
Native File Access

Native file access is provided through a set of system functions. These provide the ability to create, open,

close, remove, resize, and add and retrieve serializable data to/from native files on the machines hard disk.

The File, Path, Directory, etc classes available in the System.IO assembly provides similar functionality, but

with far greater detailed control.

To use the Native File System in your application, you will need to add a reference to the Visual APL

Share/Native File System assembly. Here is an example of "referencing" and "using" the assembly by its

strong name:

refbyname APLNext.APL.LegacyOps

using APLNext.Legacy.NativeFileSystem

Page 1

⎕ nappend

Appends data to a native file which is associated with the tie number. Any serializable object can be

appended to a file using this system function.

 "how are you" ⎕ nappend ¯1

Page 2

⎕ ncreate

Creates a native file in the specified directory or in the current directory, if no directory is given. Tie

numbers for referencing native files are negative to avoid a conflict with the positive tie numbers used by the

component file system.

 "c:\\mytest\\test.nf" ⎕ ncreate ¯1
¯1
 "test1.nf" ⎕ ncreate ¯2
¯2
 ⎕ nnums
¯1 ¯2
 ⎕ nnames
"c:\\mytest\\test.nf" "c:\\mydefault\\test1.nf"

Note

The double \ as the \ is used as a delimiter in strings. To avoid having to double the \ you can use @ at
the beginning of a string.

a = @"c:\mytest\test.nf"
Which will place the raw string in the variable "a".

You can also create a file and let the system assign the tie number.

For instance:

 ⎕ ncreate "c:\\mytest\\test2.nf"
¯3

The system will also assign the next available tie number if you specify a tie number of 0.

For instance:

 "c:\\mytest\\test.nf" ⎕ ncreate 0
¯3

Page 3

⎕ nerase

This will delete the specified native file permanently.

 "c:\\mytest\\test2.nf" ⎕ nerase ¯3

 ⎕ nerase "c:\\mytest\\test2.nf"

Page 4

⎕ nnames

Returns a string array of native file names which are currently tied.

Page 5

⎕ nnums

Returns an integer array of tie numbers associated with native files which are tied.

Page 6

⎕nread

Reads data from a native file which is tied and associated with a given tie number.

 a = ⎕ nread tn, convert, numberOfBytes, beginOffSet

The standard conversion values are:

Code Description

11: boolean (true/false, not bit)

81: bytes

82: chars (compatible with 82 in existing system)

83: string (compatible with 82 in existing system)

163: short (Int16, 16 bit integer)

164: ushort (UInt16, unsigned short)

323: int (Int32, 32 bit integer, default)

324: uint (UInt32, unsigned int)

325: float (Single, 32 bit real)

643: long (Int64, 64 bit integer)

644: ulong (UInt64, unsigned long)

645: double (Double, 64 bit real, default)

1285: Decimal (128 bit real)

807: object (serialized object)

Example:

 a = ⎕ nread ¯2 82 10 0

Reads back 10 characters.

convert can also be a TypeCode:

 a = ⎕ nread ¯2 TypeCode.Char 10 0
convert can also be an intrinsic Type

 a = ⎕ nread ¯2 Char 10 0
For reading matrices and arrays of heterogeneous data or any serialized object, use 807:

 a = ⎕ nread ¯2 807 10 0

Note

Page 7

⎕ nsize tn returns a long, which may not be supported in your operator set. The default operator set does

not include the long type. This can cause an error when catenating. So use spaces instead of commas, or

cast the result to integer, as example:

 a = ⎕ nread ¯2 82 (⎕ nsize ¯2) 0
 or
 a = ⎕ nread ¯2,82,((int) ⎕ nsize ¯2), 0

Page 8

⎕ nrename

Rename a native file currently tied and associated with a tie number.

 new_filename ⎕ nrename tn

Where new_filename is the new filename and tn is the existing tie number.

Page 9

⎕ nreplace

Replace existing data in a native file, beginning at the location given and continuing until all of the provided

data is written.

 100.1 ⎕ nreplace ¯3,10
 10L 10 ⎕ nreplace ¯3,10
 10.1 "test" 10 ⎕ nreplace ¯3,10
 (3 3⍴ ⍳ 9) ⎕ nreplace ¯3,10

Note that a nested array or matrix is serialized and written to the file. To read serialized data back from the

file use the 807 code.

Page 10

⎕ nresize

Resizes the native file associated with the tie number to a new size in bytes. The new size can be 0, smaller,

larger or the same size as the existing size.

 0 ⎕ nresize ¯2
 10000 ⎕ nresize ¯2
The resize does not change the data, but making the file smaller will result in the loss of data that existed

beyond the new file size.

nulls are used to pad the file when a resize makes the file larger ⎕ av[⎕ io]

Page 11

⎕ nsize

Returns a long which represents the size of the file.

 A = ⎕ nsize ¯3

If you want the size to be an Int32 use:

 A = (int)⎕ nsize ¯3

Page 12

⎕ nuntie

Unties the native file associated with the tie number.

 ⎕ nuntie ¯3

Page 13

⎕ ntie

Ties a native file in the specified directory or in the current directory, if no directory is given. Tie numbers for

referencing native files are negative to avoid a conflict with the positive tie numbers used by the component

file system.

 "c:\\mytest\\test.nf" ⎕ ntie ¯1
¯1
 "test1.nf" ⎕ ntie ¯2
¯2
 ⎕ nnums
¯1 ¯2
 ⎕ nnames
"c:\\mytest\\test.nf" "c:\\mydefault\\test1.nf"

Note

The double \ as the \ is used as a delimiter in strings. To avoid having to double the \ you can use @ at
the beginning of a string.

a = @"c:\mytest\test.nf"
Which will place the raw string in the variable "a".

You can also tie a file and let the system assign the tie number.

For instance:

 ⎕ ntie "c:\\mytest\\test2.nf"
¯3

The system will also assign the next available tie number if you specify a tie number of 0.

For instance:

 "c:\\mytest\\test.nf" ⎕ ntie 0
¯3

Access Attributes

You can specify what permissions to tie the target file with by supplying a second element to the right

argument.

This second argument is the sum of the permissions to request and allow for the file tie operation.

If the access attributes element is not specified, then the default value is 2 (Read/Write access, Exclusive tie)

Here is the list of the valid tie permission request values. The sum of the requested access attributes number

can contain only one of these values:

Code Description

0: Request read access

1: Request write access

2: Request read and write access.

Page 14

Here is the list of values which control what permissions are granted to future tie requests for the file being

tied. The sum of the requested access attributes number can contain only one of these values:

Code Description

0: Compatibility Mode

16: Exclusive Tie, no other ties can be made to the file.

32: Read access is granted to future ties.

48: Write access is granted to future ties.

64: Read and Write access is granted to future ties.

Here is an example of tieing files with different Request and Granted permissions:

 // tie with read access, and compatibility mode
 "c:\\mytest\\test.nf" ⎕ ntie ¯1 0

 // tie with read/write access, and grant read/write
 "c:\\mytest\\test1.nf" ⎕ ntie ¯1 (2+64)

 // tie with read/write access, and grant no permissions
 "c:\\mytest\\test2.nf" ⎕ ntie ¯1 (2+16)

Page 15

⎕ ncopy

Copy the contents of the specified source file to the specified target path.

 ⎕ ncopy source_filepath target_filepath

Where source_filename is source file from which to copy data, and target_filename is the target path of the

copy operation.

Page 16

⎕ nexists

Returns a value of 1 or 0 indicating if the specified file name exists. Specifying a directory name without a

file returns 0 (false).

 A = @'c:\Windows\0.log'
 ⎕ nexists A
1
 B = @'c:\Windows\'
 ⎕ nexists B
0

Page 17

⎕ nstream

Returns the underlying .Net FileStream object for the associated tie number. This allows the use of all

features provided by the FileStream object, while still maintaining compatibility with the Native File system.

 fs = ⎕ nstream ¯3

 fs.CanRead
true
 fs.CanWrite
true

Page 18

Session Commands (Visual APL)

The C ielo Explorer includes a wide range of commands for managing the various aspects of the session.

These aspects include the listing of session contents, script management, and editing of variables.

Page 19

)cd

Changes the current context of the session into or out of the specified object.

Syntax:

)cd obj

obj: The name of a class, variable, or path control string.

Remarks:

This session command provides the ability to explore classes. It is possible to explore either an instance of a

class or the class itself.

When this session command is used without an argument it displays the current class being explored, for

instance when at the top level, in the session, this is displayed

)cd

session

The right argument to the)cd session command is either a classname, a variable or a relative path.

To navigate to a particular class:

)cd classname

To navigate to an instance of a class:

 a = classname()

)cd a

To navigate to a relative location:

)cd ../../a/b/c

Or to navigate up one level:

)cd ..

To return to the session or root:

Page 20

)cd /

Examples and narrative:

Once you have navigated into a class, you will see all of the methods, properties, events and fields in the

class, regardless of member attributes. This means you can review members which are public, internal,

private, etc.

As an example, consider an integer:

 a = 10
)cd a
Loaded instance of: System.Int32

Now if we look at the)fns in this instance of the ValueType Int32 we see:

)fns
_dataRepresentation CompareTo Equals Finalize
 GetHashCode
GetType GetTypeCode MemberwiseClone Parse
 ToString
TryParse

The)fns includes methods, functions and the methods associated with properties.

Now if we look at)vars we see:

)vars

m_value MaxValue MinValue

We can navigate back up to the session by entering)cd ..

)cd ..

Loaded instance of: APLNext.APL.Objects.module

If we try to navigate up again:

)cd ..

Current instance is session

We see that we are already at the session level, and cannot navigate further up.

While we are back at the session level, let’s consider what is visible on the Int32 we have placed in the

Page 21

variable a.

If we look at intellisense on an instance of an Int32, we see a small subset of those members we saw when

we navigated into the instance of Int32 on the variable a.

Specifically, if we navigate back into the a variable:

)cd a

Loaded instance of: System.Int32

If we then check the variable m_value, which is not normally available to investigate, we find:

 m_value

10

So we see that the Int32 is an object, a ValueType in particular, and that the integer value is stored on the

field m_value.

If we want to know where we are in our navigation, we can always do)cd without an argument:

)cd

session/a

No matter how deep we have navigated we can always move back to the session by entering:

)cd /

Current instance is session

To review, everything is an object, and we can navigate through those objects using)cd, in this example lets

look at an Int32 and navigate down and up through this object.

 a = 10

)cd a

Loaded instance of: System.Int32

)vars

m_value MaxValue MinValue

 m_value

10

)cd MaxValue

Loaded instance of: System.Int32

)vars

m_value MaxValue MinValue

 m_value

Page 22

2147483647

)cd

session/a/MaxValue

)cd ..

Loaded instance of: System.Int32

)cd

session/a

)cd ..

Loaded instance of: APLNext.APL.Objects.module

)cd

session

Page 23

)classes

Shows the current list of classes which have been defined in the session.

Syntax:

)classes

Remarks:

The)classes command shows the list of classes which have been created in the session.

C lasses are most commonly created in the session by running a script file.

Example:

Here is an example script which contains the definition of two classes:

// Script: sc1

public class math {
 function add(a, b) {
 return a + b
 }

 function subtract(a, b) {
 return a - b
 }
}

public class useMath {
 function fn(a, b) {
 m = math()
 return m.add(a, b)
 }
}

Now lets run the script to create the classes in the session:

// display the contents of the)classes list
)classes

// the list is empty

// load and run the script 'sc1'
)load sc1

// display)classes again
)classes

math usemath
// the two classes now exist in the session.

// run the useMath class:
um = useMath()
um.fn(10, 20)

30

Page 24

Page 25

)clear

Clears all variables, functions, etc, from the active C ielo Explorer.

Syntax:

)clear

Remarks:

When the clear session command is run in the C ielo Explorer, the .Net AppDomain which currently represents

the C ielo Explorer is shutdown, thus removing from memory any variables, functions, UDF's, file ties, etc,

from memory.

If an assembly is referenced into the session by the use of the refbyname or refbyfile directives, then the DLL

which that reference represents is tied in memory by the session. This behavior is required by the .Net

security model.

When the C ielo Explorer AppDomain is unloaded by the clear command, any assembly references are also

removed from memory, meaning that any tied assemblies can again be modified, recreated, and moved on

the disc.

Example:

a = 10 20 30
a

10 20 30

)clear

a

The variable 'a' does not exist

Page 26

)edit

Opens a script file for editing in the current Session Project of the active Solution.

Syntax:

)edit script

script: The name of the script file to create or open.

Remarks:

When the edit command is run in the C ielo Explorer session, a script file of the specified name is opened for

editing from the current Session Project in Visual Studio, and given the active window focus.

If the script file does not exist in the current Session Project, then a new script file is created in the Session

Project by the supplied name, and opened for editing.

If the script file does exist in the current Session Project, then it is opened and focused for editing.

If the script file is already open in Visual Studio, then that script file is brought to the forefront and receives

the window focus.

Saving a script

Once you have edited the contents of a script file, you can save and execute the script to the C ielo Explorer

session by pressing the key sequence Ctrl+E+E. Once the script is saved and executed to the C ielo

Explorer, a message is printed to the session stating that the script was modified and imported.

Example:

// make a variable in the session
a = 10 20 30
a

10 20 30

// edit a new script
)edit sc

// add this line to the script
a = a + 100

// save the script by pressing Ctrl+E+E.

// this line is printed to the session
Script 'sc' updated

// now again display the contents of 'a' in the session.
a

110 120 130

Page 27

Page 28

)fns

Shows the current list of functions which have been defined in the session.

Syntax:

)fns

Remarks:

The)fns command shows the list of functions which have been created in the session.

Here are a few examples of creating functions in the session:

 Entering its declaration directly in the session:

// display the contents of the)fns list
)fns

// the list is empty

// define a new function called 'add'
function add(a, b) { return a + b }

// display)fns again
)fns

add
// the function 'add' is now in the list.

 Using ⎕def to declare a function from a text string:

// display the contents of the)fns list
)fns

// the list is empty

// define a function from a string
⎕ def "function add(a, b) { return a + b }"

true

// display)fns again
)fns

add
// the function 'add' is now in the list.

 Execute a script which contains the definition of one or more functions. Here is an example script

which contains the definition of two functions:

// Script: sc1

function add(a, b) {
 return a + b
}

Page 29

function subtract(a, b) {
 return a - b
}

Now lets run the script to create the functions in the session:

// display the contents of the)fns list
)fns

// the list is empty

// load and run the script 'sc1'
)load sc1

// display)fns again
)fns

add subtract
// the functions are now in the list.

These are only a few simple examples of creating functions in the session. Any valid expression or statement

which creates a function can be run is the session, and once that command is run the resultant function will be

present in the)fns list.

Created Function Time Stamping

When functions are dynamically created in the session, they receive an associated DateTime object which

represents the moment that the function was created in the session. There are several system quad

functions which allow the retrieval and modification of this time stamp.

Example:

// check the contents of the)fns list
)fns

mult sub
// there are two functions currently defined

// define a new function called 'add'
function add(a, b) { return a + b }

// check the)fns list
)fns

add mult sub
// the function 'add' is now in the list.

// try running add:
10 add 20

30

Page 30

)load

Loads and executes a script from the current Session Project.

Syntax:

)load script

script: The name of the script file to load.

Remarks:

The)load command looks in the current Session Project for a script named the specified name. If the script

file exists, it is added to the)scripts list in the session, and then the contents of the script are executed in the

session.

This command has the same behavior as pressing Ctrl+E+E in an open script in Visual Studio.

Example:

// check if 'a' exists
a

name 'a' is not defined

// check the contents of the)script list
)scripts

// the)scripts list is empty

// load a script which defines 'a'
)load sc

// check if 'a' exists
a

10 20 30

// check the)scripts list
)scripts

sc
// the script 'sc' is now in the list.

Page 31

)off

Clears all variables, functions, etc, from the active C ielo Explorer. Also closes the current open Solution in

Visual Studio.

