
Visual APL Programming Guide

How to: Create and Terminate Threads (Visual APL Programming
Guide)

This example demonstrates how an auxiliary or worker thread can be created and used to perform processing in

parallel with the primary thread. Making one thread wait for another and gracefully terminating a thread are also

demonstrated. For background information on multi-threading, see Managed Threading and Using Threading
(Visual APL Programming Guide).

The example creates a class named Worker that contains the method that the worker thread will execute called
DoWork. The worker thread will begin execution by calling this method, and terminate automatically when this

method returns. The DoWork method looks like this:

Visual APL

 public function DoWork() {

 a = Form()

 t = TextBox()

 t.Multiline = true

 t.Size = Size(200, 200)

 a.Controls.Add(t)

 a.Show()

 for (i=0;i<100;i++) {

 if (_shouldStop) {

 break;

 }

 t.AppendText(i+". worker thread: working...\n")

 }

 MessageBox.Show("Worker thread: terminating gracefully")

 }

The Worker class contains an additional method that is used to indicate to DoWork that it should return. This

method is called RequestStop, and looks like this:

Visual APL

public void RequestStop()

{

 _shouldStop = true;

}

The RequestStop method merely assigns the _shouldStop data member to true. Because this data member

is checked by the DoWork method, this has the indirect effect of causing DoWork to return, thereby terminating

the worker thread. However, it is important to note that DoWork and RequestStop will be executed by different

threads. DoWork is executed by the worker thread, and RequestStop is executed by the primary thread, so the
_shouldStop data member is declared volatile, like this:

Show

Page 1 of 4How to: Create and Terminate Threads (Visual APL)

7/12/2010http://www.aplnext.com/library/aplnext/VC/7a2f3ay4.aspx.htm

Visual APL
private volatile bool _shouldStop;

The volatile keyword alerts the compiler that multiple threads will access the _shouldStop data member, and

therefore it should not make any optimization assumptions about the state of this member. For more information,

see volatile (Visual APL Reference).

The use of volatile with the _shouldStop data member allows us to safely access this member from multiple

threads without the use of formal thread synchronization techniques, but only because _shouldStop is a bool.

This means that only single, atomic operations are necessary to modify _shouldStop. If, however, this data

member were a class, struct, or array, accessing it from multiple threads would likely result in intermittent data
corruption. Consider a thread that changes the values in an array. Windows regularly interrupts threads in order to
allow other threads to execute, so this thread could be halted after assigning some array elements but before
assigning others. This means the array now has a state that the programmer never intended, and another thread
reading this array may fail as a result.

Before actually creating the worker thread, the test function creates a Worker object and an instance of Thread.

The thread object is configured to use the Worker.DoWork method as an entry point by passing a reference to

this method to the Thread constructor, like this:
Visual APL

wo = Worker();

wt = new Thread((ThreadStart)wo.DoWork);

At this point, although the worker thread object exists and is configured, the actual worker thread has yet been

created. This does not happen until test calls the Start method:

Visual APL

wt.Start();

At this point the system initiates the execution of the worker thread, but it does so asynchronously to the primary

thread. This means that the test function continues to execute code immediately while the worker thread

simultaneously undergoes initialization. To insure that the test function does not try to terminate the worker

thread before it has a chance to execute, the test function loops until the worker thread object's IsAlive property

gets set to true:
Visual APL

while (!wt.IsAlive);

Next, the primary thread is halted briefly with a call to Sleep. This insures that the worker thread's DoWork function

will execute the loop inside the DoWork method for a few iterations before the test function executes any more

commands:
Visual APL

Thread.Sleep(300);

After the 300 millisecond elapses, test signals to the worker thread object that it should terminate using the
Worker.RequestStop method introduced previously:

Visual APL

wo.RequestStop();

It is also possible to terminate a thread from another thread with a call to Abort, but this forcefully terminates the

Page 2 of 4How to: Create and Terminate Threads (Visual APL)

7/12/2010http://www.aplnext.com/library/aplnext/VC/7a2f3ay4.aspx.htm

affected thread without concern for whether it has completed its task and provides no opportunity for the cleanup of
resources. The technique shown in this example is preferred.

Finally, the test function calls the Join method on the worker thread object. This method causes the current thread

to block, or wait, until the thread that the object represents terminates. Therefore Join will not return until the
worker thread returns, thereby terminating itself:
Visual APL

wt.Join();

At this point only the primary thread executing test exists. It displays one final message, and then returns,

terminating the primary thread as well.
The complete example appears below.

Example

Visual APL

using System

using System.Threading

refbyname System.Windows.Forms

using System.Windows.Forms

refbyname System.Drawing

using System.Drawing

public class Worker {

 // This method will be called when the thread is started.

 public function DoWork() {

 a = Form()

 t = TextBox()

 t.Multiline = true

 t.Size = Size(200, 200)

 a.Controls.Add(t)

 a.Show()

 for (i=0;i<100;i++) {

 if (_shouldStop) {

 break;

 }

 t.AppendText(i+". worker thread: working...\n")

 }

 MessageBox.Show("Worker thread: terminating gracefully")

 }

 public void RequestStop() {

 _shouldStop = true;

 }

 // Volatile is used as hint to the compiler that this data

 // member will be accessed by multiple threads.

 private volatile _shouldStop = false;

Page 3 of 4How to: Create and Terminate Threads (Visual APL)

7/12/2010http://www.aplnext.com/library/aplnext/VC/7a2f3ay4.aspx.htm

}

static function test() {

 // Create the thread object. This does not start the thread.

 wo = Worker()

 wt = Thread((ThreadStart)wo.DoWork)

 // Start the worker thread.

 wt.Start()

 print "main thread: starting worker thread..."

 // Put the main thread to sleep for 300 milliseconds to

 // allow the worker thread to do some work:

 Thread.Sleep(300)

 // Request that the worker thread stop itself:

 wo.RequestStop()

 // Use the Join method to block the current thread

 // until the object's thread terminates.

 wt.Join()

 print "main thread: worker thread has terminated"

}

Sample Output
main thread: starting worker thread...

1. worker thread: working...

2. worker thread: working...

3. worker thread: working...

4. worker thread: working...

5. worker thread: working...

6. worker thread: working...

7. worker thread: working...

8. worker thread: working...

9. worker thread: working...

10. worker thread: working...

11. worker thread: working...

Shown in MessageBox - worker thread: terminating gracefully...

main thread: worker thread has terminated

Page 4 of 4How to: Create and Terminate Threads (Visual APL)

7/12/2010http://www.aplnext.com/library/aplnext/VC/7a2f3ay4.aspx.htm

