
Visual APL Programmer's Reference
 Operators and Functions

Visual APL provides a large set of primitives which include both functions and operators. These are

represented by symbols that specify which operations to perform in an expression. Visual APL predefines the

usual arithmetic, data manipulation and logical functions and operators, as well as a variety of others as

shown in the following table. In addition, many operators can be overloaded by the user, thus changing their

meaning when applied to a user-defined type. There are two facilities provided to achieve this overloading,

one is the using of a class with the appropriate attributes in place and the second is the overloading of .Net

common operators, which can be overloaded in C# using the operator keyword. With the using keyword it is

also possible to add functions and operators.

The primitive functions and operators provide support for all of the intrinsic .Net datatypes. As such, long,

short, float, double, etc will be referred to as numeric. As there are a large number of intrinsic datatypes as

well as Complex, IntN, BitArray, etc. not all types are included in the default array operator set. The default

types are Int32, Double, and Char. However, scalar operations on all datatypes will work for the .Net base

operator set.

In Visual APL, a function or operator is a term or a symbol that takes one or more expressions, called

operands, as input and returns a value. Operators that take one operand, such as the increment operator

(++), are called monadic or unary operators. Operators that take two operands, such as arithmetic operators

(+,-,*,/) are called dyadic or binary operators. One operator.

The following Visual APL statement contains a single monadic operator, and a single operand. The increment

operator, ++, modifies the value of the operand y.:

Visual APL

y++;

The following Visual APL statement contains two dyadic operators, each with two operands. The assignment

operator, =, has the integer y, and the expression 2 + 3 as operands. The expression 2 + 3 itself contains

the addition operator, and uses the integer values 2 and 3 as operands:

Visual APL

y = 2 + 3;

An operand can be a valid expression of any size, composed of any number of other operations.

Operators in an expression are evaluated in a specific order, that is right to left. The following table divides

the operators into categories based on the type of operation they perform.

Primary x.y, f(x), a[x], x++, x--, new, typeof

Monadic (scalar and array) +, -, !, ~, (T)x, ⍴, ×, ÷, ⍳, ∊, ⌊, ⌈, ↑, ↓

Dyadic (scalar and array) (,ravel) , !, ?, ⍋, ⍒, ⍎, ⍕, ⊂, ⊃, ⌽, ⍉, ⊖

Arithmetic ---
Multiplicative (scalar and
array)

×, ÷, |, ⍟ , *, ○

Page 1

Arithmetic ---
Multiplicative (scalar)

%

Arithmetic --- Additive
(scalar and array)

+, -

Shift (scalar) <<, >>

Relational (scalar and
array)

<, >, <=, >=, ≤ ≥

Type testing (scalar) is, as

Equality (scalar and
array)

==, ≈ ≡ ≠ ≊, ≣

Equality (scalar) !=

Logical (scalar and array) ∧, ∨, ⍱, ⍲, ∼

Logical (scalar) &, ^, |

Data Analysis (scalar and
array)

⍳, ∊, ⌈, ⌊, ⊥, ⊤, !, ?, ⍋, ⍒, ⍷, ⍎, ⍕

Data Manipulation (scalar
and array)

⍴, ↑ ↓ (,catenate), ⍪, ⊂, ⊃, ⊖, ⌽, ⍉

Operator Functions (scalar
and array)

/, \, [], (. dot), ¨, ⌿ , ⍀ , ∘̂˜

Conditional (Boolean) &&, ||, then/else

Assignment =, ← +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, …

Dyadic Operators are evaluated from right to left, Monadic (unary) operators are evaluated from left to right.

Visual APL

num1 = 5;

num1++;

print num1

However, the output of the following example code is undefined:

Visual APL

num2 = 5;

num2 = num2++; //not recommended

print num2

Page 2

Therefore, the latter example is not recommended. Parentheses can be used to surround an expression and

force that expression to be evaluated before any others. For example, 2 × 3 + 4 would normally become

14. This is because dyadic operators evaluate from right to left . Writing the expression as (2 × 3) + 4
results in 10, because it indicates to the Visual APL compiler that the multiplication operator (×) must be

evaluated before the addition operator (+).

Page 3

Visual APL Programmer's Reference
+ Add

The Add function can act as either a monadic or dyadic primitive.
result ← expr1 + expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The dyadic + functions are predefined for numeric and string types. For numeric types, + computes the sum
of its two operands. When one or both operands are of type string, + concatenates the string representations
of the operands.

User-defined types can overload the dyadic + functions.

Exam ple

function fn() {
 ⎕ ← 10 + 10
 ⎕ ← 10.5 + 10.5
 ⎕ ← "hello " + "world"
 ⎕ ← 2j + 4j
 ⎕ ← 2.0 + " 2"
}

 fn()
20
21
hello world
 6j
2 2

(only scalar Complex numbers are supported in this version)

Page 4

Visual APL Programmer's Reference
∧ And

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical AND of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ∧ 1 0 1 0
 ⎕ ← 0 1 0 1 ∧ 0 0 0 0
 ⎕ ← 1 ∧ 1
 ⎕ ← 1 ∧ 0
 ⎕ ← 0 ∧ 0
 ⎕ ← 1 2 3 4 ∧ 4 3 2 1
}

 fn()
1 0 1 0
0 0 0 0
1
0
0
1 1 1 1

Page 5

Visual APL Programmer's Reference
[] Axis

Specifies that operatorexpr1 should apply its functionality across the dimension(s) specified in axisexpr
result ← expr1 operatorexpr1[axisexpr] expr2
result ← operatorexpr1[axisexpr] expr2

Where:
result

An expression.
expr1

An expression.
operatorexpr1

An operator expression.
axisexpr

An axis expression.
expr2

An expression.

Rem arks

The Axis operator provides a mechanism for applying the functionality of operatorexpr1 to expr1 and expr2
across the dimension or dimensions specified by axisexpr.

axisexpr is a numeric vector.

Example

function fn() {
 ⎕ ← "apply a function across first axis"
 ⎕ ← ⌽ [0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function across second axis"
 ⎕ ← ⌽ [1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with reduction across first axis"
 ⎕ ← +/[0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with reduction across second axis"
 ⎕ ← +/[1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with scan across first axis"
 ⎕ ← +\[0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with scan across second axis"
 ⎕ ← +\[1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a dyadic function across first axis"
 ⎕ ← 1 ⌽ [0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a dyadic function across second axis"
 ⎕ ← 1 ⌽ [1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a dyadic function with reduction across first axis"
 ⎕ ← 2+/[0]4 4 ⍴ ⍳ 16
 ⎕ ← "apply a dyadic function with reduction across second axis"
 ⎕ ← 2+/[1]4 3 ⍴ ⍳ 16
 ⎕ ← "apply a dyadic function with scan across first axis"
 ⎕ ← 2+\[0]4 4 ⍴ ⍳ 16
 ⎕ ← "apply a dyadic function with scan across second axis"
 ⎕ ← 2+\[1]4 4 ⍴ ⍳ 16
}

 fn()
apply a function across first axis
 6 7 8
 3 4 5
 0 1 2
apply a function across second axis
 2 1 0
 5 4 3
 8 7 6
apply a function with reduction across first axis
9 12 15
apply a function with reduction across second axis
3 12 21
apply a function with scan across first axis
 0 1 2
 3 5 7
 9 12 15
apply a function with scan across second axis
 0 1 3
 3 7 12
 6 13 21

Page 6

apply a dyadic function across first axis
 3 4 5
 6 7 8
 0 1 2
apply a dyadic function across second axis
 1 2 0
 4 5 3
 7 8 6
apply a dyadic function with reduction across first axis
 4 6 8 10
 12 14 16 18
 20 22 24 26
apply a dyadic function with reduction across second axis
 1 3
 7 9
 13 15
 19 21
apply a dyadic function with scan across first axis
 4 6 8 10
 12 14 16 18
 20 22 24 26
apply a dyadic function with scan across second axis
 1 3 5
 9 11 13
 17 19 21
 25 27 29

Page 7

Visual APL Programmer's Reference
! Binomial

Determines the number of groups of objects in the population represented by expr2 based on group size
defined by expr1.
result ← expr1 ! expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

The Binomial function supports positive arrays of numbers, and negative arrays of numbers.