Syntax:

)off

Remarks:

The off command has the same effect as the clear command for the contents of the session, and also closes

the currently open Solution in Visual Studio, and all associated projects.

If any open files are currently marked as unsaved in Visual Studio, then the Save File dialog is opened

prompting for user action. This behavior is the built-in functionallity of Visual Studio, meaning that in relation

to the currently open Solution, the off command has the same effect as the "File > C lose Solution" menu

item.

Example:

a = 10 20 30
a

10 20 30

)off

a

The variable 'a' does not exist

Page 32

)run

Executes the contents of a script from the current Session Project.

Syntax:

)run script

script: The name of the script file to run.

Remarks:

The)run command looks in the)scripts list for a script named the specified name. If the script file exists in

the list, the contents of the script are executed in the session.

The)run command is similar to the)load command, except that the specified script must already be listed in

the)scripts list for the command to succeed.

Example:

// check if 'a' exists
a

name 'a' is not defined

// check the contents of the)script list
)scripts

sc
// the 'sc' script is present in the session

// run the script 'sc', which defines 'a'
)run sc

// check if 'a' exists
a

10 20 30

Page 33

)runf

Executes the contents of a script at the specified file path.

Syntax:

)runf scriptPath

scriptPath: The fully qualified file path of the script to run.

Remarks:

The)runf command takes a file path to a script file as its argument. When the)runf command is entered, the

contents of the specified script file are run in the session.

The)runf command is similar to the)run command, except that the argument script file does not need to

exist in the)scripts list.

Example:

// check if 'a' exists
a

name 'a' is not defined

// check the contents of the)script list
)scripts

// the list is empty

// runf the script 'sc', which defines 'a'
)runf c:\sc.apl

// check if 'a' exists
a

10 20 30

Page 34

)scripts

Shows a list of scripts which are currently loaded into the session.

Syntax:

)scripts

Remarks:

Script files can be loaded into the session by the)load,)xload, and)edit commands. Pressing Ctrl+E+E in

an open script file also adds that script to the)scripts list.

Example:

// check the contents of the)script list
)scripts

sc1 sc2 sc3
// there are three scripts currently loaded

// xload a script called 'math'
)xload math

// check the)scripts list
)scripts

sc1 sc2 sc3 math
// the script 'math' is now in the list.

Page 35

)vars

Shows the current list of variables which have been defined in the session.

Syntax:

)vars

Remarks:

The)vars command shows the list of variables which have been created in the session.

Example:

// check the contents of the)vars list
)vars

a b
// there are two variables currently defined

// define a new variable called 'c'
c = 100 200 300

// check the)vars list
)vars

a b c
// the variable 'c' now exists in the session.

Page 36

)xload

Loads a script from the current Session Project.

Syntax:

)xload script

script: The name of the script file to xload.

Remarks:

The)xload command looks in the current Session Project for a script named the specified name. If the script

file exists, it is added to the)scripts list in the session.

This command has a similar behavior to the)load command, except that the contents of the script are not

executed.

Example:

// check the contents of the)script list
)scripts

// the)scripts list is empty

// xload a script called 'sc'
)xload sc

// check the)scripts list
)scripts

sc
// the script 'sc' is now in the list.

Page 37

)xmlout

Exports a variable in XML format into the current Session Project in Visual Studio.

Syntax:

)xmlout var var var...

var: The name of a variable to export.

Remarks:

For each argument variable, the xmlout command creates an XML file in the current Session Project named "

var.xml", where var is the name of the variable being exported.

If an XML file by that name already exists in the current Session Project, then that file is overwritten with the

newly produced XML output.

Only objects which are serializable can be successfully exported to XML.

A variable is considered serializable if any of the following conditions are met:

 It is marked with the .Net Serializable attribute.

 Implements the .Net ISerializable interface.

 Implements the IXMLSerializable interface.

 Has a registered serializer in the C ielo Explorer.

If an object is encountered in a variable being exported with xmlout that does not meet any of the above

serializable criteria, then a comment is placed in the generated XML at the location where the object would

have appeared in the output XML, stating that the element could not be serialized. This behavior ensures that

if you have a variable in the C ielo Explorer which contains mostly serializable data and only a few elements

which cannot be serialized, the elements which are not serialzable will not prevent the serializable elements

from being exported to XML format. Keep in mind that if you save the generated XML back to the C ielo

Explorer by the use of Ctrl+E+E, that those elements which could not be serialized during the generation of

the XML file will contain empty objects in the newly imported variable.

Once the xmlout command has been executed, the active window in Visual Studio is shifted to the newly

created or updated XML file. If more than one variable was exported, the focus is placed on each XML file

view as it is created, ultimately being placed on the XML file of the last variable being exported.

Saving changes to XML variables

Once a variable has been exported as XML, the generated XML can be modified in any way desired, and those

changes can be saved back to the C ielo Explorer.

To save changes made to an XML file in the current Session Project, open that file and press the key

sequence Ctrl+E+E

Once the sequence is pressed, focus is returned to the C ielo Explorer, and a message is printed to the

session showing that an update was made to the variable.

When the changed XML is saved back to the session, the name of the variable into which the data is saved is

taken from the name of the XML file. This means that if an XML file named "a.xml" is saved to the session

using Ctrl+E+E, then the deserialized contents of that file will be saved as the variable "a" in the session.

 This means that you can not only save variables from the session in XML format, but you can also import

entirely new variables from XML format by simply adding them to the Session Project, opening them, and

Page 38

then pressing Ctrl+E+E

Additional Information

The xmlout command uses the XmlCvarSerialzier to perform the XML conversion to and from the current

Session Project.

Example:

a = 10 "test" (⍳5)

)xmlout a

// a file has been created in the current Session Project.

Page 39

Cielo Explorer Menu Reference

The C ielo Explorer includes a toolbar which allows various common session management activities to be

easily performed at the click of a button.

Following is a listing of each button in the C ielo Explorer and their uses:

Toolbar buttons in Cielo Explorer

New

Clears the present session. This unloads the present domain, removing all references to assemblies and

creates a new session domain.

Run Cielo Script

The user is prompted with the file selection dialog box. A script file is selected which is then defined and run

in the current session. Scripts can contain any statement or expression; this includes control structures,

function definitions, classes and simple statements. Scripts are dynamic, and functions, variables or classes

defined in a script replace any dynamic members that exist in the current session with the same names.

For instance, the following script defines the function fn and then calls that function:

// Script: sc

function fn(a) {

 return a

}

fn(“hello”)

When this script is run in the session, the word hello is displayed in the session and the function fn is added to

those available in the session.

Load Cielo File

This loads a Visual APL file which contains a formal assembly definition. The assembly is created and the

resulting dll or exe can be referenced in the session or in the case of an exe, run from the OS.

Import Assembly

This adds a reference to an existing assembly to the session. If there is a namespace in the assembly which

matches the name of the assembly, a using is also done.

Load Session Log

This prompts the user with a file selection dialog box. The user can choose any existing Visual APL log file,

which is then displayed in the session, thus providing the user with all of the commands, definitions, etc which

occurred in a previous session.

Page 40

Save Session Log

This action saves all of the display content in the existing session to the file selected by the user. The user is

prompted with the Save File dialog box.

Print

This prints the display contents of the existing session.

Cut

This removes the selected text from the session display and places it on the clipboard.

Copy

This copies the selected text which is placed on the clipboard.

Paste APL+Win

This pastes APL+Win code into the session explicitly converting from the legacy APL+Win text to APL Unicode.

Page 41

Control Structures (delimited) vtop

Page 42

:IF :ELSE

The tests for the :if and :elseif must evaluate to a single value which can be converted to a Boolean.

:if test
 if statement block
:elseif test1
 elseif statement block
:elseif test2
 elseif statement block
:else
 else statement block
:endif
The logical && and || are supported also.

In the example below the test2 is evaluated only if test returns a true

:if test && test2
 code block
:endif

In the example below the test2 is evaluated only if test returns a false

:if test || test2
 code block
:endif

Page 43

:select :case

The :select control structure provides a mechanism for switching between multiple cases based on Identity

comparison.

:select value
 :case value1
 code block
 :case value2
 code block
 :else
 else code block
:endselect

Page 44

:while

The :continue keyword passes control to the :while test statement.

The :leave keyword branches to the first statement after the :while structure.

The test must return a value which will convert to Boolean

:while test
 statements
:endwhile

The logical && and || also works with the :while structure

In the example below the test2 is evaluated only if test returns a true

:while test && test2
 code block
:endwhile

In the example below the test2 is evaluated only if test returns a false

:while test || test2
 code block
:endwhile

Page 45

:repeat :until

The :continue keyword passes control to the :until test statement.

The :leave keyword branches to the first statement after the :repeat structure.

The test must return a value which will convert to Boolean

The :repeat structure is repeated until the test evaluates to true.

:repeat
 code block
:until test

The logical && and || also works with the :repeat structure

In the example below the test2 is evaluated only if test returns a true

:repeat
 code block
:until test && test2

In the example below the test2 is evaluated only if test returns a false

:repeat
 code block
:until test || test2

Page 46

:for :in

The :for control structure iterates across an iterable expression, placing the iterated values in the control

variables.

:for i :in ⍳ 3
 print i
:endfor
0
1
2
The :continue keyword branches to the top of the for loop and the next value is assigned to the control

variables.

The :leave keyword branches to the first statement after the :for loop.

The assignment of values into the variables follows the rules of variable assignment.

:for a b c :in (1 2 3) (4 5 6)
 print a
 print b
 print b
:endfor

The first time through the :for loop a:1, b:2, c:3 the second time a:4,b:5,c:6

It is also possible to assign based on depth of nested array

function fnf() {
 v = (1 (2 (3 4)) 5) (6 (7 (8 9)) 0)
 :for (a (b (c)) d) :in v
 print c
 :endfor
}
fnf()
3 4
8 9

Page 47

: Label separator, switch case separator and legacy keyword
indicator

Creates a label to which control can branch when used as follows:

function fn(a) {
 → L1
 print a
 L1:
 print “branch”
}

Used to delimit legacy keywords

fuction fn(a) {
 :for i :in ⍳ 10
 print i
 :endfor
}

Used to delimit switch case statement

function fn(a) {
 switch (a) {
 case 10:
 print “something”
 break
 default:
 print “default”
 break
 }
}

Page 48

→ Branch

The example below shows an unconditional branch to a label.

Example:

function fn(a) {
 print "one"
 → L1
 print "two"
 L1:
 print "three"
}

Page 49

:goto :return

:goto provides an unconditional branch to a label

:goto label

:return returns from the function

It is also possible to return data with the :return keyword

:return expression

Using :return with an expression returns a value without having to set the default return variable specified in

the user defined function header.

Page 50

: Label separator, switch case separator and legacy keyword
indicator

Creates a label to which control can branch when used as follows:

function fn(a) {
 → L1
 print a
 L1:
 print “branch”
}

Used to delimit legacy keywords

fuction fn(a) {
 :for i :in ⍳ 10
 print i
 :endfor
}

Used to delimit switch case statement

function fn(a) {
 switch (a) {
 case 10:
 print “something”
 break
 default:
 print “default”
 break
 }
}

Page 51

Number sign

Delimits directives, such as region.

#region code
 function fn(a) {
 print a
 }
#endregion

This creates a collapsible region in Visual Studio.

Page 52

: Label separator, switch case separator and legacy keyword
indicator

Creates a label to which control can branch when used as follows:

function fn(a) {
 → L1
 print a
 L1:
 print “branch”
}

Used to delimit legacy keywords

fuction fn(a) {
 :for i :in ⍳ 10
 print i
 :endfor
}

Used to delimit switch case statement

function fn(a) {
 switch (a) {
 case 10:
 print “something”
 break
 default:
 print “default”
 break
 }
}

Page 53

; Axis Separator

When used inside of an indexer bracket block [] the axis separator identifies the values for each axis.

 a = 1 2 3
 a[1]
2
 a = 3 3⍴ ⍳ 9
 a[1 2;1 2]
4 5
 7 8

It is not required to use the axis separator to index an array, for instance:

 b = (1 2) (1 2)
 a[b]
 4 5
 7 8
 b = 1 2
 a[b]
5

Providing a single value will index the array as though it were a vector.

 a[1]
1

You can select all values in an axis by using null:

 b = (1 2) (1 2) null
 a[b]
 12 13 14
 15 16 17

 21 22 23
 24 25 26
This makes it possible to index an array without having to be concerned about the syntax of the number of

semi colons.

Page 54

; Statement Separator

Separates code expressions or statements on a line.

Example:

 code1 ; code2
The diamond may also be used to delimit statements.

Page 55

_ Underscore

A valid symbol to be used in a variable, method, function, property or other object name. It is also valid as

the first character of a name.

In the session the _ contains the last information that was displayed to the screen or would have displayed

to the screen if in a function.

Example:

 ⍳ 3
1 2 3
 _
1 2 3
This is very useful when reusing information in the session. Instead of having to copy and implement a long

line of code, you can simply include _ on the next line.

Example:

 100+⍳ 10-3+5
100 101
 14+_
114 115

Page 56

¯ High Minus

The high minus can be used to identify negative numbers in a vector or numbers being input.

For instance:

 10 - 5
5

However:

 10 ¯5
10 ¯5
This simplifies numeric input and reduces the need for parenthesis.

Page 57

⍝ Comment

The ⍝ is the single line comment symbol. It can be used in conjunction with / to create a multi line

comment.

Example:

 ƒ fn(a) {
 b = a+1
 /⍝ this is a line
 another comment line
 yet another
 ⍝ /
 print b
 }
 fn(10)
11
The double // also indicates a single comment line.

Page 58

∇ Del

Delimiter used to identify the beginning of a user defined function.

Example:
∇ r← x add y {
 r← x+y
}

Notice that the beginning of the function block is started with a { and the end of the function block is

terminated with a }.

Page 59

∆ Delta

A valid symbol to be used in a variable, method, function, property or other object name. It is also valid as

the first character of a name.

Note that objects that include the ∆ will be difficult if not impossible to be consumed by other languages. This

is included for legacy purposes.

Page 60

⍙ Delta underscore

A valid symbol to be used in a variable, method, function, property or other object name. It is also valid as

the first character of a name.

Note that objects that include the ⍙ will be difficult if not impossible to be consumed by other languages. This

is included for legacy purposes.

Page 61

⋄ Statement Separator

Separates code expressions or statements on a line.

Example:

 code1 ⋄ code2

Page 62

System Function Reference

This page contains a complete listing of all system quad functions currently available in Visual APL from

APLNext.

Basic System Functions, Variables, etc.

System Function Description

⎕DR Data type and conversion

⎕ENLIST Array to vector

⎕EXPAND Array fill

⎕FI Numeric format

⎕FIRST First of an array

⎕FMT Legacy Format

⎕FORMAT New Array Formatter using .Net formatting specifiers

⎕MIX Reduce nesting

⎕PENCLOSE Array to nested vector

⎕REPL Replicate array

⎕SPLIT Increase nesting

⎕SS String search

⎕TYPE Numeric / character

⎕VI Verify numeric

⎕FAVAIL Returns a 1 if the share file system is available

⎕DM Diagnostic message

⎕ERROR Throw error

⎕dmx Extended Diagnostic message

⎕DEF Define function

⎕ERASE Erase functions or variables

⎕EX Erase functions or variables

⎕FX Define function from ⎕CR representation

⎕IDLIST List objects in WS

⎕NC List object types

⎕NL List object names

Page 63

⎕SIZE Get size of object

⎕AT Object attributes

⎕DL Delay execution

⎕AI Accounting information

⎕CT Comparison tolerance

⎕IO Index origin

⎕LIB File directory

⎕LIBD Set library to directory

⎕LIBS List libraries and directories

⎕PP Print precision

⎕RL Random number seed

⎕TS Timestamp

⎕reference Adds a reference to an assembly

⎕using Makes the namespace in a referenced assembly available

⎕AV Atomic vector (character set)

⎕UCS Returns index or Unicode character from index

⎕SYSID APL system ID

⎕SYSVER APL system version

⎕USERID Workstation ID

⎕TCxx Terminal control characters

⎕TC contains a three-element vector of terminal control characters.

