser

Script 'my_script' updated
Jfns
Oio

1]
my_wvar+300
cl=new classl()
Oio

¥
my_war

300
c2=new class2()
Oio

1]
my_wvar

300
Jfns

m

% classl v =@classl.Addl0 -
1: // Script: my_script created on 5/27/2009 5:1
113 AM by Joe |
2
3 public class class1{
4 gio=1
5 my_var<100
68 public VZ—Add10 X{
7 Z10+X
8r 1
gl 1 3
o]
11 public class class2{
1253 gio=0
134 my_var«<200
14 public VZ~Mult100 X{
15 Z<100%X
16: }
17141 [
18

4l 7

|sau.|adm:| @|ma!;\ 35E[0 E|Jem|d}{3 uopn|os E?|

!_‘3 Error List

Ready

Notice that the system ‘state’ variables, e.g. Oio Orl, etc., are established in the session when the class

instance is created.

Another system ‘state’, or ‘context’ is also controllable when using the VisualAPL primitive execute
operator. Refer to the documentation of the primitive execute operator in the file
“..\ApINext\VisualAPLProfessional\Documentation \Visual_APL_Help.chm” for details:

% Visual APL

e o &
Hide Back Forward Print

Contents 1|gdex] §earch]

Visual APL Tutorial

@ Visual APL Development Environment
@ Visual APL Reference

@ Visual APL Programming Guide

@ Native File Access

@ Cielo Explorer

@ Code Flow Control

@ Syrtax Characters

@ Primitive: Scalar Operators
7@ Comporert File Access
EI':@ Visual APL Operators
E-A{J) Operators

2] Binomial

2] Bracket Index

Catenate

9] Ceiing

] Compress Replicate

2] Depth

j Disclose {Build Amay From)

----- 2] Divide

Drop

----- E Each (For-Each data tteration)
Enclose

----- 2] Enlist (Flatten Amay)

Equality (Approximately Equal)
..... B

----- 2] Expand {Pad)

----- 9] Exponential (Exp)

----- 2] Factorial

----- j From Base 10 (Encode)

----- E Grade Down

..... 2] Grade Up

----- 2] Greater Than (Gt)

3 Greater Than or Equal (Gte)
..... 9] Index OF

----- j Inner Product

----- E Interval

----- j Laminate

----- 2] Less Than (Lt)

----- j Less Than or Equal (Lte)

----- E Logarithm {Log)

----- j Magnitude {Absolute Value) (Abs)
----- [2] Match (identity)

Matric Divide

----- E Matrix Inverse

([PR Y

@ System Functions, Constants, and Variables

m

Visual APL Programmer's Reference
4 Execute

Executes the code supplied by expri

result + =expri

Where:
result
An expression.
exprl
An expression.

Remarks

The Execute expression dynamically executes the code returned by expri. expri
can return either a string, a dynamic variable (IVariable), or a compiled code object
(obtainable through the compile method). If expri evaluates to a string, then the
code is parsed, compiled, and then executed. If exprl is a compiled code object, no
parsing and compilation is required, and the code object is executed immediately.

Note: Language features which effect the code flow of a function do not effect the
function which initiated the dynamic execution. Examples of theze kinds of
statements include vield, return, break, continue, branching, and conditional
branching. Such statements can be used within the respective constructs to which
they apply, such as a yield statement within a function defined in the same dynamic
execution.

Advanced Dynamic Execution Features:

Dynamic execution allows you to override the module dictionaries used within the
context of the dynamic execution. Using this feature, you can specify either or both
of the local variable and global variable dictionaries, which enables the dynamic
execution of code within contexts other than the context of the function which called
the dynamic execution. You can even create entirely new contexts under program
control just for the purpose of dynamically executing code.

The following example calls dynamic execute and specifies that only "a" and "b" are
to be used in the local dictionary of the execution:

b
c = £"a+b" in (a,b)
c
4

30 40 50

Depending on where an execute statement is programmed in your code, you will
have access to either or both of the global dictionaries ws and wsi. The field ws
contains all static data which exists in the current context of where you reference
ws, and wsi contains all instance data for the context it which it is referenced.

In functions which are defined with the static access modifier, only the ws field will
be accessible, because by definition no instance data can be referenced from a
static method. In an instance method, or any method which does not exist in a
static class or has the static modifier applied to its definition, vou also have access
to the global field wsi.

By default, when you run a dynamic execution and do not specify the global context
in which it will run, the wsi {or ws for static methods) is passed as the default global
dictionary.

Dynamically defining contexts:

m