Example

function fn() {
 ⎕ ← 2 ! 10
 ⎕ ← 2 3 4 ! 10 11 12
 ⎕ ← 2 ! ¯10
 ⎕ ← 2 3 4 ! ¯10 20 ¯30
}

 fn()
45
45 165 495
55
55 1140 40920

Page 8

Visual APL Programmer's Reference
[] Operator

Square brackets ([]) are used for arrays, indexers, attributes, and dynamic generic selection.
type[]
array[indexexpr]
generictype[typeexpr]

Where:

type
A type.

array
An array.

indexexpr
An index expression.

generictype
A generic type.

typeexpr
A type expression.

Rem arks

An array type is defined as a type followed by brackets:

int[] a = new int[10]
or dynamic
a = 0 0 0 0 0 0 0 0 0 0

To access an element of an array, the indices of the desired elements are enclosed in brackets after the
expression:

Dependent state: ⎕IO

a = 10 20 30
a[0]

10
a[0 1]

10 20

The array indexing operator cannot be overloaded; however, types can define indexers, properties that take
one or more parameters. Indexer parameters are enclosed in square brackets, just like array indices, but
indexer parameters can be declared to be of any type (unlike array indices, which must be integral).

Example

function fn() {
 a = 1 2 3 4 5
 ⎕ ← a[0 1 2]
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← a[0 1; 0 1]
 ⎕ ← a[(0 1) (0 2)]
 a = Hashtable()
 a["test"] = ⍳ 10
 ⎕ ← a["test"]
 a = Dictionary[string, int]()
 a.Add("one", 10)
 ⎕ ← a["one"]
}

 fn()
1
 0 1
 3 4
1 2
0 1 2 3 4 5 6 7 8 9
10

Page 9

Page 10

Visual APL Programmer's Reference
, Catenate

The Catenate function can act as either a monadic or dyadic primitive.
result ← expr1 , expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Catenates expr1 with expr2 along the last axis, unless another axis is provided.

Scalar expressions are expanded to conform with the non scalar expression.

Array expressions which differ by a rank of 1 are expanded to be conformable with the higher rank
expression. Arrays must match in primary dimensions.

Example

function fn() {
 a = 1 2 3
 b = 4 5 6
 ⎕ ← a, b
 a = "test"
 b = "more"
 ⎕ ← a, b
 a = 3 3 ⍴ ⍳ 9
 b = 3 4 ⍴ ⍳ 12
 ⎕ ← a, b
 a = 10.4
 ⎕ ← a, b
 a = "test" 10
 b = "more" 20
 ⎕ ← a, b
}
 fn()
1 2 3 4 5 6
testmore
 0 1 2 0 1 2 3
 3 4 5 4 5 6 7
 6 7 8 8 9 10 11
 10.4 0 1 2 3
 10.4 4 5 6 7
 10.4 8 9 10 11
 test 10 more 20

Page 11

Visual APL Programmer's Reference
⌈ Ceiling

Returns the smallest whole number greater than or equal to the specified number.
return ← ⌈ expr1

Where:

result
An expression.

expr1
An expression.

Rem arks

Dependent state: ⎕ CT

The Floor function returns the smallest whole number greater than or equal to a. If a is equal to NaN,
NegativeInfinity, or PositiveInfinity, that value is returned.

The behavior of this function follows IEEE Standard 754, section 4. This kind of rounding is sometimes called
rounding toward positive infinity.

Example

function fn() {
 ⎕ ← ⌈ 100.5
 ⎕ ← ⌈ 100.7
 ⎕ ← ⌈ 100.2
 ⎕ ← ⌈ 100.1 200.1 300.1
 ⎕ ← ⌈ 3 3 ⍴ 10.2
}
 fn()
101
101
101
101 201 301
 11 11 11
 11 11 11
 11 11 11

Page 12

Visual APL Programmer's Reference
/ ⌿ Compress Replicate

The Replicate function can act as either a monadic or dyadic primitive.
result ← expr1 / expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

expr1 must be a vector equal in length to the last dimension of expr2. If another axis is specified, then the
length of expr1 must match the length of the specified dimension of expr2.

For values of 0 in expr1, elements in expr2 are removed. For positive integral elements in expr1, elements in
expr2 are replicated integral times.

Example

function fn() {
 ⎕ ← 0 1 0 1 / 1 2 3 4
 ⎕ ← 0 1 0 1 / 4 4 ⍴ ⍳ 16
 ⎕ ← 1 2 3 4 / 1 2 3 4
}
 fn()
2 4
 1 3
 5 7
 9 11
 13 15
1 2 2 3 3 3 4 4 4 4

Page 13

Visual APL Programmer's Reference
≡ Depth

The Depth function can act as either a monadic or dyadic primitive.
result ← ≡ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Depth function determines the deepest level of nesting present in expr1.

Example

function fn() {
 a = 1
 ⎕ ← ≡
 a = 1 2
 ⎕ ← ≡
 a = "test" 2
 ⎕ ← ≡
 a = ⊂ ⊂ 2 3
 ⎕ ← ≡
}
 fn()
0
1
2
3

Page 14

Visual APL Programmer's Reference
⊃ Disclose (Build Array From)

The Disclose function can act as either a monadic or dyadic primitive.
result ← ⊃ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Disclose function builds result from the elements of expr1.

If expr1 has only one (1) element, result is simply the contents of that first element. This simple case of
Disclose is also known as un-nest, since it removes one (1) level of nesting from the data of expr1.

If expr1 contains two (2) or more elements, each element of expr1 is conformed such that every element of
expr1 has the same rank and shape, and these elements are then structured into the result. The result is
structured by concatenating together the conformed elements of expr1, and reshaping the result to be the
shape of expr1 concatenated with the determined conformed shape applied to the elements of expr1.

The Disclose function is the inverse of the Enclose function.

Example

function fn() {
 a = 1
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = 1 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = ⊂ ⊂ 1 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = (1 2 3) 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = (3 3 ⍴ 1 2 3) 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
}
 fn()
1

1 2 3
3
 1 2 3

 1 2 3
 2 0 0
 3 0 0
3 3
 1 2 3
 1 2 3
 1 2 3

 2 0 0
 0 0 0
 0 0 0

 3 0 0
 0 0 0
 0 0 0
3 3 3

Page 15

Page 16

Visual APL Programmer's Reference
÷ Divide

The ÷ function can act as either a monadic or a dyadic primitive.
result ← expr1 ÷ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The division operator (÷) divides its first operand by its second. All numeric types have predefined division
operators.