⎕TC[1]= ⎕TCBS (backspace)

⎕TC[2]= ⎕TCNL (newline)

⎕TC[3]= ⎕TCLF (linefeed).

Other Terminal Control Constants:

⎕TCBEL Bell character

⎕TCBS Backspace character

⎕TCDEL Delete character

⎕TCESC Escape character

Page 64

⎕TCFF Formfeed character

⎕TCHT Horizontal Tab character

⎕TCLF Linefeed character

⎕TCNL Newline character

⎕TCNUL Null character

State Functions

⎕ea Executes either left or right arguments

⎕monadic Indicates if an APL function was called monadically

⎕dyadic Indicates if an APL function was called dyadically

⎕dbz Divide By Zero

⎕dbzv Divide By Zero Value

⎕nfi NumberFormatInfo used by pattern format and when

displaying to session

Argument Attributes

⎕arglist Indicates argument is to used as list or arguments to

the method

⎕argnames Indicates argument is a matrix of named arguments

and values

Application Shared DataStore (manages datastore created with svglobal keyword)

⎕svd Remove a shared variable from the datastore

⎕svc Check to see if a variable has been assigned since

last assigned or referenced

⎕svs Check to see if a variable is in the datastore

⎕svget Sets an event method on a shared variable which

runs when variable is referenced

⎕svset Sets an event method on a shared variable which

runs when variable is assigned

Windows Interface (legacy) loaded with Windows Interface Assembly

These quads have been deprecated in favor of the Windows Designer in Visual Studio and the new .Net

System.Windows.Forms and related classes.

Page 65

⎕wi Windows Interface Legacy

⎕wself The current or last reference wi object

⎕wres Legacy wi wres

⎕warg Legacy wi warg

⎕wsender The actual object that created an event

⎕wievent The actual event which was raised

⎕wevent The legacy wi event

Loaded with the NativeFileSystem assembly

⎕NAPPEND Add data to file

⎕NCREATE Create file

⎕NERASE Erase file

⎕NNAMES Names of open files

⎕NNUMS Numbers of open files

⎕NREAD Read data

⎕NRENAME Rename file

⎕NREPLACE Replace data in file

⎕NRESIZE Resize file

⎕NSIZE Get file size

⎕NTIE Tie (open) file

⎕NUNTIE Untie file

⎕nexists Deterimines if a file or directory exists

⎕ncopy Copies a file to a new file

⎕nmove Moves the file

⎕nstream Returns he filestream associated with the tie number

Loaded with ShareFileSystem assembly

⎕FAPPEND Append components

⎕FCREATE Create file

⎕FDROP Drops components from the beginning or end of a

Page 66

share file and renumbers the components

⎕FDUP Duplicates a share file

⎕FERASE Erase a share file

⎕FLIB File directory

⎕FNAMES Tied share file names

⎕FNUMS Tied share file numbers

⎕FREAD Read component

⎕FREPLACE Replace component

⎕FSIZE Get file size

⎕FSTIE Tie share file

⎕FTIE Tie share file

⎕FUNTIE Untie share file

⎕fcatenate Catenate a valuetype to a valuetype array stored in a

component

⎕libdrw Determines access to virtual share file directory

⎕libdcws Changes access to virtual share file directory

⎕firead Reads a specified range of valuetypes from a

valuetype array in a component

⎕fireplace Replaces a specified range of valuetypes in a

valuetype array in a component

⎕falloc Allocates contiguous space to a share file component

⎕fcnloc Returns the physical location of a component in a

share file

⎕fstream Returns the filestream associated with the file tie

number or virtual directory

⎕fremove Removes a component from a share file and

renumbers components

Loaded with either the Native File System or Share File System

⎕XLIB Returns the directory or files in a directory

⎕CHDIR Change current directory

⎕MKDIR Create directory

⎕RMDIR Delete directory

Page 67

System Function Reference

This page contains a complete listing of all system quad functions currently available in Visual APL from

APLNext.

Basic System Functions, Variables, etc.

System Function Description

⎕DR Data type and conversion

⎕ENLIST Array to vector

⎕EXPAND Array fill

⎕FI Numeric format

⎕FIRST First of an array

⎕FMT Legacy Format

⎕FORMAT New Array Formatter using .Net formatting specifiers

⎕MIX Reduce nesting

⎕PENCLOSE Array to nested vector

⎕REPL Replicate array

⎕SPLIT Increase nesting

⎕SS String search

⎕TYPE Numeric / character

⎕VI Verify numeric

⎕FAVAIL Returns a 1 if the share file system is available

⎕DM Diagnostic message

⎕ERROR Throw error

⎕dmx Extended Diagnostic message

⎕DEF Define function

⎕ERASE Erase functions or variables

⎕EX Erase functions or variables

⎕FX Define function from ⎕CR representation

⎕IDLIST List objects in WS

⎕NC List object types

⎕NL List object names

Page 68

⎕SIZE Get size of object

⎕AT Object attributes

⎕DL Delay execution

⎕AI Accounting information

⎕CT Comparison tolerance

⎕IO Index origin

⎕LIB File directory

⎕LIBD Set library to directory

⎕LIBS List libraries and directories

⎕PP Print precision

⎕RL Random number seed

⎕TS Timestamp

⎕reference Adds a reference to an assembly

⎕using Makes the namespace in a referenced assembly available

⎕AV Atomic vector (character set)

⎕UCS Returns index or Unicode character from index

⎕SYSID APL system ID

⎕SYSVER APL system version

⎕USERID Workstation ID

⎕TCxx Terminal control characters

⎕TC contains a three-element vector of terminal control characters.

⎕TC[1]= ⎕TCBS (backspace)

⎕TC[2]= ⎕TCNL (newline)

⎕TC[3]= ⎕TCLF (linefeed).

Other Terminal Control Constants:

⎕TCBEL Bell character

⎕TCBS Backspace character

⎕TCDEL Delete character

⎕TCESC Escape character

Page 69

⎕TCFF Formfeed character

⎕TCHT Horizontal Tab character

⎕TCLF Linefeed character

⎕TCNL Newline character

⎕TCNUL Null character

State Functions

⎕ea Executes either left or right arguments

⎕monadic Indicates if an APL function was called monadically

⎕dyadic Indicates if an APL function was called dyadically

⎕dbz Divide By Zero

⎕dbzv Divide By Zero Value

⎕nfi NumberFormatInfo used by pattern format and when

displaying to session

Argument Attributes

⎕arglist Indicates argument is to used as list or arguments to

the method

⎕argnames Indicates argument is a matrix of named arguments

and values

Application Shared DataStore (manages datastore created with svglobal keyword)

⎕svd Remove a shared variable from the datastore

⎕svc Check to see if a variable has been assigned since

last assigned or referenced

⎕svs Check to see if a variable is in the datastore

⎕svget Sets an event method on a shared variable which

runs when variable is referenced

⎕svset Sets an event method on a shared variable which

runs when variable is assigned

Windows Interface (legacy) loaded with Windows Interface Assembly

These quads have been deprecated in favor of the Windows Designer in Visual Studio and the new .Net

System.Windows.Forms and related classes.

Page 70

⎕wi Windows Interface Legacy

⎕wself The current or last reference wi object

⎕wres Legacy wi wres

⎕warg Legacy wi warg

⎕wsender The actual object that created an event

⎕wievent The actual event which was raised

⎕wevent The legacy wi event

Loaded with the NativeFileSystem assembly

⎕NAPPEND Add data to file

⎕NCREATE Create file

⎕NERASE Erase file

⎕NNAMES Names of open files

⎕NNUMS Numbers of open files

⎕NREAD Read data

⎕NRENAME Rename file

⎕NREPLACE Replace data in file

⎕NRESIZE Resize file

⎕NSIZE Get file size

⎕NTIE Tie (open) file

⎕NUNTIE Untie file

⎕nexists Deterimines if a file or directory exists

⎕ncopy Copies a file to a new file

⎕nmove Moves the file

⎕nstream Returns he filestream associated with the tie number

Loaded with ShareFileSystem assembly

⎕FAPPEND Append components

⎕FCREATE Create file

⎕FDROP Drops components from the beginning or end of a

Page 71

share file and renumbers the components

⎕FDUP Duplicates a share file

⎕FERASE Erase a share file

⎕FLIB File directory

⎕FNAMES Tied share file names

⎕FNUMS Tied share file numbers

⎕FREAD Read component

⎕FREPLACE Replace component

⎕FSIZE Get file size

⎕FSTIE Tie share file

⎕FTIE Tie share file

⎕FUNTIE Untie share file

⎕fcatenate Catenate a valuetype to a valuetype array stored in a

component

⎕libdrw Determines access to virtual share file directory

⎕libdcws Changes access to virtual share file directory

⎕firead Reads a specified range of valuetypes from a

valuetype array in a component

⎕fireplace Replaces a specified range of valuetypes in a

valuetype array in a component

⎕falloc Allocates contiguous space to a share file component

⎕fcnloc Returns the physical location of a component in a

share file

⎕fstream Returns the filestream associated with the file tie

number or virtual directory

⎕fremove Removes a component from a share file and

renumbers components

Loaded with either the Native File System or Share File System

⎕XLIB Returns the directory or files in a directory

⎕CHDIR Change current directory

⎕MKDIR Create directory

⎕RMDIR Delete directory

Page 72

⎕ ai Account Information

Legacy account information. Returns a four element vector, the second element of which is the time in

milliseconds since the first time that ⎕ ai was referenced.

This is particularly useful when doing simple timing tests:

⎕ io=1
ts = ⎕ ai[1]
for (I = 0;i<10000;i++) {
 b = 10×i
}
print ⎕ ai[1]-ts
This will display the time taken by the statements interposing the two references to ⎕ ai

The first element is always 1 and the last two elements are reserved.

Page 73

⎕ av Atomic Vector

This is provided for legacy reasons only.
Contains 256 characters and is a simple character vector. Visual APL is based on Unicode characters. ⎕ av
is a selection of commonly used Unicode characters.

Page 74

⎕ cmd Command Window

This has been deprecated in favor of the System.Diagnostics.Process class.

Here is a simple example of how to use this:

 using System.Diagnostics
 a = Process()
 a.StartInfo.FileName= "cmd.exe"
 a.StartInfo.UseShellExecute = false
 a.StartInfo.Arguments = "/k dir *.*"
 a.Start()
This will open a cmd window and display the directory.

There are a wealth of options for this type and extensive documentation can be found for this .Net framework

type at Microsoft.com, as well as the over 4,000 other .Net framework types.

Page 75

⎕ ct Comparison Tolerance

The comparison tolerance is the difference or fuzz allowed between two values when comparing them for

equality. The default setting for ⎕ ct is double.Epsilon which is the chip dependent comparison

tolerance.

Example:

 using System
 double.Epsilon
4.94065645841247E-324
 ⎕ ct
4.94065645841247E-324

The value of ⎕ct can be set to alter the operation of the following operators.

⌊ floor
⍳ index of
⌈ ceiling
> ≥ ≈ ≤ < numeric relation
| residue
⍷ find
≡ match
~ without
⍳ membership

Note

the ≈, or approximately equal symbol is obtained by pressing the alt-5 key. This is not to be confused with

the = symbol which is used for reference assignment.

To perform an exact equal use ==

a == b

Page 76

⎕dr

The data representation of intrinsic objects in .Net can be determined and manipulated using ⎕ dr.

⎕ dr can be used either monadically or dyadically.

Monadic:

When used monadically ⎕ dr reports the type of an object based on legacy codes. These codes are:

Code Description

11: boolean (true/false, not bit)

81: bytes

82: chars (compatible with 82 in existing system)

83: reserved.

162: chars (compatible with 82 in existing system)

163: short (Int16, 16 bit integer)

164: ushort (UInt16, unsigned short)

323: int (Int32, 32 bit integer, default)

324: uint (UInt32, unsigned int)

325: float (Single, 32 bit real)

643: long (Int64, 64 bit integer)

644: ulong (UInt64, unsigned long)

645: double (Double, 64 bit real, default)

1285: Decimal (128 bit real)

807: object (serialized object)

99999: no code available for data type

Example:

 ⎕ dr 10
323
 ⎕ dr 10L
643
 ⎕ dr 20.1
645
 ⎕ dr 10f
325

Dyadic:

Page 77

The left argument to ⎕ dr can be a legacy code listed above. When this is the case the data on the right is

coerced to the new data type based on the bit representation of the data.

Example:

Converts a short to a Boolean representation:

 11 ⎕ dr (short)32
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 323 ⎕ dr 10.1
858993459 1076114227

 645 ⎕ dr 323 ⎕ dr 10.1
10.1

 645 ⎕ dr (bool) 11 ⎕ dr 10.1
10.1

Note

Requirement for casting to Boolean as the result of 11 ⎕ dr 10.1 is an integer array of 1 and 0.

Often what is desired is to cast an int to a double, a double to an int, a short to and int, etc.

Using a type as the left argument to ⎕ dr accomplishes this.

Example:

 int ⎕ dr 10.1
10
 int ⎕ dr 10.1 10.6
10 11
 ⎕ dr double ⎕ dr 10
645

It is also possible to serialize data using ⎕dr. This is accomplished using the text string "wrapl" as the left

argument. To deserialize the data, use "unwrapl"

 a = "wrapl" ⎕ dr 10 "test" 20
 b = "wrapl" ⎕ dr 10 "test" 20

The result of the serialization is a string and the result is always identical for identical data. This means that

the results can be compared for the purposes of checking equivalence.

Any object that supports serialization can be serialized either individually or as part of a nested structure.

If you understand the serialization of the object, you can even modify the string which will impact the object

that you return.

This is useful for sending objects either over the internet or writing and object to file and then retrieving and

reinstantiating the object at a later time.

Page 78

⎕ dbz Divide By Zero

This system function provides control over the way in which the system addresses divide by zero.

The default value is 0 to match .Net languages, however, you can set this to the following:

⎕ dbz:
 0 : 1÷0 = 0
 0÷0 = 0
 1 : 1÷0 = DOMAIN ERROR
 0÷0 = 1
 2 : 1÷0 = DOMAIN ERROR
 0÷0 = DOMAIN ERROR
 3 : 1÷0 = NaN or ⎕ dbzv
 0÷0 = NaN or ⎕ dbzv
 4 : 1÷0 = +-Infinity
 0÷0 = NaN
You can set ⎕ dbzv to any object, and that will be returned when ⎕ dbz is set to 3

There are several new Double types which are valid doubles and therefore do not promote a double array to

a heterogeneous array.

 double.NaN
NaN
 double.NegativeInfinity
-Infinity
 double.PositiveInfinity
Infinity

 ⎕ dbzv← "byzero"
 ⎕ dbz← 3
 a← 2 3⍴ ⍳ 6
 a÷2 3⍴ 10 0
 0 byzero 0.2
 byzero 0.4 byzero

 ⎕ dbzv← double.NaN
 a÷2 3⍴ 10 0
 0 NaN 0.2
 NaN 0.4 NaN
 b = a÷2 3⍴ 10 0
 ⎕ dr b
645

Page 79

⎕ dyadic

Indicates if a user defined function was called with both a left and right argument. ⎕ dyadic is false if the

function was called with only the right argument.

∇ r← a add b {
 if (⎕ dyadic) {
 r← a+b
 } else {
 r← b
 }
}

Page 80

Dynamically Referencing Assemblies

The refbyfile, refbyname, and using keywords are directives and are only referenced during creation of

the dll or exe assembly.

For late binding to an assembly, Visual APL supplies two quad system functions:

⎕ reference

⎕using

⎕reference adds a late bound reference to the specified assembly, whether it is given as a file or as a name,

and does this during execution. Arguments to ⎕reference can be any valid APL expression which produces a

string. For instance:

 a = @"c:\myprojects\myutils.dll"

 ⎕ reference a

Or to reference by name:

 ⎕ reference "System.Windows.Forms"

Both will return true if successful and false if it fails to load the assembly.

Once an assembly has been loaded, you can then use the namespaces in that assembly, for example:

 ⎕ using "myutils"

 ⎕ using "System.Windows.Forms"

You can also specify an alias for a using like this:

 ⎕ using win = "System.Windows.Forms"

The variable win will now contain the System.Windows.Forms assembly information.

Aliases are used to avoid name conflicts between assemblies.

As these are evaluated during execution, any valid APL expression can create the input to these system quad

functions.

However, if you are using an alias it must be the first assignment in the expression before the ⎕using.

Page 81

⎕ ex Expunge

Erases a global object or sets a local object to it’s default value. Returns a 1 if successful, or a 0 if the object

could not be erased or set to its default value.

Local variables that are dynamic are set to the default value for the data type which they contain when ⎕ ex
is run on them. If they contain a ValueType they are set to the default for the particular value type,

otherwise they are set to null.

Local variables that are strong typed are set to the default value for the data type which they must always

contain. If a local variable is typed to int, then the erase will always set the value to 0, a Boolean type is set

to false, etc. If a local typed variable is typed to a non ValueType then the value is set to null.

Setting a local variable to null will cause the garbage collector to remove the object to which the variable

referred.

Erasing a global object removes the pointer to the object from the global dictionary and the object referenced

is removed at the next garbage collection.

 a = 10
 b = 10 20 30
 ⎕ ex “"a" "b"”
1 1
The .Net framework documentation has a large section on garbage collection and the garbage collection class

is available on System.GC

You should read the documentation and examples available from Microsoft very carefully before using GC.

Page 82

⎕ io Index Origin

This is the index origin that the operators will use for indexing and numbering.

For instance, setting ⎕ io to 0:

 ⍳ 10
0 1 2 3 4 5 6 7 8 9
 ⎕ io← 1
 ⍳ 10
1 2 3 4 5 6 7 8 9 10

Conversely, indexing with ⎕io set to 0, which is the default for .Net languages results as follows:

 a = 1 2 3 4 5
 a[1]
2
 ⎕ io← 1
 a[1]
1

Note that when a type has an indexer you must honor the ⎕io of that type. Setting ⎕io will always affect the

operators and indexing of arrays, however, specific types with indexers will still have their own internal origin

which must be honored.

⎕io is local to the class. There is a ⎕io for each instance of a class and also the static version.

Page 83

⎕ monadic

Indicates whether the user defined function was called with a left argument or not. ⎕ monadic is true if the

function was called without a left argument.

∇ r← a add b {
 if (monadic) {
 r← b
 } else {
 r← a+b
 }
}

 add 10
10
 10 add 20
20

Page 84

⎕ nc Name Class

Monadic:
Returns a vector of integers indicating the type of object identified within a string as the right argument.

The valid identifiers are:

Identifier Meaning

 0: Does not exist in present scope

 2: Variable, Field or property

 3: Function or method

 4: Other, most likely a class

Example:

 ⎕ nc “a b c”
2 3 0
This would indicate that a is a variable, b is a function and c does not exist.

One of the most common uses for ⎕ nc is to identify if a left argument has been passed to a user defined

function. See ⎕ monadic to simplify and speed up this test.

∇ r← a add b {
 if (0 == ⎕ nc “a”) {
 r← b
 } else {
 r← a+b
 }
}

∇ r← a add b {
 if (⎕ monadic) {
 r← b
 } else {
 r← a+b
 }
}

Page 85

⎕ nl Name List

Returns a string array of objects that match the following numeric identifiers:

identifier object type

 2: variable, property or field

 3: function or method

Example:

 ⎕ nl 2
“a” “b”
 ⎕ nl 3
 “fn”
 ⎕ nl 2 3
“a” “b” “fn”

Page 86

⎕nfi

⎕ nfi provides the instance of the NumberFormatInfo class which is used by ⎕ fmt and pattern format (⍕)

Changes the properties of this object are reflected in the subsequent formatting output.

 nfi = ⎕ nfi
 nfi.NegativeSign = "-"
 "N2" ⎕ fmt ¯10
"-10.00"
 "N2" ⎕ fmt ¯10 ¯20.5
"-10.00" "-20.50"
This description by Microsoft of the way the NumberFormatInfo class is defined provides a rather complete

layout of the different properties which can be set.

The values available on the NumberFormatInfo class are determined by the regional and culture settings of

the computer.

There are additional members of the NumberFormatInfo class which are revealed either on the intellisense or

in the detailed .Net framework information from Microsoft.

NumberFormatInfo Class
Defines how numeric values are formatted and displayed, depending on the culture.

Namespace: System.Globalization

Assembly: mscorlib (in mscorlib.dll)

This class contains information, such as currency, decimal separators, and other numeric symbols.

To create a NumberFormatInfo for a specific culture, create a CultureInfo for that culture and retrieve the

CultureInfo.NumberFormat property. To create a NumberFormatInfo for the culture of the current thread,

use the CurrentInfo property. To create a NumberFormatInfo for the invariant culture, use the

InvariantInfo property for a read-only version, or use the NumberFormatInfo constructor for a writable

version. It is not possible to create a NumberFormatInfo for a neutral culture.

The user might choose to override some of the values associated with the current culture of Windows through

Regional and Language Options (or Regional Options or Regional Settings) in Control Panel. For example, the

user might choose to display the date in a different format or to use a currency other than the default for the

culture. If the CultureInfo.UseUserOverride property is set to true, the properties of the

CultureInfo.DateTimeFormat instance, the CultureInfo.NumberFormat instance, and the

CultureInfo.TextInfo instance are also retrieved from the user settings. If the user settings are incompatible

with the culture associated with the CultureInfo (for example, if the selected calendar is not one of the

OptionalCalendars), the results of the methods and the values of the properties are undefined.

Before .NET Framework version 2.0, if the CultureInfo.UseUserOverride property is set to true, then the

object reads each user-overridable property only when it is accessed for the first time. Because

NumberFormatInfo has more than one user-overridable property, that "lazy initialization" can lead to an

inconsistency between such properties when the following occurs: the application accesses one property; then

the user changes to another culture or overrides properties of the current user culture through Regional and

Language Options in OS Control Panel; then the application accesses a different property. For example, in a

sequence like this, CurrencyGroupSeparator could be accessed; then the user could change patterns in OS

control panel, and CurrencyDecimalSeparator, when accessed, would follow the new settings. Similar

inconsistency will happen when user change user culture in OS control panel.

In .NET Framework version 2.0 and later, NumberFormatInfo does not use this "lazy initialization". Instead,

it reads all user-overridable properties when it is created. There is still a tiny window of vulnerability (neither

Page 87

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.numberformat.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currentinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.invariantinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.useuseroverride.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.datetimeformat.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.textinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.optionalcalendars.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencygroupseparator.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencydecimalseparator.aspx

object creation nor the user override process is atomic, so the relevant values could change in the midst of

object creation), but this should be extremely rare.

Numeric values are formatted using standard or custom patterns stored in the properties of a

NumberFormatInfo. To modify how a value is displayed, the NumberFormatInfo must be writable so

custom patterns can be saved in its properties.

The following table lists the standard format characters for each standard pattern and the associated

NumberFormatInfo property that can be set to modify the standard pattern.

Format Character Description and Associated Properties
c, C Currency format. CurrencyNegativePattern,

CurrencyPositivePattern, CurrencySymbol,
CurrencyGroupSizes, CurrencyGroupSeparator,
CurrencyDecimalDigits,
CurrencyDecimalSeparator.

d, D Decimal format.
e, E Scientific (exponential) format.
f, F Fixed-point format.
g, G General format.
n, N Number format. NumberNegativePattern,

NumberGroupSizes, NumberGroupSeparator,
NumberDecimalDigits, NumberDecimalSeparator.

r, R Roundtrip format, which ensures that floating point
numbers converted to strings will have the same
value when they are converted back to numbers.

x, X Hexadecimal format.
For details about these patterns, see Standard Numeric Format Strings and Custom Numeric Format Strings.

A DateTimeFormatInfo or a NumberFormatInfo can be created only for the invariant culture or for specific

cultures, not for neutral cultures. For more information about the invariant culture, specific cultures, and

neutral cultures, see the CultureInfo class.

This class implements the IC loneable interface to enable duplication of NumberFormatInfo objects. It also

implements IFormatProvider to supply formatting information to applications.

Page 88

http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencynegativepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencypositivepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencysymbol.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencygroupsizes.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencydecimaldigits.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbernegativepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbergroupsizes.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbergroupseparator.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numberdecimaldigits.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numberdecimalseparator.aspx
http://msdn2.microsoft.com/en-us/library/dwhawy9k.aspx
http://msdn2.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn2.microsoft.com/en-us/library/system.iformatprovider.aspx

⎕ print string representation

The ⎕ does not take input from the keyboard. This is handled with streams in .Net. However, the ⎕ is used

to print data to the session. In particular, evaluated expressions do not produce output to the screen inside

of a function. Using ⎕ explicitly prints output to the session using the string representation of the object.

 function fn(a) {
 ⎕ ← a+10
 a+10
 }
 fn(10)
20

The print keyword performs the same action:

 function fn(a) {
 print a+10
 a+10
 }
 fn(10)
20

Page 89

⎕ rl Random Link

The .Net framework provides a random number generator and the details of the generator can be found in

the .Net framework documentation from Microsoft.

The roll and deal operations rely on ⎕ rl, which is the random link.

The default value for ⎕ rl is 16807. However, the sequence of random numbers generated will be based

on the random algorithm in the .Net framework.

Example:

 ⎕ rl
16807
 ⎕ rl← 1230303
 ⎕ rl
1230303
 ?10
2
 ?10
9
 ?10
10
 ⎕ rl← 1230303
 ?10
2
 ?10
9
 ?10
10
 ⎕ rl
872203611

Page 90

⎕ sysid System Identification

Returns a string with the name of the language.

 ⎕ sysid
Visual APL for Windows

 or
 ⎕ sysid
Visual APL for Linux

 or
 ⎕ sysid
Visual APL for Macintosh

Page 91

⎕ sysver System Version

Returns a string containing the information about the current build of the language.

 ⎕ sysver
1.0.2400 on .Net 2.0.50727.42

Page 92

⎕fi

Converts a string or character array to numeric data. Blanks are considered as delimiters and 0 is used to

replace ill formed numbers.

 ⎕ fi '3.6 2E2 ,1 THREE 0'
3.6 200 0 0 0

 ⎕ fi '6.25 -6.25'
6.25 -6.25
Notice that the negative is shown as a middle minus. This is because the result of ⎕ fi in this case is a native

double vector.

If you use ravel you will see:

 ,⎕ fi '6.25 -6.25'
6.25 ¯6.25

Which is the display for a Visual APL data type, which is created when the data is raveled. This can be cast

back to native double by simply:

 (double) ,⎕ fi '6.25 -6.25'
6.25 -6.25
In which case the data is now a native double again.

It is not required to use only a string with ⎕ fi. You can use several strings or numbers.

 ⎕ fi 10
10
 ⎕ fi 10 "10 10 10" "100"
10 10 10 10 100
This reduces the cost of catenation and concern about data types as the input to ⎕ fi.

Page 93

⎕ ts TimeStamp

Returns the current time stamp in a seven-element integer vector consisting of the year, month, day, hour,

minute, second, and millisecond.

 ⎕ ts
2006 7 28 18 42 2 304

This has been largely deprecated with the DateTime object in .Net

 using System
 DateTime.Now
7/28/2006 6:43:18 PM
 a = DateTime.Now

There are innumerable properties and methods on both the DateTime class and the instance of the

DateTime.Now reference. In addition there are a wide range of formatters available for the DateTime class.

See ⎕fmt for use of the DateTime format information.

It is also simple to do comparisons of time:

 DateTime.Subtract(DateTime.Now,a)
00:50:04.2198560

The DateTime.Subtract method returns a TimeSpan object which has numerous methods and properties

which makes the analysis of the time difference very simple.

Page 94

⎕ ucs Universal Character Set

Translates between integers and Unicode characters.

Example:

 ⎕ ucs "a← ⍳ 10"
97 8592 9075 49 48
 ⎕ ucs ⎕ ucs "a← ⍳ 10"
a ← ⍳ 1 0

If the right argument is a string or characters integers are returned

Page 95

⎕ userid User ID

Returns the name of the machine on which the system is running.

 ⎕ userid
workstation12

This has been deprecated in favor of the System.Environment object.

Page 96

⎕vi

Returns an array of 1's and 0's which represent if the data, delimited by blanks, is a well formed number

representation or not.

 ⎕ vi '3.6 2E2 ,1 THREE 0'
1 1 0 0 1

⎕vi also takes multiple strings or numeric data as an argument.

 ⎕ vi 10 "10 10 10" "100"
1 1 1 1 1

Page 97

⎕format

⎕ format uses all of the intrinsic .Net formatting and also includes control of widths, for all array sizes, for

instance:

 10 "N2" ⎕ Format 23.34
 23.34

⎕format makes it possible to apply a format specifier across an array or singleton. It also adds the ability

to specify width of format, as shown above.

For Example:

 10 "N2" ⎕ format 2 2⍴ 10 11
 10.00 11.00
 10.00 11.00

Without width specified:

 "N2" ⎕ format 2 2⍴ 10 11111.1 30.4
10.00 11,111.10
30.40 10.00
Notice that there are no pre set widths for the columns. This has the advantage of not losing data when

formatting, but the disadvantage of not being able to control column widths.

For example:

 7 "N2" ⎕ format 2 2⍴ 10 12345.2 30.5
 10.00*******
 30.50 10.00

 "N2" ⎕ format 2 2⍴ 10 12345.2 30.5
10.00 12,345.20
30.50 10.00

Format can be applied by column:

 "N2" "C2" ⎕ format 2 2⍴ 10 20 30 40
10.00 $20.00
30.00 $40.00

If there are more columns than format strings, then the string are reapplied in column order:

 "N2" "C2" ⎕ format 2 4⍴ 10 20 30 40
10.00 $20.00 30.00 $40.00
10.00 $20.00 30.00 $40.00

The same applies for column widths and formats:

 7 "N2" 10 "C2" ⎕ format 2 4⍴ 10 20 30 40
 10.00 $20.00 30.00 $40.00
 10.00 $20.00 30.00 $40.00
If column widths are specified, they must be specified for all columns.

The formats can also be specified for each element in the array:

 a = (2 4⍴ "N2" "C2" "C3" "N3" "C4" "N3" "N5" "C6")

Page 98

 a ⎕ format 2 4⍴ 10 20 30 40
10.00 $20.00 $30.000 40.000
$10.0000 20.000 30.00000 $40.000000

The formats for each element in the array can also contain width settings:

 a = (2 4⍴ (7 "N2") (8 "C2") (7 "C3"))
 a ⎕ format 2 4⍴ 10 20 30 40
 10.00 $20.00$30.000 40.00
 10.00 $20.00$30.000 40.00

In .Net an object can contain its own format information. The DateTime object contains its own format

information. With ⎕format you can apply the formatting to an object in an array, DateTime.Now returns an

object with the current time information. We can format it like this:

 "d" ⎕ format DateTime.Now
 7/27/2006

 "F" ⎕ format DateTime.Now
 Thursday, July 27, 2006 12:33:47 PM

These can be applied using ⎕format to an array:

 "d" "N2" "F" ⎕ format 2 3⍴ DateTime.Now 100 DateTime.Now
 7/27/2006 100.00 Thursday, July 27, 2006 12:34:54 PM
 7/27/2006 100.00 Thursday, July 27, 2006 12:34:54 PM

These formatting concepts apply to all objects in the .Net framework or objects created which contain their

own formatting information.

One of the difficult problems with formatting is addressing comma delimiter by region, the high minus and

other issues. These can be set using ⎕ nfi.