Dependent state: ⎕ DBZ, ⎕ DBZV

The ⎕DBZ state variable provides control over the way in which divide addresses division by zero.

The default value is 0 to match .Net languages, however, you can set ⎕DBZ to the following:

⎕dbz:
 0 : 1÷0 = 0
 0÷0 = 0
 1 : 1÷0 = DOMAIN ERROR
 0÷0 = 1
 2 : 1÷0 = DOMAIN ERROR
 0÷0 = DOMAIN ERROR
 3 : 1÷0 = NaN or ⎕dbzv
 0÷0 = NaN or ⎕dbzv
 4 : 1÷0 = +-Infinity
 0÷0 = NaN

You can set ⎕DBZV to any object, and it will be returned when ⎕dbz is set to 3.

User-defined types can contain cross language overloads to the ÷ operator.

Example

function fn() {
 ⎕ ← 10 ÷ 20
 ⎕ ← 20 ÷ 10
 ⎕ ← 10 20 ÷ 20 10
 ⎕ ← 10.1 20.2 ÷ 10 20
 ⎕ ← 10 20 ÷ 10.1 20.1
 ⎕ ← (3 3 ⍴ ⍳ 9) ÷ 10
}

 fn()
0.5
2
0.5 2
1.01 1.01
0.9900990099 0.9950248756
 0 0.1 0.2
 0.3 0.4 0.5
 0.6 0.7 0.8

Page 17

Visual APL Programmer's Reference
↓ Drop

The Drop function can act as either a monadic or dyadic primitive.
result ← expr1 ↓ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Drop function removes data from dimensions of expr2, according to the amounts specified in expr1.

The length of expr1 should match the rank of expr2, and each element of expr1 specifies the amount of data
to drop from the respective dimension of expr2.

The elements of expr1 can be either negative, positive, or 0. If an element of expr1 is positive, that length is
dropped from the related dimension of expr2. If an element of expr1 is negative, that length is dropped from
opposite end of the related dimension of expr2. If an element of expr1 is 0, no data is dropped from the
related dimension of expr2.

Example

function fn() {
 ⎕ ← 1 ↓ 10 11 12
 ⎕ ← 3 ↓ 10 11 12 13 14 15
 ⎕ ← ¯1 ↓ 10 11 12
 ⎕ ← ¯3 ↓ 10 11 12 13 14 15
 ⎕ ← 2 2 ↓ 3 3 ⍴ ⍳ 9
 ⎕ ← ¯2 ¯2 ↓ 3 3 ⍴ ⍳ 9
}
 fn()
11 12
13 14 15
10 11
10 11 12
 8
 0

Page 18

Visual APL Programmer's Reference
¨ Each (For-Each data iteration)

Performs the specified operator expression across each element of expr1 and expr2.
result ← expr1 operator¨ expr2

Where:
result

An expression.
expr1

An expression.
operator

An operator expression.
expr2

An expression.

Rem arks

The Each operator is a specialized short hand construct simulating a single for loop across the elements of
expr2.

The Each data iterator performs the specified operator expression between each element of expr1 and expr2.
 If expr1 or expr2 is a scalar, that expression is considered to be the same rank and shape of the higher rank
expression.

Example

function fn() {
 ⎕ ← 2 ⍴ ¨ 1 2 3
 ⎕ ← (⊂ 2 2) ⍴ ¨ 1 2 3
 ⎕ ← (⊂ 2 2) ⍴ ¨ (1 2) (⍳ 4)
 ⎕ ← (⊂ 1 2 3) + ¨ (1 2 3) (10 20 30)
 ⎕ ← (⊂ ⊂ 1 2 3) + ¨¨ (1 2 3) (10 20 30)
 ⎕ ← 3 ⍳ ¨ (1 2 3) (4 5 6)
 ⎕ ← (⊂ 2 3) ⍳ ¨ (2 3) (4 5) (5 6)
 ⎕ ← ⍳ ¨ 1 2 3
 ⎕ ← ⍴ ¨ (1 2) (3 4 5) (3 3 ⍴ ⍳ 9)
}
 fn()
 1 1 2 2 3 3
 1 1 2 2 3 3
 1 1 2 2 3 3
 1 2 0 1
 1 2 2 3
 2 4 6 11 22 33
 2 3 4 3 4 5 4 5 6 11 12 13 21 22 23 31 32 33
 1 1 0 1 1 1
 0 1 2 2 2 2
 0 0 1 0 1 2
 2 3 3 3

Page 19

Visual APL Programmer's Reference
⊂ Enclose

The Enclose function can act as either a monadic or dyadic primitive.
result ← ⊂ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Enclose function creates result by nesting expr1 once.

The only exception to this enclosure rule is if expr1 is a native .Net type scalar, such as Int32, Double, or
Char. If expr1 is a .Net native type scalar, the data is not enclosed, and result is exactly equal to expr1.

The Enclose function is the inverse of the Disclose function.

Example

function fn() {
 a = ⊂
 ⎕ ← "shape of enclosed scalar"
 ⎕ ← ⍴
 a = ⊂ 2 3
 ⎕ ← "shape of enclosed vector"
 ⎕ ← ⍴
 a = ⊂ 1 2 3) (5 6 7)
 ⎕ ← "shape of enclosed vector of vectors"
 ⎕ ← ⍴
 a = ⊂ (1 2 3) (4 5 6)
 ⎕ ← "shape of enclose of each vector"
 ⎕ ← ⍴
 ⎕ ← "shape of each enclosed vector"
 ⎕ ← ⍴ a
 a = ⊂ ⊂ 2 3
 ⎕ ← "shape of the original vector using each"
 ⎕ ← ⍴ ¨a
}
 fn()
shape of enclosed scalar

shape of enclosed vector

shape of enclosed vector of vectors

shape of enclose of each vector
2
shape of each enclosed vector

shape of the original vector using each
 3

Page 20

Visual APL Programmer's Reference
∊ Enlist (Flatten Array)

The Enlist function can act as either a monadic or dyadic primitive.
result ← ∊ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Enlist function produces a flattened version of expr1. result contains all data which was present in expr1
and its sub elements, with all nesting, shape, and rank removed, so that result is a simple vector.

Example

function fn() {
 a = ∊ 1
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ 3 3 ⍴ ⍳ 9
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ (1 2 3) (4 5 6)
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ (⊂ ⊂ ⊂ 1 2 3) (⊂ ⊂ "test")
 ⎕ ← a
 ⎕ ← ⍴ a
}
 fn()
1
1
1 2 3
3
0 1 2 3 4 5 6 7 8
9
1 2 3 4 5 6
6
 1 2 3 test
7

Page 21

Visual APL Programmer's Reference
≈ Equality (Approximately Equal)

The Approximately Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≈ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Approximately Equal function returns a 1 if expr1 is equal to expr2, or if expr2 is within ⎕CT of expr1.
 Otherwise, the return is 0.