For instance:

 nfi = ⎕ nfi
 nfi.NegativeSign = "-"
 "N2" ⎕ format ¯10
"-10.00"
 "N2" ⎕ format ¯10 ¯20.5
"-10.00" "-20.50"
This shows changing the high minus to a middle minus. There are many regional and culture specific

formatting options which are available to be set, which are shown in the documentation or with intellisense.

Setting regional setting will also affect the formatting. This means that when your formatting is performed on

a machine with a different culture set, the correct currency, command and period delimiters will be used. Of

course as we have shown these can be specifically overridden using ⎕ nfi.

The following outlines how to use each of the formatting specifiers. These can be used with ⎕ format or

uniquely on a single scalar as shown below.

For additional information on the .Net formatting structure as provided by Microsoft see the related sections in

this help or the Microsoft online help.

Page 99

Composite Formatting

The .NET Framework composite formatting feature takes a list of objects and a composite format string as

input. A composite format string consists of fixed text intermixed with indexed placeholders, called format

items, that correspond to the objects in the list. The formatting operation yields a result string that consists of

the original fixed text intermixed with the string representation of the objects in the list.

The composite formatting feature is supported by methods such as Format, AppendFormat, and some

overloads of WriteLine and TextWriter.WriteLine. The String.Format method yields a formatted result string,

the AppendFormat method appends a formatted result string to a StringBuilder object, the

Console.WriteLine methods display the formatted result string to the console, and the TextWriter.WriteLine

method writes the formatted result string to a stream or file.

Composite Format String
A composite format string and object list are used as arguments of methods that support the composite

formatting feature. A composite format string consists of zero or more runs of fixed text intermixed with one

or more format items. The fixed text is any string that you choose, and each format item corresponds to an

object or boxed structure in the list. The composite formatting feature returns a new result string where each

format item is replaced by the string representation of the corresponding object in the list.

Consider the following Format code fragment.

Visual APL
myName = "Davin";
String.Format("Name = {0}, hours = {1:hh}", myName, DateTime.Now);
The fixed text is "Name = " and ", hours = ". The format items are "{0}", whose index is 0, which

corresponds to the object myName, and "{1:hh}", whose index is 1, which corresponds to the object

DateTime.Now.

Format Item Syntax
Each format item takes the following form and consists of the following components:

{index[,alignment][:formatString]}

The matching braces ("{" and "}") are required.

Index Component
The mandatory index component, also called a parameter specifier, is a number starting from 0 that identifies

a corresponding item in the list of objects. That is, the format item whose parameter specifier is 0 formats the

first object in the list, the format item whose parameter specifier is 1 formats the second object in the list,

and so on.

Multiple format items can refer to the same element in the list of objects by specifying the same parameter

specifier. For example, you can format the same numeric value in hexadecimal, scientific, and number format

by specifying a composite format string like this: "{0:X} {0:E} {0:N}".

Each format item can refer to any object in the list. For example, if there are three objects, you can format

the second, first, and third object by specifying a composite format string like this: "{1} {0} {2}". An object

that is not referenced by a format item is ignored. A runtime exception results if a parameter specifier

designates an item outside the bounds of the list of objects.

Alignment Component
The optional alignment component is a signed integer indicating the preferred formatted field width. If the

value of alignment is less than the length of the formatted string, alignment is ignored and the length of the

formatted string is used as the field width. The formatted data in the field is right-aligned if alignment is

Page 100

http://msdn2.microsoft.com/en-us/library/system.string.format.aspx
http://msdn2.microsoft.com/en-us/library/system.text.stringbuilder.appendformat.aspx
http://msdn2.microsoft.com/en-us/library/system.console.writeline.aspx
http://msdn2.microsoft.com/en-us/library/system.io.textwriter.writeline.aspx
http://msdn2.microsoft.com/en-us/library/system.string.format.aspx
http://msdn2.microsoft.com/en-us/library/system.text.stringbuilder.aspx
http://msdn2.microsoft.com/en-us/library/system.console.writeline.aspx
http://msdn2.microsoft.com/en-us/library/system.io.textwriter.writeline.aspx

positive and left-aligned if alignment is negative. If padding is necessary, white space is used. The comma is

required if alignment is specified.

Format String Component
The optional formatString component is a format string that is appropriate for the type of object being

formatted. Specify a numeric format string if the corresponding object is a numeric value, a date and time

format string if the corresponding object is a DateTime object, or an enumeration format string if the

corrersponding object is an enumeration value. If formatString is not specified, the general ("G") format

specifier for a numeric, date and time, or enumeration type is used. The colon is required if formatString is

specified.

Escaping Braces
Opening and closing braces are interpreted as starting and ending a format item. Consequently, you must use

an escape sequence to display a literal opening brace or closing brace. Specify two opening braces ("{{") in

the fixed text to display one opening brace ("{"), or two closing braces ("}}") to display one closing brace

("}"). Braces in a format item are interpreted sequentially in the order they are encountered. Interpreting

nested braces is not supported.

The way escaped braces are interpreted can lead to unexpected results. For example, consider the format

item "{{{0:D}}}", which is intended to display an opening brace, a numeric value formatted as a decimal

number, and a closing brace. However, the format item is actually interpreted in the following manner:

1. The first two opening braces ("{{") are escaped and yield one opening brace.

2. The next three characters ("{0:") are interpreted as the start of a format item.

3. The next character ("D") would be interpreted as the Decimal standard numeric format specifier, but

the next two escaped braces ("}}") yield a single brace. Because the resulting string ("D}") is not a

standard numeric format specifier, the resulting string is interpreted as a custom format string that

means display the literal string "D}".

4. The last brace ("}") is interpreted as the end of the format item.

5. The final result that is displayed is the literal string, "{D}". The numeric value that was to be

formatted is not displayed.

One way to write your code to avoid misinterpreting escaped braces and format items is to format the braces

and format item separately. That is, in the first format operation display a literal opening brace, in the next

operation display the result of the format item, then in the final operation display a literal closing brace.

Processing Order
If the value to be formatted is null (Nothing in Visual Basic), an empty string ("") is returned.

If the type to be formatted implements the ICustomFormatter interface, the ICustomFormatter.Format

method is called.

If the preceding step does not format the type, and the type implements the IFormattable interface, the

IFormattable.ToString method is called.

If the preceding step does not format the type, the type's ToString method, which is inherited from the

Object class, is called.

Alignment is applied after the preceding steps have been performed.

Code Examples
The following example shows one string created using composite formatting and another created using an

object's ToString method. Both types of formatting produce equivalent results.

Visual APL
FormatString1 = String.Format("{0:dddd MMMM}", DateTime.Now);
FormatString2 = DateTime.Now.ToString("dddd MMMM");
Assuming that the current day is a Thursday in May, the value of both strings in the preceding example is

Thursday May in the U.S. English culture.

Page 101

http://msdn2.microsoft.com/en-us/library/427bttx3.aspx
http://msdn2.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn2.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn2.microsoft.com/en-us/library/system.datetime.aspx
http://msdn2.microsoft.com/en-us/library/c3s1ez6e.aspx
http://msdn2.microsoft.com/en-us/library/system.icustomformatter.aspx
http://msdn2.microsoft.com/en-us/library/system.icustomformatter.format.aspx
http://msdn2.microsoft.com/en-us/library/system.iformattable.aspx
http://msdn2.microsoft.com/en-us/library/system.iformattable.tostring.aspx
http://msdn2.microsoft.com/en-us/library/system.object.aspx

The following example demonstrates formatting multiple objects, including formatting one object two different

ways.

Visual APL
myName = "Davin"; String.Format("Name = {0}, hours = {1:hh}, minutes =
{1:mm}", myName, DateTime.Now);
The output from the preceding string is "Name = Fred, hours = 07, minutes = 23", where the current time

reflects these numbers.

The following examples demonstrate the use of alignment in formatting. The arguments that are formatted

are placed between vertical bar characters (|) to highlight the resulting alignment.

Visual APL
myFName = "Davin"; string myLName = "Opals"; int myInt = 100;
FormatFName = String.Format("First Name = |{0,10}|", myFName);
FormatLName = String.Format("Last Name = |{0,10}|", myLName);
FormatPrice = String.Format("Price = |{0,10:C}|", myInt);
print String.Format(FormatFName);
print String.Format (FormatLName); Console.WriteLine(FormatPrice); FormatFName
= String.Format("First Name = |{0,-10}|", myFName);
FormatLName = String.Format("Last Name = |{0,-10}|", myLName); FormatPrice =
String.Format("Price = |{0,-10:C}|", myInt);
print String.Format(FormatFName);
print String.Format(FormatLName);
print String.Format(FormatPrice);
The preceding code displays the following to the console in the U.S. English culture. Different cultures display

different currency symbols and separators.

First Name = | Davin|
Last Name = | Opals|
Price = | $100.00|
First Name = |Davin |
Last Name = |Opals |
Price = |$100.00 |
There is a great section on .Net formatting at:

http://msdn2.microsoft.com/en-us/library/dwhawy9k(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/241ad66z(VS.80).aspx

Make sure to checkout the NumberFormatInfo object, which we reveal through ⎕ nfi

For instance, if you do:

a = ⎕ nfi
a.NegativeSign = "-"
Then formatting will use the middle minus for formatting instead of the high minus.

We also support the date and time formatting strings for a date/time object, which you can create with:

a = DateTime.Now
 You can find this at:

http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.80).aspx

You can place the DateTime object in a matrix and then when you format it will use the correct format, as:

 a = DateTime.Now 10.2
 'd' 'N2' ⎕ format a
 6/15/2006 10.20

Page 102

http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/dwhawy9k(VS.80).aspx
http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/241ad66z(VS.80).aspx
http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.80).aspx
http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/dwhawy9k(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/241ad66z(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.80).aspx

Standard DateTime Format Strings

A standard DateTime format string consists of a single standard DateTime format specifier character that

represents a custom DateTime format stringCustom DateTime Format Strings

The format string ultimately defines the text representation of a DateTime object that is produced by a
formatting operation. Note that any DateTime format string that contains more than one alphabetic
character, including white space, is interpreted as a custom DateTime format string.
Standard DateTime Format Specifiers
The following table describes the standard DateTime format specifiers. For examples of the output produced

by each format specifier, see Standard DateTime Format Strings Output Examples.

Format

specifier Name Description

d Short date
pattern

Represents a custom DateTime format string defined by the current
ShortDatePattern property.
For example, the custom format string for the invariant culture is
"MM/dd/yyyy".

D Long date
pattern

Represents a custom DateTime format string defined by the current
LongDatePattern property.
For example, the custom format string for the invariant culture is "dddd,
dd MMMM yyyy".

f Full date/time
pattern (short
time)

Represents a combination of the long date (D) and short time (t) patterns,
separated by a space.

F Full date/time
pattern (long
time)

Represents a custom DateTime format string defined by the current
FullDateTimePattern property.
For example, the custom format string for the invariant culture is "dddd,
dd MMMM yyyy HH:mm:ss".

g General
date/time pattern
(short time)

Represents a combination of the short date (d) and short time (t) patterns,
separated by a space.

G General
date/time pattern
(long time)

Represents a combination of the short date (d) and long time (T) patterns,
separated by a space.

M or m Month day
pattern

Represents a custom DateTime format string defined by the current
MonthDayPattern property.
For example, the custom format string for the invariant culture is
"MMMM dd".

o Round-trip
date/time pattern

Represents a custom DateTime format string using a pattern that
preserves time zone information. The pattern is designed to round-trip
DateTime formats, including the Kind property, in text. Then the
formatted string can be parsed back using Parse or ParseExact with the
correct Kind property value.
The custom format string is "yyyy'-'MM'-'dd'T'HH':'mm':'ss.fffffffK".
The pattern for this specifier is a defined standard. Therefore, it is always
the same, regardless of the culture used or the format provider supplied.

R or r RFC1123
pattern

Represents a custom DateTime format string defined by the current
RFC1123Pattern property. The pattern is a defined standard and the
property is read-only. Therefore, it is always the same regardless of the

Page 103

http://msdn2.microsoft.com/en-us/library/8kb3ddd4.aspx
http://msdn2.microsoft.com/en-us/library/system.datetime.aspx
http://msdn2.microsoft.com/en-us/library/hc4ky857.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.shortdatepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.longdatepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.fulldatetimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.monthdaypattern.aspx
http://msdn2.microsoft.com/en-us/library/1k1skd40.aspx
http://msdn2.microsoft.com/en-us/library/w2sa9yss.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.rfc1123pattern.aspx

culture used or the format provider supplied.
The custom format string is "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'".
Formatting does not modify the value of the DateTime object that is
being formatted. Therefore, the application must convert the value to
Coordinated Universal Time (UTC) before using this format specifier.

s Sortable
date/time
pattern;
conforms to ISO
8601

Represents a custom DateTime format string defined by the current
SortableDateTimePattern property. This pattern is a defined standard and
the property is read-only. Therefore, it is always the same regardless of
the culture used or the format provider supplied.
The custom format string is "yyyy'-'MM'-'dd'T'HH':'mm':'ss".

t Short time
pattern

Represents a custom DateTime format string defined by the current
ShortTimePattern property.
For example, the custom format string for the invariant culture is
"HH:mm".

T Long time
pattern

Represents a custom DateTime format string defined by the current
LongTimePattern property.
For example, the custom format string for the invariant culture is
"HH:mm:ss".

u Universal
sortable
date/time pattern

Represents a custom DateTime format string defined by the current
UniversalSortableDateTimePattern property. This pattern is a defined
standard and the property is read-only. Therefore, it is always the same
regardless of the culture used or the format provider supplied.
The custom format string is "yyyy'-'MM'-'dd HH':'mm':'ss'Z'".
No time zone conversion is done when the date and time is formatted.
Therefore, the application must convert a local date and time to
Coordinated Universal Time (UTC) before using this format specifier.

U Universal
sortable
date/time pattern

Represents a custom DateTime format string defined by the current
FullDateTimePattern property.
This pattern is the same as the full date/long time (F) pattern. However,
formatting operates on the Coordinated Universal Time (UTC) that is
equivalent to the DateTime object being formatted.

Y or y Year month
pattern

Represents a custom DateTime format string defined by the current
YearMonthPattern property.
For example, the custom format string for the invariant culture is "yyyy
MMMM".

Any other
single
character

(Unknown
specifier)

An unknown specifier throws a runtime format exception.

Control Panel Settings
The settings in the Regional and Language Options item in Control Panel influence the result string

produced by a formatting operation. Those settings are used to initialize the DateTimeFormatInfo object

associated with the current thread culture, which provides values used to govern formatting. Computers using

different settings will generate different result strings.

DateTimeFormatInfo Properties
Formatting is influenced by properties of the current DateTimeFormatInfo object, which is provided

implicitly by the current thread culture or explicitly by the IFormatProvider parameter of the method that

invokes formatting. Specify for the IFormatProvider parameter a CultureInfo object, which represents a

culture, or a DateTimeFormatInfo object.

Page 104

http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.sortabledatetimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.shorttimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.longtimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.universalsortabledatetimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.yearmonthpattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.iformatprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx

Many of the standard DateTime format specifiers are aliases for formatting patterns defined by properties of

the current DateTimeFormatInfo object. Therefore, your application can change the result produced by

some standard DateTime format specifiers by changing the corresponding DateTimeFormatInfo

property.

Using Standard Format Strings
The following code fragment illustrates how to use the standard format strings with DateTime objects.

// This code example demonstrates the ToString(String) and
// ToString(String, IFormatProvider) methods for the DateTime
// type in conjunction with the standard date and time
// format specifiers.

using System;
using System.Globalization;
using System.Threading;

 function fn()
 {
 msgShortDate = "(d) Short date: ";
 msgLongDate = "(D) Long date:. ";
 msgShortTime = "(t) Short time: ";
 msgLongTime = "(T) Long time:. ";
 msgFullDateShortTime =
 "(f) Full date/short time: . . ";
 msgFullDateLongTime =
 "(F) Full date/long time:. . . ";
 msgGeneralDateShortTime =
 "(g) General date/short time:. ";
 msgGeneralDateLongTime =
 "(G) General date/long time (default):\n" +
 " ";
 msgMonth = "(M) Month:. ";
 msgRFC1123 = "(R) RFC1123:. ";
 msgSortable = "(s) Sortable: ";
 msgUniSortInvariant =
 "(u) Universal sortable (invariant):\n" +
 " ";
 msgUniSort = "(U) Universal sortable: . . . ";
 msgYear = "(Y) Year: ";

 msg1 = "Use ToString(String) and the current thread culture.\n";
 msg2 = "Use ToString(String, IFormatProvider) and a specified culture.\n";
 msgCulture = "Culture:";
 msgThisDate = "This date and time: {0}\n";

 thisDate = DateTime.Now;
 utcDate = thisDate.ToUniversalTime();

// Format the current date and time in various ways.
 print String.Format("Standard DateTime Format Specifiers:\n");
 print String.Format(msgThisDate, thisDate);
 print String.Format(msg1);

// Display the thread current culture, which is used to format the values.
 ci = Thread.CurrentThread.CurrentCulture;
 print String.Format("{0,-30}{1}\n", msgCulture, ci.DisplayName);

 print String.Format(msgShortDate + thisDate.ToString("d"));
 print String.Format(msgLongDate + thisDate.ToString("D"));
 print String.Format(msgShortTime + thisDate.ToString("t"));
 print String.Format(msgLongTime + thisDate.ToString("T"));

Page 105

 print String.Format(msgFullDateShortTime + thisDate.ToString("f"));
 print String.Format(msgFullDateLongTime + thisDate.ToString("F"));
 print String.Format(msgGeneralDateShortTime + thisDate.ToString("g"));
 print String.Format(msgGeneralDateLongTime + thisDate.ToString("G"));
 print String.Format(msgMonth + thisDate.ToString("M"));
 print String.Format(msgRFC1123 + utcDate.ToString("R"));
 print String.Format(msgSortable + thisDate.ToString("s"));
 print String.Format(msgUniSortInvariant + utcDate.ToString("u"));
 print String.Format(msgUniSort + thisDate.ToString("U"));
 print String.Format(msgYear + thisDate.ToString("Y"));
 print String.Format();

// Display the same values using a CultureInfo object. The CultureInfo class
// implements IFormatProvider.
 print String.Format(msg2);

// Display the culture used to format the values.
 ci = new CultureInfo("de-DE");
 print String.Format("{0,-30}{1}\n", msgCulture, ci.DisplayName);

 print String.Format(msgShortDate + thisDate.ToString("d", ci));
 print String.Format(msgLongDate + thisDate.ToString("D", ci));
 print String.Format(msgShortTime + thisDate.ToString("t", ci));
 print String.Format(msgLongTime + thisDate.ToString("T", ci));
 print String.Format(msgFullDateShortTime + thisDate.ToString("f", ci));
 print String.Format(msgFullDateLongTime + thisDate.ToString("F", ci));
 print String.Format(msgGeneralDateShortTime + thisDate.ToString("g", ci));
 print String.Format(msgGeneralDateLongTime + thisDate.ToString("G", ci));
 print String.Format(msgMonth + thisDate.ToString("M", ci));
 print String.Format(msgRFC1123 + utcDate.ToString("R", ci));
 print String.Format(msgSortable + thisDate.ToString("s", ci));
 print String.Format(msgUniSortInvariant + utcDate.ToString("u", ci));
 print String.Format(msgUniSort + thisDate.ToString("U", ci));
 print String.Format(msgYear + thisDate.ToString("Y", ci));
 print String.Format();
 }
}
/⍝

This code example produces the following results:

Standard DateTime Format Specifiers:

This date and time: 1/9/2006 4:20:35 PM

Use ToString(String) and the current thread culture.

Culture: English (United States)

(d) Short date: 4/17/2006
(D) Long date:. Monday, April 17, 2006
(t) Short time: 2:38 PM
(T) Long time:. 2:38:09 PM
(f) Full date/short time: . . Monday, April 17, 2006 2:38 PM
(F) Full date/long time:. . . Monday, April 17, 2006 2:38:09 PM
(g) General date/short time:. 4/17/2006 2:38 PM
(G) General date/long time (default):. . 4/17/2006 2:38:09 PM
(M) Month:. April 17
(R) RFC1123:. Mon, 17 Apr 2006 21:38:09 GMT
(s) Sortable: 2006-04-17T14:38:09
(u) Universal sortable (invariant):. . . 2006-04-17 21:38:09Z
(U) Universal sortable: . . . Monday, April 17, 2006 9:38:09 PM
(Y) Year: April, 2006
(o) Roundtrip (local):. . . . 2006-04-17T14:38:09.9417500-07:00

Page 106

(o) Roundtrip (UTC):. 2006-04-17T21:38:09.9417500Z
(o) Roundtrip (Unspecified):. 2000-03-20T13:02:03.0000000

Use ToString(String, IFormatProvider) and a specified culture.

Culture: German (Germany)

(d) Short date: 17.04.2006
(D) Long date:. Montag, 17. April 2006
(t) Short time: 14:38
(T) Long time:. 14:38:09
(f) Full date/short time: . . Montag, 17. April 2006 14:38
(F) Full date/long time:. . . Montag, 17. April 2006 14:38:09
(g) General date/short time:. 17.04.2006 14:38
(G) General date/long time (default): 17.04.2006 14:38:09
(M) Month:. 17 April
(R) RFC1123:. Mon, 17 Apr 2006 21:38:09 GMT
(s) Sortable: 2006-04-17T14:38:09
(u) Universal sortable (invariant): . . 2006-04-17 21:38:09Z
(U) Universal sortable: . . . Montag, 17. April 2006 21:38:09
(Y) Year: April 2006
(o) Roundtrip (local):. . . . 2006-04-17T14:38:09.9417500-07:00
(o) Roundtrip (UTC):. 2006-04-17T21:38:09.9417500Z
(o) Roundtrip (Unspecified):. 2000-03-20T13:02:03.0000000

⍝ /

Page 107

Standard DateTime Format Strings Output Examples

The following table illustrates the output created by applying some standard DateTime format strings to a

particular date and time. Output was produced using the ToString method.

The Format string column indicates the format specifier, the Culture column indicates the culture associated

with the current thread, and the Output column indicates the result of formatting.

The different culture values demonstrate the impact of changing the current culture. The culture can be

changed by the settings in the Regional and Language Options item in Control Panel, or by passing your

own DateTimeFormatInfo or CultureInfo class as the format provider. Note that changing the culture does not

influence the output produced by the 'r' and 's' formats.

Short Date Pattern
Format string Current culture Output

d en-US 4/10/2001
d en-NZ 10/04/2001
d de-DE 10.04.2001
Long Date Pattern
Format string Current culture Output

D en-US Tuesday, April 10, 2001
Long Time Pattern
Format string Current culture Output

T en-US 3:51:24 PM
T es-ES 15:51:24
Full Date/Time Pattern (Short Time)
Format string Current culture Output

f en-US Tuesday, April 10, 2001 3:51 PM
f fr-FR mardi 10 avril 2001 15:51
RFC1123 Pattern
Format string Current culture Output

r en-US Tue, 10 Apr 2001 15:51:24 GMT
r zh-SG Tue, 10 Apr 2001 15:51:24 GMT
Sortable Date/Time Pattern (ISO 8601)
Format string Current culture Output

s en-US 2001-04-10T15:51:24
s pt-BR 2001-04-10T15:51:24
Universal Sortable Date/Time Pattern
Format string Current culture Output

u en-US 2001-04-10 15:51:24Z
u sv-FI 2001-04-10 15:51:24Z
Month Day Pattern
Format string Current culture Output

Page 108

http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx

m en-US April 10
m ms-MY 10 April
Year Month Pattern
Format string Current culture Output

y en-US April, 2001
y af-ZA April 2001
An Invalid Pattern
Format string Current culture Output

L en-UZ Unrecognized format specifier; a
format exception is thrown.

This is a more detailed description of the DateTime formatter.

Page 109

Standard Numeric Format Strings

Standard numeric format strings are used to format common numeric types. A standard numeric format

string takes the form Axx, where A is an alphabetic character called the format specifier, and xx is an

optional integer called the precision specifier. The precision specifier ranges from 0 to 99 and affects the

number of digits in the result. Any numeric format string that contains more than one alphabetic character,

including white space, is interpreted as a custom numeric format string.

The following table describes the standard numeric format specifiers. For examples of the output produced by

each format specifier, see Standard Numeric Format Strings Output Examples. For more information, see the

notes that follow the table.

Format

specifier Name Description

C or c Currency The number is converted to a string that represents a currency amount. The
conversion is controlled by the currency format information of the current
NumberFormatInfo (⎕ nfi)object.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default currency precision given by the
current NumberFormatInfo (⎕ nfi) object.

D or d Decimal This format is supported only for integral types. The number is converted to
a string of decimal digits (0-9), prefixed by a minus sign if the number is
negative.
The precision specifier indicates the minimum number of digits desired in
the resulting string. If required, the number is padded with zeros to its left to
produce the number of digits given by the precision specifier.

E or e Scientific
(exponential)

The number is converted to a string of the form "-d.ddd…E+ddd" or
"-d.ddd…e+ddd", where each 'd' indicates a digit (0-9). The string starts
with a minus sign if the number is negative. One digit always precedes the
decimal point.
The precision specifier indicates the desired number of digits after the
decimal point. If the precision specifier is omitted, a default of six digits
after the decimal point is used.
The case of the format specifier indicates whether to prefix the exponent
with an 'E' or an 'e'. The exponent always consists of a plus or minus sign
and a minimum of three digits. The exponent is padded with zeros to meet
this minimum, if required.

F or f Fixed-point The number is converted to a string of the form "-ddd.ddd…" where each
'd' indicates a digit (0-9). The string starts with a minus sign if the number is
negative.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default numeric precision given by the
current NumberFormatInfo (⎕ nfi)object.

G or g General The number is converted to the most compact of either fixed-point or
scientific notation, depending on the type of the number and whether a
precision specifier is present. If the precision specifier is omitted or zero,
the type of the number determines the default precision, as indicated by the
following list.
 Byte or SByte: 3
 Int16 or UInt16: 5

Page 110

http://msdn2.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn2.microsoft.com/en-us/library/241ad66z.aspx
http://msdn2.microsoft.com/en-us/library/dwhawy9k.aspx#NotesStandardFormatting#NotesStandardFormatting
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx

 Int32 or UInt32: 10
 Int64 or UInt64: 19
 Single: 7
 Double: 15
 Decimal: 29
Fixed-point notation is used if the exponent that would result from
expressing the number in scientific notation is greater than -5 and less than
the precision specifier; otherwise, scientific notation is used. The result
contains a decimal point if required and trailing zeroes are omitted. If the
precision specifier is present and the number of significant digits in the result
exceeds the specified precision, then the excess trailing digits are removed
by rounding.
The exception to the preceding rule is if the number is a Decimal and the
precision specifier is omitted. In that case, fixed-point notation is always
used and trailing zeroes are preserved.
If scientific notation is used, the exponent in the result is prefixed with 'E' if
the format specifier is 'G', or 'e' if the format specifier is 'g'.

N or n Number The number is converted to a string of the form "-d,ddd,ddd.ddd…",
where '-' indicates a negative number symbol if required, 'd' indicates a digit
(0-9), ',' indicates a thousand separator between number groups, and '.'
indicates a decimal point symbol. The actual negative number pattern,
number group size, thousand separator, and decimal separator are
specified by the current NumberFormatInfo object.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default numeric precision given by the
current NumberFormatInfo object.

P or p Percent The number is converted to a string that represents a percent as defined by
the NumberFormatInfo.PercentNegativePattern property if the number is
negative, or the NumberFormatInfo.PercentPositivePattern property if the
number is positive. The converted number is multiplied by 100 in order to
be presented as a percentage.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default numeric precision given by the
current NumberFormatInfo object.

R or r Round-trip This format is supported only for the Single and Double types. The
round-trip specifier guarantees that a numeric value converted to a string
will be parsed back into the same numeric value. When a numeric value is
formatted using this specifier, it is first tested using the general format, with
15 spaces of precision for a Double and 7 spaces of precision for a Single.
If the value is successfully parsed back to the same numeric value, it is
formatted using the general format specifier. However, if the value is not
successfully parsed back to the same numeric value, then the value is
formatted using 17 digits of precision for a Double and 9 digits of precision
for a Single.
Although a precision specifier can present, it is ignored. Round trips are
given precedence over precision when using this specifier.

X or x Hexadecimal This format is supported only for integral types. The number is converted to
a string of hexadecimal digits. The case of the format specifier indicates
whether to use uppercase or lowercase characters for the hexadecimal
digits greater than 9. For example, use 'X' to produce "ABCDEF", and 'x'

Page 111

http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.percentnegativepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.percentpositivepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.single.aspx
http://msdn2.microsoft.com/en-us/library/system.double.aspx

to produce "abcdef".
The precision specifier indicates the minimum number of digits desired in
the resulting string. If required, the number is padded with zeros to its left to
produce the number of digits given by the precision specifier.

Any other
single
character

(Unknown
specifier)

(An unknown specifier throws a runtime format exception.)

Notes
Control Panel Settings
The settings in the Regional and Language Options item in Control Panel influence the result string

produced by a formatting operation. Those settings are used to initialize the NumberFormatInfo object

associated with the current thread culture, and the current thread culture provides values used to govern

formatting. Computers using different settings will generate different result strings.

NumberFormatInfo Properties
Formatting is influenced by properties of the current NumberFormatInfo object, which is provided implicitly

by the current thread culture or explicitly by the IFormatProvider parameter of the method that invokes

formatting. Specify a NumberFormatInfo or CultureInfo object for that parameter.

Integral and Floating-Point Numeric Types
Some descriptions of standard numeric format specifiers refer to integral or floating-point numeric types. The

integral numeric types are Byte, SByte, Int16, Int32, Int64, UInt16, UInt32, and UInt64. The floating-point

numeric types are Decimal, Single, and Double.

Floating-Point Infinities and NaN
Note that regardless of the format string, if the value of a Single or Double floating-point type is positive

infinity, negative infinity, or Not a Number (NaN), the formatted string is the value of the respective

PositiveInfinitySymbol, NegativeInfinitySymbol, or NaNSymbol property specified by the currently applicable

NumberFormatInfo object.

Example
The following code example formats an integral and a floating-point numeric value using the thread current

culture, a specified culture, and all the standard numeric format specifiers. This code example uses two

particular numeric types, but would yield similar results for any of the numeric base types (Byte, SByte,

Int16, Int32, Int64, UInt16, UInt32, UInt64, Decimal, Single, and Double).

This example provides an excellent example of discreetly formatting an individual scalar and accessing

resource information about the formatting object. ⎕ fmt applies these formatting techniques to arrays as

well as scalars.