Example

function fn() {
 ⎕ ← 10 ≈ 12
 ⎕ ← 10 ≈ 9 10 11
 ⎕ ← 10 ≈ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≈ 1 2 3
 ⎕ ← 1 2 3 ≈ 1+1 2 3
 ⎕ ← 1 2 3 ≈ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≈ 3 3 ⍴ 10 11
}
 fn()
0
0 1 0
 0 0 0
 0 0 1
 0 0 0
1 1 1
0 0 0
0 0 0
 0 0 0
 0 0 0
 0 0 0

Page 22

Visual APL Programmer's Reference
⍎ Execute

Executes the code supplied by expr1
 result ← ⍎ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Execute expression dynamically executes the code returned by expr1. expr1 can return either a string, a
dynamic variable (IVariable), or a compiled code object (obtainable through the compile method). If expr1
evaluates to a string, then the code is parsed, compiled, and then executed. If expr1 is a compiled code
object, no parsing and compilation is required, and the code object is executed immediately.

Note: Language features which effect the code flow of a function do not effect the function which initiated the
dynamic execution. Examples of these kinds of statements include yield, return, break, continue, branching,
and conditional branching. Such statements can be used within the respective constructs to which they apply,
such as a yield statement within a function defined in the same dynamic execution.

Advanced Dynamic Execution Features:

Dynamic execution allows you to override the module dictionaries used within the context of the dynamic
execution. Using this feature, you can specify either or both of the local variable and global variable
dictionaries, which enables the dynamic execution of code within contexts other than the context of the
function which called the dynamic execution. You can even create entirely new contexts under program
control just for the purpose of dynamically executing code.

The following example calls dynamic execute and specifies that only "a" and "b" are to be used in the local
dictionary of the execution:

 a = 10
 b = 20 30 40
 c = ⍎ "a+b" in (a,b)
 c
30 40 50

Depending on where an execute statement is programmed in your code, you will have access to either or
both of the global dictionaries ws and wsi. The field ws contains all static data which exists in the current
context of where you reference ws, and wsi contains all instance data for the context it which it is referenced.

In functions which are defined with the static access modifier, only the ws field will be accessible, because by
definition no instance data can be referenced from a static method. In an instance method, or any method
which does not exist in a static class or has the static modifier applied to its definition, you also have access
to the global field wsi.

By default, when you run a dynamic execution and do not specify the global context in which it will run, the
wsi (or ws for static methods) is passed as the default global dictionary.

Dynamically defining contexts:

You can dynamically create a global context under program control, which can be used in place of the default
ws or wsi global fields.

Here is an example of creating a module dictionary which contains a single element "alist". Once the
dictionary is created and initialized, the dictionary is then passed to execute as the global dictionary:

Note: Any object which inherits from IDictionary can be used as a global dictionary.

 using System
 using System.Collections
 using System.Collections.Generic
 gd = Dictionary[object, object]()
 a = ArrayList()
 a.Add(10)
0
 a.Add("test")

Page 23

1
 a.Count
2
 gd.Add("alist",a)
 ⍎ "alist.Add('more')" in (),gd
false
 a.Count
3

As you can see above, the variable "alist" does not exist in the context in which the execute is run, and only
exists as an entry in the newly created Dictionary object which was passed to the execute statement. Using
this methodology, you can dynamically create any arbitrary context in which to run your dynamic execution.

Dynamic Evaluation:

All code which is processed by dynamic execute is fully compiled to the lowest possible level in .Net, which
allows the code to run as fast as any code compiled at runtime. In some cases, the code statement to be run
by execute may be small enough that the extra time required to compile the code would be unnecessary, and
in these cases it may be optimal to interpret the code directly.

To directly interpret a code snippet, use the eval statement. Here is the above example for execute, modified
to instead use the eval method:

 using System
 using System.Collections
 using System.Collections.Generic
 gd = Dictionary[object, object]()
 a = ArrayList()
 a.Add(10)
0
 a.Add("test")
1
 a.Count
2
 gd.Add("alist",a)
 eval("alist.Add('more')", null, gd)
false
 a.Count
3

The performance gain of directly interpreting code is only found when evaluating small and simple snippets of
code. While fully supported, snippets which include statements such as for or while loops would not be
normally appropriate, because the iteration process re-evaluates each line of code as it is run in the for loop,
and is therefore not as highly optimized as direct compilation.

Example

 a = 10
 b = 20 30 40
 ⍎ "a+b"
30 40 50
 c = ⍎ "a+b"
 c
30 40 50
 c = ⍎ "a+b" in (a,b)
 c
30 40 50
 using System.Collections.Generic
 gd = Dictionary[object, object]()
 x
name 'x' is not defined
 c = ⍎ "x = a+b" in (a,b),gd
 x
name 'x' is not defined
 gd["x"]
30 40 50
 using System.Collections
 h = Hashtable()
 gd["newhash"] = h
 h.Count
0

Page 24

 c = ⍎ "newhash.Add(\"one\",100.9)" in (),gd
 gd["newhash"].Count
1
 h.Count
1
 h["one"]
100.9
 e = compile("a = b+c",ws)
 b = 10
 c = 100
 ⍎ e in (b,c)
110
 a
110
 ⍎ e
110

Page 25

Visual APL Programmer's Reference
\ Expand (Pad)

 The Expand function can act as either a monadic or dyadic primitive.
result ← expr1 \ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The length of the result is determined by the length of expr1.

expr1 is a numeric vector, where at every non zero (0) element the next element of expr2 will be inserted
into the result. Where a zero (0) occurs in expr1, the fill data element for expr2 is inserted into the result
instead.

Example

function fn() {
 ⎕ ← 1 0 1 0 1 \ 1 2 3
 ⎕ ← 1 0 1 0 1 \ 3 3 ⍴ ⍳ 9
 ⎕ ← 1 0 1 \ "test" (1 2 3)
 ⎕ ← 1 0 0 1 1 \ 3 3 ⍴ ⍳ 9
}
 fn()
1 0 2 0 3
 0 0 1 0 2
 3 0 4 0 5
 6 0 7 0 8
 test 1 2 3
 0 0 0 1 2
 3 0 0 4 5
 6 0 0 7 8

Page 26

Visual APL Programmer's Reference
* Exponential (Exp)

The Exponential function can act as either a monadic or dyadic primitive.
result ← * expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Exponential function expands the Math.Exp method to work with numeric arrays.

Math.Exp returns the number e raised to the power expr1. If expr1 equals NaN or PositiveInfinity, that value
is returned. If expr1 equals NegativeInfinity, 0 is returned.

Example

function fn() {
 ⎕ ← *0
 ⎕ ← *1
 ⎕ ← *2
 ⎕ ← *3
}

 fn()
1
2.718281828
7.389056099
20.08553692

Page 27

Visual APL Programmer's Reference
! Factorial

The Factorial function can act as either a monadic or dyadic primitive.
result ← ! expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Factorial function determines the mathematical factorial of expr1. For non integral expr1, the standard
mathematical procedure of determining the factorial result through the Gamma function is applied.

Example

function fn() {
 ⎕ ← !1
 ⎕ ← !2
 ⎕ ← !3
 ⎕ ← !4
 ⎕ ← !1 2 3 4
}
 fn()
1
2
6
24
1 2 6 24

Page 28

Visual APL Programmer's Reference
⍷ Find

The Find function can act as either a monadic or dyadic primitive.
result ← expr1 expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Find function returns an integer array of the same shape and rank as expr2, with a one (1) wherever the
array expr1 was found in expr2. expr1 and expr2 can be arrays of any shape, rank, and depth.