// This code example demonstrates the ToString(String) and
// ToString(String, IFormatProvider) methods for integral and
// floating-point numbers, in conjunction with the standard
// numeric format specifiers.
// This code example uses the System.Int32 integral type and
// the System.Double floating-point type, but would yield
// similar results for any of the numeric types. The integral
// numeric types are System.Byte, SByte, Int16, Int32, Int64,
// UInt16, UInt32, and UInt64. The floating-point numeric types
// are Decimal, Single, and Double.

using System;
using System.Globalization;
using System.Threading;

 function fn()

Page 112

http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.iformatprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.byte.aspx
http://msdn2.microsoft.com/en-us/library/system.sbyte.aspx
http://msdn2.microsoft.com/en-us/library/system.int16.aspx
http://msdn2.microsoft.com/en-us/library/system.int32.aspx
http://msdn2.microsoft.com/en-us/library/system.int64.aspx
http://msdn2.microsoft.com/en-us/library/system.uint16.aspx
http://msdn2.microsoft.com/en-us/library/system.uint32.aspx
http://msdn2.microsoft.com/en-us/library/system.uint64.aspx
http://msdn2.microsoft.com/en-us/library/system.decimal.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.positiveinfinitysymbol.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.negativeinfinitysymbol.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.nansymbol.aspx

 {
// Format a negative integer or floating-point number in various ways.
 integralVal = -12345;
 floatingVal = -1234.567d;

 msgCurrency = "(C) Currency: ";
 msgDecimal = "(D) Decimal:. ";
 msgScientific = "(E) Scientific: ";
 msgFixedPoint = "(F) Fixed point:. ";
 msgGeneral = "(G) General (default):. . ";
 msgNumber = "(N) Number: ";
 msgPercent = "(P) Percent:. ";
 msgRoundTrip = "(R) Round-trip: ";
 msgHexadecimal = "(X) Hexadecimal:. ";

 msg1 = "Use ToString(String) and the current thread culture.\n";
 msg2 = "Use ToString(String, IFormatProvider) and a specified culture.\n";
 msgCulture = "Culture:";
 msgIntegralVal = "Integral value:";
 msgFloatingVal = "Floating-point value:";

 CultureInfo ci;
 print "Standard Numeric Format Specifiers:\n";
// Display the values.
 print msg1;

// Display the thread current culture, which is used to format the //values.
 ci = Thread.CurrentThread.CurrentCulture;
 print String.Format("{0,-26}{1}", msgCulture, ci.DisplayName);

// Display the integral and floating-point values.
 print String.Format("{0,-26}{1}", msgIntegralVal, integralVal);
 print String.Format("{0,-26}{1}", msgFloatingVal, floatingVal);
 print ""
// Use the format specifiers that are only for integral types.
 print ("Format specifiers only for integral types:");
 print String.Format(msgDecimal + integralVal.ToString("D"));
 print String.Format(msgHexadecimal + integralVal.ToString("X"));
 print "";

// Use the format specifier that is only for the Single and Double
// floating-point types.
 print ("Format specifier only for the Single and Double types:");
 print String.Format(msgRoundTrip + floatingVal.ToString("R"));
 print "";

// Use the format specifiers that are for integral or floating-point //types.
 print String.Format("Format specifiers for integral or floating-point
types:");
 print String.Format(msgCurrency + floatingVal.ToString("C"));
 print String.Format(msgScientific + floatingVal.ToString("E"));
 print String.Format(msgFixedPoint + floatingVal.ToString("F"));
 print String.Format(msgGeneral + floatingVal.ToString("G"));
 print String.Format(msgNumber + floatingVal.ToString("N"));
 print String.Format(msgPercent + floatingVal.ToString("P"));
 print "";

// Display the same values using a CultureInfo object. The //CultureInfo
class
// implements IFormatProvider.
 print (msg2);

// Display the culture used to format the values.
// Create a European culture and change its currency symbol to "euro" //

Page 113

because this particular code example uses a thread current UI // // culture
that cannot display the euro symbol (€).
 ci = new CultureInfo("de-DE");
 ci.NumberFormat.CurrencySymbol = "euro";
 print String.Format("{0,-26}{1}", msgCulture, ci.DisplayName);

// Display the integral and floating-point values.
 print String.Format("{0,-26}{1}", msgIntegralVal, integralVal);
 print String.Format("{0,-26}{1}", msgFloatingVal, floatingVal);
 print "";

// Use the format specifiers that are only for integral types.
 print ("Format specifiers only for integral types:");
 print String.Format(msgDecimal+ integralVal.ToString("D", ci));
 print String.Format(msgHexadecimal+integralVal.ToString("X", ci));
 print "";

// Use the format specifier that is only for the Single and Double
// floating-point types.
 print String.Format("Format specifier only for the Single and Double
types:");
 print String.Format(msgRoundTrip+floatingVal.ToString("R", ci));
 print "";

// Use the format specifiers that are for integral or floating-point types.
 print String.Format("Format specifiers for integral or floating-point
types:");
 print String.Format(msgCurrency+floatingVal.ToString("C", ci));
 print String.Format(msgScientific+floatingVal.ToString("E", ci));
 print String.Format(msgFixedPoint+floatingVal.ToString("F", ci));
 print String.Format(msgGeneral + floatingVal.ToString("G", ci));
 print String.Format(msgNumber + floatingVal.ToString("N", ci));
 print String.Format(msgPercent + floatingVal.ToString("P", ci));
 print "";
 }

/⍝

This code example produces the following results:

Standard Numeric Format Specifiers:

Use ToString(String) and the current thread culture.

Culture: English (United States)
Integral value: -12345
Floating-point value: -1234.567

Format specifiers only for integral types:
(D) Decimal:. -12345
(X) Hexadecimal:. FFFFCFC7

Format specifier only for the Single and Double types:
(R) Round-trip: -1234.567

Format specifiers for integral or floating-point types:
(C) Currency: ($1,234.57)
(E) Scientific: -1.234567E+003
(F) Fixed point:. -1234.57
(G) General (default):. . -1234.567
(N) Number: -1,234.57

Page 114

(P) Percent:. -123,456.70 %

Use ToString(String, IFormatProvider) and a specified culture.

Culture: German (Germany)
Integral value: -12345
Floating-point value: -1234.567

Format specifiers only for integral types:
(D) Decimal:. -12345
(X) Hexadecimal:. FFFFCFC7

Format specifier only for the Single and Double types:
(R) Round-trip: -1234,567

Format specifiers for integral or floating-point types:
(C) Currency: -1.234,57 euro
(E) Scientific: -1,234567E+003
(F) Fixed point:. -1234,57
(G) General (default):. . -1234,567
(N) Number: -1.234,57
(P) Percent:. -123.456,70%

⍝ /

This shows the formatting specifiers for the DateTime object.

Page 115

⎕fmt

This documentation describes the supported feature set of the legacy ⎕fmt system function.

⎕format in Visual APL provides support for all of the .Net formatting modifiers across arrays.

⎕ fmt feature set:

⎕fmt - legacy formatter which returns character matrices with fixed width columns

The following elements of the legacy ⎕fmt have been implemented for compatibility purposes.

Syntax:

res = 'fstring' ⎕ fmt data

'fstring' : character vector containing one or more editing phrases.

data : an array

Editing phrases:

rmAw Character

rmEw.s Exponential

rmFw.d Fixed point

rmG<pattern> Pattern

rmIw Integer

d = Decimal positions

s = Significant digits

w = Field width

<pattern> = Example

Positioning and text phrases:

r = Repetition (optional)

m = Modifiers (optional)

Modifiers:

B Blank if zero (F,I)

C Comma insertion (F,I)

L Left justify (F,I)

M<text> Negative left decoration (F,G,I)

N<text> Negative right decoration (F,G,I)

Page 116

P<text> Non-negative left decoration (F,G,I)

Q<text> Non-negative right decoration (F,G,I)

Z Zero fill (F,I)

Valid delimiters for text in decorations are:

<text> ⊂text⊃ ¨text¨

⎕text⎕ ⍞text⍞ /text/

Page 117

[] Index

Many classes have indexers.

Array indexer:
When used inside of an indexer bracket block [] the ; axis separator identifies the values for each axis.

 a = 1 2 3
 a[1]
2
 a = 3 3⍴ ⍳ 9
 a[1 2;1 2]
 4 5
 7 8

It is not required to use the axis separator to index an array, for instance:

 b = (1 2) (1 2)
 a[b]
 4 5
 7 8
 b = 1 2
 a[b]
5

Providing a single value will index the array as though it were a vector.

 a[1]
1
You can select all values in an axis by using null:

 b = (1 2) (1 2) null
 a[b]
 12 13 14
 15 16 17

 21 22 23
 24 25 26
This makes it possible to index an array without having to be concerned about the syntax of the number of

semi colons.

Generic Type Indexer

Indexers also occur on Generic Types. To create a Generic Type you need to first use:

 using System.Collections.Generic
 a = Dictionary[string, int]()

This will create an instance of the generic Dictionary type which accepts only string as the key, and int as the

value.

 a.Add(“test”, 10)
 a.Add(100, 20)
bad args for method
 a.Count
1

Page 118

It is not possible to use a key other than string with this Dictionary.

Method Selection Indexer

The signature of a method includes not only the name of the method, but also the types and number of

arguments of the method.

To pre-select a particular method, indexing is available. As an example, an instance of string has a method

named IndexOf which has 9 overloads. To select a specific overload:

 a = "test"
 a.IndexOf[string, int]("es",1)
1
 a.IndexOf(“es”,1)
1

In the vast majority of cases using the method indexer is not needed, but in some cases it can be quite

beneficial. However, if the goal is to let the system select the best method for the dynamic values being used

as arguments, then do not use the indexer.

Page 119

← Assignment By Value and = Assign By Reference

The left assign arrow assigns data by value. This means that a copy of the data is made if possible. If it is

not possible to make a copy of the data, a reference assignment is made.

Because this provides control over when assignment by value and assignment by reference will be made,

discretion should be used when choosing to do assignment by value as copying all the data is considerably

more expensive than assignment by reference. In general, there are relatively few occasions when

assignment by value is required, which is one of the reasons it does not exist in other .Net languages.

For objects that are composed of ValueTypes, the copy is always made. However, for example, if an array

contains an instance of a Form, then the Form is assigned by reference as creating another copy of the Form

could have unintended consequences.

The = symbol is used for assign by reference, which matches the assignment behavior of other .Net

languages. The ≈ symbol is used for comparison, or the double == symbol.

Example:

 a = ⍳ 10
 b← a
 a[3] = 100
 a
0 1 2 100 4 5 6 7 8 9
 b
0 1 2 3 4 5 6 7 8 9
 a = ⍳ 10
 b = a
 a[3] = 100
 a
0 1 2 100 4 5 6 7 8 9
 b
0 1 2 100 4 5 6 7 8 9

Simple assignment:

 a ← 10
 a b c ← 10 20 30

Assigns one value to each variable

 a b c ← ⊂ 10 20 30

Assigns the nested array 10 20 30 into each variable.

It is also possible to assign nested arrays by nesting shape.

 a (b c) d = 10 20 30
This makes a:10, b:20, c:20 and d:30

 a (b c) d = 10 (20 30) 40
In this case a:10, b:20, c:30, d:40
 x = 10 (20 (30 40)) 50
 a (b c) d = x
a:10, b:20, c:30 40, d:50

Page 120

These assignment rules also apply when using for loops.

Matrix assignment:

 a← 3 3⍴ ⍳ 9
 a
 0 1 2
 3 4 5
 6 7 8
 a[1 2;1 2]← 2 2⍴ 10
 a
 0 1 2
 3 10 10
 6 10 10

Inline assignment works as follows:

 a ← 1+b ← 10+4
 a
15
 b
14

Selective assignment is also supported and is based on the original definition of selective assignment created

by Jim Brown in his paper "Understanding Selective Assignment", 1989

“The notion of selective assignment is simple. If you can write an expression which selects some items at

any depth in an array, then writing that same expression on the left of an assignment arrow requests

replacement of the selected items.”

This makes it possible to include user defined functions, the each operator, assign to more than one variable,

etc.

For example:

 a = 1 2 3 4 5
 (1⊃ a) = 10
 a = (1 2 3) (4 5 6)
 (1⊃ ¨a)=10
 (test a)=10
 (1 test a)=10
 a = 1 2 3 4
 b = 10 20 30 40
 ((1⊃ a) (1⊃ b)) = 100
 a
1 100 3 4
 b
10 100 30 40
 etc.

Page 121

⍎ Execute

Compiles and runs a string which can be an expression or statement.

 ⍎ ”"1+1"”
2
 ⍎ ”"a = 10+3"”
13
 a
13

It is also possible to manage the executes use of local and global variables. Execute can only create global

variables, local variables can not be created with execute.

function fn(a) {
 b = 10
 c = 20
 ⍎ "c = a+b"
 print a
}
 fn(10)
30

When it is desired to pass only a subset of local variables to the execute domain:

function fn(a) {
 b = 10
 c = 10
 d = 20
 // only local variables a and b passed to the execute
 ⍎ "c = a+b" in (a,b)
 print c
 // the value of c is not changed
 // a b and c are passed
 ⍎ "c = a+b" in (a,b,c)
 print c
}

It is also possible to manage the global variables passed and have new variables created added to the

provided Dictionary. In this example we are not passing any local variables to execute, but we could include

those as well. Functions can also be localized to the excute by placing them in the dictionary. In the case the

function associated with fn in the dictionary does not exist in the class or session, but only in the dictionary.

 d = Dictionary[object, object]()
 d.Add("var1", 20)
 d.Add("var2", 30)
 d.Add("x", 40)
 ⍎ "q = var1+var2+x" in (),d
false
 d.Count
5
 d["q"]
90
 ⍎ "q = var1+var2+x" in (),d
false
 d["var1"] = 200
 ⍎ "q = var1+var2+x" in (),d
false

Page 122

 d["q"]
270
 d.Add("fn", ƒ r← (a,b){r← a+b})
 ⍎ "q=fn(var1,var2)" in (),d
false
 d["q"]
50

All of the variables used and created by the execute come from the Dictionary object. The Dictionary object

inherits from IDictionary and you can create a class which inherits from IDictionary which can respond

in any desired way to the execution of the code and the creation and modification of variables. For instance,

you could have an event fire when a new variable is created or a value is changed, or any other action you

might find useful.

This provides detailed control of the execute, and provides the ability to scope function and variables to a

particular execute.

Page 123

⍬ Zilde

Empty numeric constant object.

This is displayed when the result of an expression evaluated in the session contains empty numeric data

Page 124

⍕ Pattern format, Format

Simple formatter that provides simple width control and converts objects to their string representation. Relies

on ⎕ nfi

 ⍕ 2 3⍴ ⍳ 6
 0 1 2
 3 4 5
 (2 3⍴ ⍳ 6).ToString()
 0 1 2
 3 4 5

The ToString method in most cases is equivalent.

 1 0 4 1 6 2 ⍕ 2 3⍴ ⍳ 6
0 1.0 2.00
3 4.0 5.00
Notice that the width of each column was controlled by the left argument. The left argument is composed of

value pairs, width and number of decimals.

Using a negative value for number of decimals formats objects in Exponential.

 10 ¯5 ⍕ 10 20 30 999.4
 1.0000E1 2.0000E1 3.0000E1 9.9940E2

Page 125

The Share File System

The ShareFileSystem in Visual APL is a next generation component file system.

Not only does the ShareFileSystem support the legacy syntax common to share file systems, but it extends

share file systems with virtual directories. This means you can place more than one share file in a single

physical file.

To use the Share File System in your application, you will need to add a reference to the Visual APL

Share/Native File System assembly. Here is an example of "referencing" and "using" the assembly by its

strong name:

refbyname APLNext.APL.LegacyOps

using APLNext.Legacy.ShareFileSystem

The more Share Files that are placed in a virtual directory the better the space management becomes.

Additionally, because the ShareFileSystem uses the ISerializer .Net methodology for the IO of nested or

object data types, shared and native files can read and write not only simple APL variables, but nested APL

variables which even include Hashtables, Dictionaries, etc.

You can also write out the Hashtables or Dictionaries without including them in an APL variable.

Any class that inherits from ISerializable can be written to the share or native files and retrieved with the

instance being automatically recreated.

Page 126

⎕ falloc

Pre-allocates a specific contiguous block in a component file as a single component.

 ⎕ falloc 12,1000
7
 ⍴⎕ fread 12,7
1000

Using this in conjunction with the index read (⎕firead) and index replace (⎕fireplace) you can easily

manipulate text documents in a component.

It is also possible to retrieve the location of a component. This permits using other tools, such as ⎕ nread to

access the data in a component. For instance, you could store a document in a component file, use ⎕

fcnloc to retrieve the starting point and then read the data using other tools:

 ⎕ fcnloc 12,7
54288

This is particularly useful to include images, documents and other data in a component file in a single virtual

directory which needs to be accessed by other programs and tools.

Page 127

⎕ fappend

Appends a serializable object to a component file tied to the associated tie number. The append returns the

component number into which the data was placed.

cn = "hello how are you" ⎕ fappend 10
cn = (3 3⍴ ⍳ 10) ⎕ fappend 10

Page 128

⎕ fcatenate

One of the new features of these component files is the ability to manipulate component data in place. This

means that it is not necessary to read in a component and catenate data, then write the component back

out. Since catenate is one of the most expensive operations, this can be very useful. Only homogenous

intrinsic data types can be manipulated in place. For instance a vector of integers, doubles, chars, etc. can be

modified. However, nested arrays can not.

 Example:

 (⍳5) ⎕ fappend 12
4
 ⎕ fread 12,4
0 1 2 3 4
 10 11 12 ⎕ fcatenate 12,4
 ⎕ fread 12,4
0 1 2 3 4 10 11 12

Page 129

⎕fdrop

⎕ fdrop removes components from the beginning or end of a Share File.

Syntax:

 ⎕ fdrop tn dropCount

tn: The tie number of the file to drop components from.

dropCount: An integer specifying the number of components to drop from the file.

Remarks:

⎕ fdrop will remove the specified number of components from either the beginning or end of the specified

share file.

If the dropCount is a positive number, that number of components will be removed from the beginning of the

Share File. If the dropCount is a negative integer, then that number of components will be removed from the

end of the Share File.

Legacy Considerations

⎕ fdrop duplicates the syntax of the legacy ⎕ fdrop, but has one difference, when you drop components from

the front of a file, the components that remain are renumbered from 1 instead of retaining their original

numbers. Since the Share File System is structured to give data back to the virtual pool, artificially

numbering component offsets after a drop would have introduced many unwanted exceptions to the Share

File System.

Example:

 // drop 5 components from the beginning of the share
 // file at tie number 1.
 ⎕ fdrop 1 5

Page 130

⎕ ferase

Removes a specified component file from a virtual directory. This does not delete a physical file. The tie

number must be the number associated with the file name to be erased.

 "filename" ⎕ ferase 10

Page 131

⎕ fcreate

Has two primary uses:

1. Create a component file and associated virtual directory of the same name.

For instance:

"some file name.extension" ⎕ fcreate 10

Or

tn = ⎕ fcreate "some file name.extension"

Which returns the next available tie number.

Both of these create a file in the current directory. You could also specify the entire path:

tn = ⎕ fcreate @"c:\mydir\subdir\some file name.extension"

This use primarily exists for legacy system support. All of the above examples create a vitual

directory with the same name as the fileid specified. This example further illustrates the point:

 @"c:\test\myfile" ⎕ fcreate 1

In the above example, a virtual directory is created with the same name as the fileid, "myfile", in the

"c:\test" directory, and then creates a share file in that virtual directory with the same name.

Advantages over legacy file systems

One of the primary advantages of the Share File System is that not only can you place more than one

share file in the virtual directories, but the share file system recovers data as it becomes available,

thus avoiding the explosion of size common in some legacy share file systems.

Note

The use of the @ symbol to indicate a raw string, this obviates the need to use the \ as
an escape character, as "c:\\mydir\\subdir\\some file name.extension"

2. When used with a library number, it creates a component file in the virtual directory associated with
the library number.

"100 some file name.extension" ⎕ fcreate 10

Or

tn = ⎕ fcreate "10 some file name.extension"
// the system chose the tie number, as none was specified

Or

tn = "100 some file name.extension" ⎕ fcreate 0
// the system chose the tie number, as a 0 was specified.

Page 132

Page 133

⎕ firead

This provides the ability to read a subset of an intrinsic array using index read. This reduces the need to read

large amounts of data into memory for the purpose of indexing only a subset. Used in conjunction with ⎕

fireplace and ⎕ fcatenate it makes the management of discrete data within a component file very

simple.

 (⍳20) ⎕ fappend 12
6

 ⎕ firead 12,6,10,3
10 11 12

 "how are you today" ⎕ fappend 12
7
 ⎕ firead 12,7,4,3
are

Page 134

⎕ fireplace

The data in a component file can also be replaced in place using index replace: This obviates the need to

read the data into memory, make the change, and then rewrite the data to disk. In this case the data is

replaced on disk explicitly without reading the entire component into memory.

 (⍳ 20) ⎕ fappend 12
6
 100 200 300 ⎕ fireplace 12,6,10,3
 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 100 200 300 13 14 15 16 17 18 19

Catenating and modifying integers in place is extremely useful when updating pointers, such as are used as

references. This significantly reduces the time and space required to maintain systems which require reading

and modifying large arrays of integers, doubles, characters, etc.

In the event more data is provided than allocated for by the arguments, then only the first n elements of the

data is used in the replacement:

 85 86 87 88 ⎕ fireplace 12,6,10,3

 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 85 86 87 13 14 15 16 17 18 19

Page 135

⎕ fnames

Returns a string array of strings. This is useful for manipulation with .Net classes such as generic List.

 a = ⎕ fnames
 a.GetType()
System.String[]

Page 136

⎕ fnums

Returns an integer array of tie numbers indicating all of the files currently associated with a tie number.

Page 137

⎕ fread

Reads a component from a component file. The syntax for this is:

 a = ⎕ fread tn cn

Any arbitrary serializable data can be returned from a component. The data will be deserialized and the

original object will be returned.

Page 138

⎕ freplace

Replaces the data in an existing component with an arbitrary serializable object.

 a = 1 20 30 40.5
 a ⎕ freplace tn cn

Page 139

⎕ fsize

Returns a five element integer vector.

 ⎕ fsize
1 10 0 0 0

The first element is the starting component, the second element is the next component which will be used.

The last component in use is this element less one.

Page 140

⎕libdup

⎕ libdup duplicates an entire virtual directory based on the associated library number, releasing any unused

space from the virtual pool of the library.

Syntax:

 "newLibNo dupPath" ⎕ libdup libNo

newLibNo: The library number to which dupPath will be associated.

dupPath: The file path at which to create the newly duplicated library.

tn: The library number for the Share File library to duplicate.

Remarks:

The ⎕libdup system function creates a copy of the specified library.

This newly created copy of the file library contains all components and data which were present in the source

library.

The only difference between the source and newly created libraries, is that the newly created library has had

all unused space released from the virtual pool of the Share File.

This process decreases the physical file size of the library, since all unused space in the library has been

released back to the operating system.

The inclusion of the ⎕libdup system function is primarily for completeness in the Share File System, as the

Share File System by design reclaims space as necessary from the virtual pool.

Example:

 @"2 c:\test\testnew"”⎕ libdup 101

Where 101 is the library number for the existing virtual directory. This
will duplicate all of the files in the 101 virtual directory and place
them in c:\test\testnew which is associated with the library number 2.

Page 141

⎕fdup

Visual APL includes ⎕ fdup for legacy support.

Syntax:

 filePath ⎕ fstream tn

filePath: The full file path of the tied share file.

tn: The tie number of the file to dup.

Remarks:

⎕ fdup duplicates a single file. This will only duplicate share files whose name matches the virtual directory in

which they reside, and the virtual directory contains only the file being duplicated.

Example:

 "c:\myfiles\filename" ⎕ fdup 3

Page 142

⎕fremove

⎕ fremove removes the specified component from a Share File, and renumbers the remaining components.

Syntax:

 ⎕ fremove tn compNumber

tn: The tie number of the file to drop the component from.

compNumber: An integer specifying the component number to remove from the file.

Remarks:

⎕ fremove removes a single component from a Share File, returning the space used by the removed

component to the virtual pool.

Example:

 // drop component 10 from the share
 // file at tie number 2.
 ⎕ fremove 2 10

Page 143

⎕fstream

Returns the underlying .Net FileStream object for the associated tie number. This allows the use of all

features provided by the FileStream object, while still maintaining compatibility with the Share File system.

 fs = ⎕ fstream 3

 fs.CanRead
true
 fs.CanWrite
true

Page 144

⎕ fstie

Ties an existing file and associates the file with either a given tie number or the next available tie number.

 "c:\myfiles\filename" ⎕ fstie 10
 or
 tn = ⎕ fstie "c:\myfiles\filename"
 or
 // if a tie number of 0 is specified, the system assigns the next
available tie number.
 "c:\myfiles\filename" ⎕ fstie 0

It is also possible to access component files within a virtual directory created either with ⎕ libd or ⎕ fcreate

by using the associated library number for a virtual directory.

 "101 filename" ⎕ fstie 10

 tn = ⎕ fstie "10 filename"

 "101 filename" ⎕ fstie 0

In this way many component files can reside in a virtual directory, or single physical file.

Page 145

⎕ funtie

Removes the tie number associated with the existing component file.

Page 146

⎕ lib

To manage your files in their virtual directory, you have ⎕ fnums and ⎕ fnames as well as ⎕ lib and ⎕

libs:

 ⎕ lib 10

'my2file' 'myfile' 'another'
Which returns an array of file names found in the virtual directory.

To remove a file from a virtual directory, use:

 "another" ⎕ ferase 12

 ⎕ lib 10
'my2file' 'myfile'

To untie a file use ⎕funtie.

Page 147

⎕ libd

Since component files reside in a single physical file, to create the physical file or virtual directory you use ⎕

libd, for instance:

 ⎕ libd "10 c:\\tmysf"
true

Notice that the directory path has two backslashes, as the \ is the escape character. You could have also

placed an @ symbol at the beginning for raw text, for instance:

 ⎕ libd @"10 c:\tmysf"
true
Which obviates the need for the double backslash.

Once the virtual directory has been created, you can use it just like you normally use a library.

For instance:

 ⎕ fcreate "10 myfile"
1
 ⎕ fsize 1
1 1 0 0 0

 10 ⎕ fappend 1
1

The component file can also be tied or created by specifying the tie number:

 "10 another" ⎕ fcreate 12
12
 ⎕ fsize 12
1 1 0 0 0

The tie number can be changed at any time by simply retieing:

 "10 another" ⎕ ftie 10
10

As with all component files, you can store disparate data types in the components and retrieve them, as well

as replace component data:

 "test" ⎕ fappend 12
1

 10 11 12 ⎕ fappend 12
2

 ⎕ fread 12,2
10 11 12

 "test" (10 11 12) "morestuff" ⎕ fappend 12
3

 ⎕ fread 12,3
 test 10 11 12 morestuff

Page 148

 (3 3 9) ⎕ freplace 12,2
 ⎕ fread 12,2
 0 1 2
 3 4 5
 6 7 8
One of the new features of these component files is the ability to manipulate component data in place. This

means that it is not necessary to read in a component and catenate data, then write the component back

out. Since catenate is one of the most expensive operations, this can be very useful. Only homogenous

intrinsic data types can be manipulated in place. For instance a vector integers, doubles, chars, etc. can be

modified. However, nested arrays can not.

Example:

 (5) ⎕ fappend 12
4
 ⎕ fread 12,4
0 1 2 3 4
 10 11 12 ⎕ fcatenate 12,4
 ⎕ fread 12,4
0 1 2 3 4 10 11 12
This file system also uses blocks to minimize file size explosion as component sizes grow.

It is also possible to manage character data:

 "hello how are " ⎕ fappend 12
5
 "you?" ⎕ fcatenate 12,5

 ⎕ fread 12,5
hello how are you?

It is also possible to read a subset of an intrinsic array using index read:

 (20) ⎕ fappend 12
6

 ⎕ firead 12,6,10,3
10 11 12

The data can also be replaced in place using index replace:

 100 200 300 ⎕ fireplace 12,6,10,3
 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 100 200 300 13 14 15 16 17 18 19
Catenating and modifying integers in place is extremely useful when updating pointers, such as are used as

references. This significantly reduces the time and space required to maintain systems which require reading

and modifying large arrays of integers, double, characters, etc.

In the event more data is provided than allocated for by the arguments, then only the first n elements of the

data is used in the replacement:

 85 86 87 88 ⎕ fireplace 12,6,10,3

 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 85 86 87 13 14 15 16 17 18 19

It is also possible to allocate a contiguous block of space as a single component:

 ⎕ falloc 12,1000
7

Page 149

 ⎕ fread 12,7
1000
Using this in conjunction with the index read and replace you can easily manipulate text documents in a

component.

It is also possible to retrieve the location of a component. This permits using other tools, such as ⎕nread to

access the data in a component. For instance, you could store a document in a component file, use ⎕

fcnloc to retrieve the starting point and then read the data using other tools:

 ⎕ fcnloc 12,7
54288

This is particularly useful to include images, documents and other data in a component file in a single virtual

directory which needs to be accessed by other programs and tools.

Page 150

⎕ libdcws

It is also possible to control access to the virtual directory, this is done with ⎕ libdrw for setting read only

or read/write access, and ⎕ libdcws for checking write status. Use 0 to set read only and 1 for read/write.

 ⎕ libdcws 10
1

 ⎕ libdrw 10,0
0

 ⎕ libdcws 10
0

 ⎕ libdrw 10,1
1

 ⎕ libdcws 10
1

Page 151

⎕ libdrw

It is also possible to control access to the virtual directory, this is done with ⎕ libdrw for setting read only

or read/write access, and ⎕ libdcws for checking write status. Use 0 to set read only and 1 for read/write.

 ⎕ libdcws 10
1

 ⎕ libdrw 10,0
0

 ⎕ libdcws 10
0

 ⎕ libdrw 10,1
1

 ⎕ libdcws 10
1

Page 152

⎕ libs

This displays a matrix of all virtual directories and their associated library numbers.

 ⎕ libs
 2 C:\mydir\test.mf
 3 C:\mydir\test

Page 153

	Native File Access
	Append To File
	Create File
	Erase File
	Tied File Names
	Tied File Numbers
	Read File
	Rename File
	Replace File
	Resize File
	Size of File
	Untie File
	Tie a File
	Copy a File
	Check Existence of a File
	NStream

	Cielo Explorer
	Session Commands
)cd
)classes
)clear
)edit
)fns
)load
)off
)run
)runf
)scripts
)vars
)xload
)xmlout

	Menu Reference

	Code Flow Control
	Selection Statements
	:IF :ELSE
	:select :case

	Iteration Statements
	:while
	:repeat :until
	:for :in

	Jump Statements
	Label Syntax
	Branch
	:goto :return

	Legacy Keyword Indicator

	Syntax Characters
	# Number sign
	: Label separator, switch case separator and legacy keyword
	; Axis Separator
	; Statement Separator
	_ Underscore
	¯ High Minus
	Comment
	Del
	Delta
	Delta underscore
	Statement Separator

	System Functions, Constants, and Variables
	General System Function Reference
	Account Information
	Atomic Vector
	Command Window
	Comparison Tolerance
	Data Representation
	Divide By Zero
	Dyadic
	Dynamically Referencing Assemblies
	Expunge
	Index Origin
	Monadic
	Name Class
	Name List
	Number Format Info
	Print String Representation
	Random Link
	System Identification
	System Version
	Text to Numeric
	Time Stamp
	Universal Character Set
	User ID
	Verify Delimited Numeric
	Format
	Composite Formatting
	Standard DateTime Format Strings
	Standard DateTime Format Strings Output Examples
	Standard Numeric Format Strings

	FMT

	Primitive Scalar Operators
	[] Index
	Assignment By Value and = Assign By Reference
	Execute
	Zilde
	Pattern format, Format

	Component File Access
	Allocate Components
	Append Component
	Catenate to a Component
	Drop Components
	Erase a Component File
	Create a Component File
	Index Component Read
	Index Component Replace
	Tied Component Names
	Component Tie Numbers
	Read Component
	Replace Component
	Component File Size Information
	Release Unused Library Space
	Release Unused Share File Space
	Remove A Component
	Retrieve File Stream
	Share Tie Component File
	Untie Component File
	File Library
	File in File Library
	File in File Library Share Information
	File in File Library Share Control
	File Library Directory