Dependent state: CT

Example

function fn() {
 ⎕ ← 1 2 3 ⍷ 1 2 3 4 1 2 3
 ⎕ ← 0 1 2 ⍷ 3 3 ⍴ ⍳ 9
 ⎕ ← "what" ⍷ "morewhatofwhat"
 ⎕ ← "hey" ⍷ 4 3 ⍴ "heyyouheyyou"
}
 fn()
1 0 0 0 1 0 0
 1 0 0
 0 0 0
 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0
 1 0 0
 0 0 0
 1 0 0
 0 0 0

Page 29

Visual APL Programmer's Reference
↑ First

The First function can act as either a monadic or dyadic primitive.
result ← ↑ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The First function returns the first element of expr1, disclosing the element if it is enclosed.

The First function is a short hand for accessing the first element of an array.

Example

function fn() {
 ⎕ ← ↑ 1 2 3
 ⎕ ← ↑ 3 3 ⍴ ⍳ 9
 ⎕ ← ↑ 3 3 3 ⍴ ⍳ 27
 ⎕ ← ↑ "test"
 ⎕ ← ↑ 4 4 ⍴ "test"
}
 fn()
1
0
0
t
t

Page 30

Visual APL Programmer's Reference
⌊ Floor

The Floor function can act as either a monadic or dyadic primitive.
result ← ⌊ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Dependent state: CT

The Floor function returns the largest whole number less than or equal to expr1. If expr1 is equal to NaN,
NegativeInfinity, or PositiveInfinity, then that value is returned.

The behavior of this function follows IEEE Standard 754, section 4. This kind of rounding is sometimes called
rounding toward negative infinity.

Note: The Floor function uses CT when determining if expr1 is already equal to an integral value. If expr1
is within CT of the next greater whole number, than the Floor function does not apply. Instead, Floor
assumes that if expr1 cannot be rounded to the next lesser whole number, than it must match the next
greatest whole number, and the next greatest whole number is returned. This guarantees that only integers
will return from the Floor function.

Example

function fn() {
 ⎕ ← ⌊ 1.1
 ⎕ ← ⌊ 1.5
 ⎕ ← ⌊ 1.8
 ⎕ ← ⌊ 1.1 1.5 1.8
 ⎕ ← ⌊ 3 3 ⍴ 10.1 11.1 12.1
}

 fn()
1
1
1
1 1 1
 10 11 12
 10 11 12
 10 11 12

Page 31

Visual APL Programmer's Reference
⍕ Format

The Format function can act as either a monadic or dyadic primitive.
result ← expr1 ⍕ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: NFI, PP

The Format function Creates

Simple formatter that provides simple width control and converts objects to their string representation. Relies
on ⎕nfi

⍕ 2 3 ⍴ ⍳ 6
 0 1 2
 3 4 5
 (2 3 ⍴ ⍳ 6).ToString()
 0 1 2
 3 4 5

The ToString method in most cases is equivalent.

 1 0 4 1 6 2 ⍕ 2 3 ⍴ ⍳ 6
0 1.0 2.00
3 4.0 5.00

Notice that the width of each column was controlled by the left argument. The left argument is composed of
value pairs, width and number of decimals.
Using a negative value for number of decimals formats objects in Exponential.

 10 ¯5 ⍕ 10 20 30 999.4
 1.0000E1 2.0000E1 3.0000E1 9.9940E2

Example

function fn() {
 ⎕ ← ⍕ 1 2 3
 ⎕ ← 3 ⍕ 1.2 2.3 3.4
 ⎕ ← 7 2 ⍕ 1.2 2.3 3.4
 ⎕ ← 7 ¯2 ⍕ 1.2 2.3 3.4
 ⎕ ← 7 2 ⍕ 3 3 ⍴ 1.2 2.3 3.4
 ⎕ ← 1 0 6 2 7 3 ⍕ 2 3 ⍴ 1 2 3
}
 fn()
1 2 3
1.200 2.300 3.400
 1.20 2.30 3.40
 1.2E0 2.3E0 3.4E0
 1.20 2.30 3.40
 1.20 2.30 3.40
 1.20 2.30 3.40
1 2.00 3.000
1 2.00 3.000

Page 32

Visual APL Programmer's Reference
⊤ From Base 10 (Encode)

Produces a vector of numbers, which is the representation of expr2 with radix specifications expr1.
result ← expr1 ⊤ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

From Base 10 (Encode) is the inverse function of To Base 10 (Decode)

Example

function fn() {
 ⎕ ← 10 10 10 10 ⊤ 1776
 ⎕ ← "Convert 3622 minutes to 2 days, 12 hours, 22 minutes"
 ⎕ ← 0 24 60 ⊤ 3622
 ⎕ ← "Convert 10 to 8 bits"
 ⎕ ← 2 2 2 2 2 2 2 2 ⊤ 10
}
 fn()
1 7 7 6
Convert 3622 minutes to 2 days, 12 hours, 22 minutes
2 12 22
Convert 10 to 8 bits
0 0 0 0 1 0 1 0

Page 33

Visual APL Programmer's Reference
⍒ Grade Down

The Grade Down function can act as either a monadic or dyadic primitive.
result ← expr1 ⍒ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO

The Grade Down function returns an integer array of indices which specify the sorted order of expr2, in
descending order, according to either the order of expr1 if it is supplied, or the IComparable interface
implemented by the argument data in expr2.

The Grade functions extend the Microsoft Array.Sort method to work with arrays of all rank and depth.

The Microsoft Array.Sort method performs a highly optimized, unstable Q-Sort on the elements of vectors to
be sorted, using the IComparable interface implemented by each element of the array being sorted for
determining if one value is greater than another.

The Grade functions extend Array.Sort to function on arrays in general, and also stabilize the result so that
elements which are considered equal appear in the result in the same order that they appeared in expr2.
Also, if expr2 is all of a single type, only one comparitor is utilized, further optimizing the sorting process.

If expr1 is supplied, a custom comparitor is created which sorts the elements of expr2 according to the order
of their appearance in expr1. If an element of expr2 does not exist in expr1, that element is considered to
have the least importance in the sorting process, and will appear after all other elements in the result which
did exist in expr1. Of course, all elements of the result which do not appear in expr1 are stabilized as the
sort progresses, and appear in the order in which they occurred in expr2.

Note that the result might vary depending on the current CultureInfo.

Note: The IComparable interface defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method. Visit the Microsoft web site to see examples of how
to implement the IComparable interface on your Visual APL classes.

Example

function fn1() {
 a = 50 40 30 20 10
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a]
 a = 10 20 30 40 50
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a]
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← ⍒ a[;0]
 ⎕ ← a[⍒ a[;0];]
 a = "abcde"
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a]
 a = 3 3 ⍴ "abcdefghi"
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a;]
}
 fn1()
0 1 2 3 4
50 40 30 20 10
4 3 2 1 0
50 40 30 20 10
2 1 0
 6 7 8
 3 4 5
 0 1 2
4 3 2 1 0
edcba

Page 34

2 1 0
ghi
def
abc
0 1 2
 1 2 3 2 3 4 3 4 5

function fn2() {
 a = "abcde"
 c = "edcba"
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a]
 a = 1 2 3 4 5
 c = 5 4 3 2 1
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a]
 a = 3 3 ⍴ ⍳ 9
 c = 9 8 7 6 5 4 3 2 1 0
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a;]
 a = (1 2 3) ("test") (3 4 5)
 c = (3 4 5) ("test") (1 2 3)
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a]
}

 fn2()
0 1 2 3 4
abcde
0 1 2 3 4
1 2 3 4 5
0 1 2
 0 1 2
 3 4 5
 6 7 8
0 1 2
 1 2 3 test 3 4 5

Page 35

Visual APL Programmer's Reference
⍋ Grade Up

The Grade Up function can act as either a monadic or dyadic primitive.
result ← expr1 ⍋ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO

The Grade Up function returns an integer array of indices which specify the sorted order of expr2, in
ascending order, according to either the order of expr1 if it is supplied, or the IComparable interface
implemented by the argument data in expr2.

The Grade functions extend the Microsoft Array.Sort method to work with arrays of all rank and depth.

The Microsoft Array.Sort method performs a highly optimized, unstable Q-Sort on the elements of vectors to
be sorted, using the IComparable interface implemented by each element of the array being sorted for
determining if one value is greater than another.

The Grade functions extend Array.Sort to function on arrays in general, and also stabilize the result so that
elements which are considered equal appear in the result in the same order that they appeared in expr2.
Also, if expr2 is all of a single type, only one comparitor is utilized, further optimizing the sorting process.

If expr1 is supplied, a custom comparitor is created which sorts the elements of expr2 according to the order
of their appearance in expr1. If an element of expr2 does not exist in expr1, that element is considered to
have the least importance in the sorting process, and will appear after all other elements in the result which
did exist in expr1. Of course, all elements of the result which do not appear in expr1 are stabilized as the
sort progresses, and appear in the order in which they occurred in expr2.

Note that the result might vary depending on the current CultureInfo.

Note: The IComparable interface defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method. Visit the Microsoft web site to see examples of how
to implement the IComparable interface on your Visual APL classes.

Example

function fn1() {
 a = 50 40 30 20 10
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a]
 a = 10 20 30 40 50
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a]
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← ⍋ a[;0]
 ⎕ ← a[⍋ a[;0];]
 a = "abcde"
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a]
 a = 3 3 ⍴ "abcdefghi"
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a;]
}
 fn1()
4 3 2 1 0
10 20 30 40 50
0 1 2 3 4
10 20 30 40 50
0 1 2
 0 1 2
 3 4 5
 6 7 8
0 1 2 3 4

Page 36

abcde
0 1 2
abc
def
ghi

function fn2() {
 a = "abcde"
 c = "edcba"
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a]
 a = 1 2 3 4 5
 c = 5 4 3 2 1
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a]
 a = 3 3 ⍴ ⍳ 9
 c = 9 8 7 6 5 4 3 2 1 0
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a;]
 a = (1 2 3) ("test") (3 4 5)
 c = (3 4 5) ("test") (1 2 3)
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a]
}
 fn2()
4 3 2 1 0
edcba
4 3 2 1 0
5 4 3 2 1
2 1 0
 6 7 8
 3 4 5
 0 1 2
2 1 0
 3 4 5 test 1 2 3

Page 37

Visual APL Programmer's Reference
> Greater Than

The Greater Than function can act as either a monadic or dyadic primitive.
result ← expr1 > expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Greater Than function returns 1 if expr1 is greater than expr2. Otherwise, the return is 0. All numeric
and enumeration types define a "greater than" relational operator.

User-defined types can contain cross language overloads to the > operator.

Example

function fn() {
 ⎕ ← 10 > 12
 ⎕ ← 10 > 9 10 11
 ⎕ ← 10 > 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 > 1 2 3
 ⎕ ← 1 2 3 > 1+1 2 3
 ⎕ ← 1 2 3 > 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) > 3 3 ⍴ 10 11
}
 fn()
0
1 0 0
 1 1 1
 1 1 0
 0 0 0
0 0 0
0 0 0
0 0 1
 1 0 1
 0 1 0
 1 0 1

Page 38

Visual APL Programmer's Reference
≥ Greater Than or Equal

The Greater Than or Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≥ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Greater Than or Equal function returns 1 if expr1 is greater than, or equal to, expr2. Otherwise, the
return is 0. All numeric and enumeration types define a "greater than or equal" relational operator.

User-defined types can contain cross language overloads to the ≥ operator. If ≥ is overloaded, ≤ must also
be overloaded.

Example

function fn() {
 ⎕ ← 10 ≥ 12
 ⎕ ← 10 ≥ 9 10 11
 ⎕ ← 10 ≥ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≥ 1 2 3
 ⎕ ← 1 2 3 ≥ 1+1 2 3
 ⎕ ← 1 2 3 ≥ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≥ 3 3 ⍴ 10 11
}
 fn()
0
1 1 0
 1 1 1
 1 1 1
 0 0 0
1 1 1
0 0 0
0 0 1
 1 0 1
 0 1 0
 1 0 1

Page 39

Visual APL Programmer's Reference
⍳ Index Of

The IndexOf function can act as either a monadic or dyadic primitive.
result ← expr1 ⍳ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO, ⎕ CT

The IndexOf function returns the index of the first occurrence of expr1 in expr2. If expr2 does not contain
expr1, the returned index is one plus the number of elements in expr2.

The IndexOf function is similar in use to the IndexOf method found on many objects in .Net, with the
exception of returning one plus the number of elements in the argument data, instead of a -1.

Example

function fn() {
 ⎕ ← "hello world" ⍳ "hello world"
 ⎕ ← 1 2 3 ⍳ 10 20 30 1 40 2 50 3 1 2 3
 ⎕ ← (⍳ 10) ⍳ 1 4 20
 ⎕ ← 0 1 2 3 ⍳ 3 3 ⍴ ⍳ 9
 ⎕ ← 1 ⍳ 3 2 1 3 2 1
}
 fn()
0 1 2 2 4 5 6 4 8 2 10
3 3 3 0 3 1 3 2 0 1 2
1 4 10
 0 1 2
 3 4 4
 4 4 4
1 1 0 1 1 0

Page 40

Visual APL Programmer's Reference
. Inner Product

The Inner Product function can act as either a monadic or dyadic primitive.
result ← expr1 operatorexpr1 . operatorexpr2 expr2

Where:
result

An expression.
expr1

An expression.
operatorexpr1

An operator expression.
operatorexpr2

An operator expression.
expr2

An expression.

Rem arks

The Inner Product function is a specialized short hand construct for successively calling operators in a pre
defined order.

The Inner Product function creates its result by first calling the function specified by operatorexpr2 as though
that function had been called dyadically with expr1 and expr2, and then takes the result of that operation, and
uses it as the right operand to the reduce version of operatorexpr1.

Example

function fn() {
 ⎕ ← (3 3 ⍴ ⍳ 9) ∧ . ≈ 0 1 2
 ⎕ ← (3 5 ⍴ "hellowhatsupdoc") ∧ . ≈ "whats"
 ⎕ ← 1 2 3 +.× 1 2 3
 ⎕ ← 10+.×(1 2 3) (4 5 6)
}
 fn()
1 0 0
0 1 0
14
 50 70 90

Page 41

Visual APL Programmer's Reference
 Interval

The Interval function can act as either a monadic or dyadic primitive.
result ← ⍳ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Dependent state: IO

The Interval function produces an integer vector from one (1) to expr1, or if IO is zero (0), from zero (0)
to (expr1 - 1).

Example

function fn() {
 ⎕ ← ⍳ 10
 ⎕ ← 1+ ⍳ 10
 ⎕ ← 3+3× ⍳ 10
}
 fn()
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
3 6 9 12 15 18 21 24 27 30

Page 42

Visual APL Programmer's Reference
⍪ Laminate

The Laminate function can act as either a monadic or dyadic primitive.
result ← expr1 ⍪ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Implicit argument: ⎕ IO

Catenates expr1 with expr2 along the first axis, unless another axis is provided.

Scalar expressions are expanded to conform with the non scalar expression.

Array expressions which differ by a rank of 1 are expanded to be conformable with the higher rank
expression. Arrays must match in primary dimensions.

Example

function fn() {
 a ← 1 2 3 ⍪ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← 1 2 3 ⍪ 1 3 ⍴ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← 1 2 3 ⍪ 3 3 ⍴ ⍳ 9
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← 1 ⍪ 1 3 ⍴ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← "abc" ⍪ 2 3 ⍴ "efghij"
 ⎕ ← a
 ⎕ ← ⍴ a
}
 fn()
1 2 3 1 2 3
6
 1 2 3
 1 2 3
2 3
 1 2 3
 0 1 2
 3 4 5
 6 7 8
4 3
 1 1 1
 1 2 3
2 3
abc
efg
hij
3 3

Page 43

Visual APL Programmer's Reference
< Less Than

The Less Than function can act as either a monadic or dyadic primitive.
result ← expr1 < expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Less Than function returns 1 if expr1 is less than expr2. Otherwise, the return is 0. All numeric and
enumeration types define a "less than" relational operator.

User-defined types can contain cross language overloads to the < operator.

Example

function fn() {
 ⎕ ← 10 < 12
 ⎕ ← 10 < 9 10 11
 ⎕ ← 10 < 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 < 1 2 3
 ⎕ ← 1 2 3 < 1+1 2 3
 ⎕ ← 1 2 3 < 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) < 3 3 ⍴ 10 11
}
 fn()
1
0 0 1
 0 0 0
 0 0 0
 1 1 1
0 0 0
1 1 1
1 1 0
 0 1 0
 1 0 1
 0 1 0

Page 44

Visual APL Programmer's Reference
≤ Less Than or Equal

The Less Than or Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≤ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Less Than or Equal function returns 1 if expr1 is less than, or equal to, expr2. Otherwise, the return is 0.
 All numeric and enumeration types define a "less than or equal" relational operator.

User-defined types can contain cross language overloads to the ≤ operator. If ≤ is overloaded, ≥ must also
be overloaded.

Example

function fn() {
 ⎕ ← 10 ≥ 12
 ⎕ ← 10 ≥ 9 10 11
 ⎕ ← 10 ≥ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≥ 1 2 3
 ⎕ ← 1 2 3 ≥ 1+1 2 3
 ⎕ ← 1 2 3 ≥ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≥ 3 3 ⍴ 10 11
}
 fn()
0
1 1 0
 1 1 1
 1 1 1
 0 0 0
1 1 1
0 0 0
0 0 1
 1 0 1
 0 1 0
 1 0 1

Page 45

Visual APL Programmer's Reference
⍟ Logarithm (Log)

The Logarithm function can act as either a monadic or dyadic primitive.
result ← expr1 ⍟ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Logarithm function expands the Math.Log methods to work with numeric arrays.

Example

function fn() {
 ⎕ ← 2 ⍟ 4
 ⎕ ← 2 ⍟ 8
 ⎕ ← 2 ⍟ 16
 ⎕ ← 2 ⍟ 32
 ⎕ ← 10 ⍟ 100 1000 10000 100000
}
 fn()
2
3
4
5
2 3 4 5

Page 46

Visual APL Programmer's Reference
| Magnitude (Absolute Value) (Abs)

The Magnitude function can act as either a monadic or dyadic primitive.
result ← | expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Magnitude function expands the Math.Abs method to work with numeric arrays.

Math.Abs returns the absolute value of a specified number.

Example

function fn() {
 ⎕ ← ∣ 10
 ⎕ ← ∣ ¯10
 ⎕ ← ∣ 10 ¯10 ¯3 2 ¯1
}

 fn()
10
10
10 10 3 2 1

Page 47

Visual APL Programmer's Reference
≡ Match (Identity)

The Match function can act as either a monadic or dyadic primitive.
result ← expr1 ≡ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Match function returns a result of either 1 or 0. The result is 1 if expr1 and expr2 are identical in data,
shape, rank, and depth, at all levels of nesting in expr1 and expr2. Otherwise, the result is 0.

Example

function fn() {
 a = 1 2 3
 b = 1 2 3
 ⎕ ← a ≡ b
 a = 1
 b = 1
 ⎕ ← a ≡ b
 a = "test" "what"
 b = 1 2 3 "what"
 ⎕ ← a ≡ b
 a = "more" 1 2 3 "of" 4 5 6
 b = "more" 1 2 3 "of" 4 5 6
 ⎕ ← a ≡ b
 a = 1 2 3
 b = 3 3 ⍴ ⍳ 9
 ⎕ ← a ≡ b
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← a ≡ b
}
 fn()
1
1
0
1
0
1

Page 48

Visual APL Programmer's Reference
⌹ Matrix Divide

The Matrix Divide function can act as either a monadic or dyadic primitive.
result ← expr1 ⌹ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Solve, or least squares fit, a set of simultaneous equations where expr1 is the vector of constants, and expr2
is a matrix of coefficients.

Example

function fn() {
 // solve these linear equations using
 // matrix divide
 // 1x + 3y = 31
 // 4x + 4y = 68
 // 6x + 7y = 109
 ⎕ ← 31 68 109 ⌹ 3 2 ⍴ 1 3 4 4 6 7
}
 fn()
10 7

Page 49

Visual APL Programmer's Reference
⌹ Matrix Inverse

The Matrix Inverse function can act as either a monadic or dyadic primitive.
result ← ⌹ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Calculate the matrix inverse of expr1.

Example

function fn() {
 ⎕ ← ⌹ 3
 ⎕ ← ⌹ 3 2
 ⎕ ← ⌹ 3 2 2
 ⎕ ← ⌹ 3 2 2 3
 ⎕ ← ⌹ 2 2 ⍴ 3 2 2 3
}
 fn()
0.3333333333
0.2307692308 0.1538461538
0.1764705882 0.1176470588 0.1176470588
0.1153846154 0.07692307692 0.07692307692 0.1153846154
 0.6 ¯0.4
 ¯0.4 0.6

Page 50

Visual APL Programmer's Reference
⌈ Maximum (Max)

The Maximum function can act as either a monadic or dyadic primitive.
result ← expr1 ⌈ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Maximum function returns the larger of two specified numbers.

Example

function fn() {
 ⎕ ← 4 ⌈ 20
 ⎕ ← ¯3 ⌈ ¯6
 ⎕ ← 10 ⌈ 11 5 13 6
 ⎕ ← ¯5 ⌈ 10 ¯20 4 ¯2
 ⎕ ← 5 4 5 4 ⌈ 6 3 4 6
}
 fn()
20
¯3
11 10 13 10
10 ¯5 4 ¯2
6 4 5 6

Page 51

Visual APL Programmer's Reference
∊ Member (Is Element Of)

The Member function can act as either a monadic or dyadic primitive.
result ← expr1 ∊ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Implicit argument: ⎕CT

The Member function returns an integer 1 or 0, indicating whether expr1 occurs within expr2. A result of 1
indicates that expr1 occurs in expr2. Otherwise, the result is 0.

Example

function fn() {
 ⎕ ← 1 ∊ 1 2 3 1 2 3
 ⎕ ← 1 2 3 ∊ ⍳ 9
 ⎕ ← 30 40 1 2 ∊ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) ∊ ⍳ 5
 ⎕ ← "hello" "world" ∊ "what" "a" "world"
 ⎕ ← "testing" (1 2 3) ∊ (1 2 3) "testing"
}
 fn()
1
1 1 1
0 0 1 1
 1 1 1
 1 1 0
 0 0 0
0 1
1 1

Page 52

Visual APL Programmer's Reference
⌊ Minimum (Min)

The Minimum function can act as either a monadic or dyadic primitive.
result ← expr1 ⌊ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Minimum function returns the larger of two specified numbers.

Example

function fn() {
 ⎕ ← 4 ⌊ 20
 ⎕ ← ¯3 ⌊ ¯6
 ⎕ ← 10 ⌊ 11 5 13 6
 ⎕ ← ¯5 ⌊ 10 ¯20 4 ¯2
 ⎕ ← 5 4 5 4 ⌊ 6 3 4 6
}
 fn()
4
¯6
10 5 10 6
¯5 ¯20 ¯5 ¯5
5 3 4 4

Page 53

Visual APL Programmer's Reference
× Multiply

The Multiply function can act as either a monadic or dyadic primitive.
result ← expr1 × expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The multiplication function (×) computes the product of its operands. All numeric types have predefined
multiplication operators.

User-defined types can contain cross language overloads to the × operator.

Example

function fn() {
 ⎕ ← 2 × 2
 ⎕ ← 2 × 1 2 3
 ⎕ ← 2 3 4 × 1 2 3
 ⎕ ← 2 × 3 3 ⍴ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) × 3 3 ⍴ ⍳ 9
 ⎕ ← (1 2 3) (1 2 3) × (4 5 6) (5 6 7)
 ⎕ ← 1 2 3 × double.PositiveInfinity
}
 fn()
4
2 4 6
2 6 12
 0 2 4
 6 8 10
 12 14 16
 0 1 4
 9 16 25
 36 49 64
 4 10 18 5 12 21
Infinity Infinity Infinity

Page 54

Visual APL Programmer's Reference
 Nand

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical NAND of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ⍲ 1 0 1 0
 ⎕ ← 0 1 0 1 ⍲ 0 0 0 0
 ⎕ ← 1 ⍲ 1
 ⎕ ← 1 ⍲ 0
 ⎕ ← 0 ⍲ 0
 ⎕ ← 1 2 3 4 ⍲ 4 3 2 1
 ⎕ ← 1 2 3 4 ⍲ 0 0 0 0
}

 fn()
0 1 0 1
1 1 1 1
0
1
1
0 0 0 0
1 1 1 1

Page 55

Visual APL Programmer's Reference
⍟ Natural Logarithm (NatLog)

The Natural Logarithm function can act as either a monadic or a dyadic primitive.
result ← ⍟ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Natural Logarithm function expands the Math.Log method to work with numeric arrays.

Math.Log Returns the natural (base e) logarithm of a specified number.

Example

function fn() {
 ⎕ ← ⍟ 0
 ⎕ ← ⍟ 1
 ⎕ ← ⍟ 2.7182818284
 ⎕ ← ⍟ 2.7182818284*2
}
-Infinity
0
1
2

Page 56

Visual APL Programmer's Reference
- Negative (Negate)

The Negate function can act as either a monadic or a dyadic primitive.
result ← - expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Negative function performs the negate operation on expr1. Negate (-) operators are predefined for all
numeric types.

User-defined types can contain cross language overloads to the - operator.

Example

function fn() {
 ⎕ ← -5
 ⎕ ← -5 6 7
 ⎕ ← -5 ¯6 ¯7
 ⎕ ← -3 3 ⍴ ⍳ 9
}
 fn()
¯5
¯5 ¯6 ¯7
¯5 6 7
 0 ¯1 ¯2
 ¯3 ¯4 ¯5
 ¯6 ¯7 ¯8

Page 57

Visual APL Programmer's Reference
 Nor

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical NOR of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ⍱ 1 0 1 0
 ⎕ ← 0 1 0 1 ⍱ 0 0 0 0
 ⎕ ← 1 ⍱ 1
 ⎕ ← 1 ⍱ 0
 ⎕ ← 0 ⍱ 0
 ⎕ ← 1 2 3 4 ⍱ 4 3 2 1
 ⎕ ← 1 2 3 4 ⍱ 0 0 0 0
}

 fn()
0 1 0 1
1 0 1 0
0
0
1
0 0 0 0
0 0 0 0

Page 58

Visual APL Programmer's Reference
~ Not

The ~ function performs a logical NOT operation on its operand.
result ← ~ expr1

Where:

result
An expression.

expr1
An expression.

Rem arks

Monadic ~ functions are predefined for the number types. For number types and arrays of numbers, ~
computes the logical NOT of its operand.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← ∼ 1 0 1 0
 ⎕ ← ∼ 0 0 0 0
 ⎕ ← ∼ 1
 ⎕ ← ∼ 0
 ⎕ ← ∼ 4 3 2 1
}

 fn()
0 1 0 1
1 1 1 1
0
1
0 0 0 0

Page 59

Visual APL Programmer's Reference
≠ Not Equality (Not Approximately Equal)

The Not Approximately Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≠ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Not Approximately Equal function returns a 0 if expr1 is equal to expr2, or if expr2 is within ⎕CT of expr1.
 Otherwise, the return is 1.

Example

function fn() {
 ⎕ ← 10 ≠ 12
 ⎕ ← 10 ≠ 9 10 11
 ⎕ ← 10 ≠ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≠ 1 2 3
 ⎕ ← 1 2 3 ≠ 1+1 2 3
 ⎕ ← 1 2 3 ≠ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≠ 3 3 ⍴ 10 11
}
 fn()
1
1 0 1
 1 1 1
 1 1 0
 1 1 1
0 0 0
1 1 1
1 1 1
 1 1 1
 1 1 1
 1 1 1

Page 60

Visual APL Programmer's Reference
∨ Or

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical OR of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ∨ 1 0 1 0
 ⎕ ← 0 1 0 1 ∨ 0 0 0 0
 ⎕ ← 1 ∨ 1
 ⎕ ← 1 ∨ 0
 ⎕ ← 0 ∨ 0
 ⎕ ← 1 2 3 4 ∨ 4 3 2 1
 ⎕ ← 1 2 3 4 ∨ 0 0 0 0
}

 fn()
1 0 1 0
0 1 0 1
1
1
0
1 1 1 1
1 1 1 1

Page 61

Visual APL Programmer's Reference
∘ . Outer Product

The Outer Product function can act as either a monadic or dyadic primitive.
result ← expr1 ∘ . operatorexpr1 expr2

Where:
result

An expression.
expr1

An expression.
operatorexpr1

An operator expression.
expr2

An expression.

Rem arks

The Outer Product function is a specialized short hand construct simulating two nested for loops.

The Outer Product function creates its result by taking one element at a time from expr1, and calling the
dyadic function specified by operatorexpr1 with each element of expr2. Once the first element from expr1
has been combined with every element from expr2, the next element from expr1, is taken, and the process is
repeated, until each element of expr1 has been combined with every element of expr2, through the dyadic
operation specified in operatorexpr1.

Example

function fn() {
 ⎕ ← "sample 1"
 ⎕ ← 1 ∘ .+100 100 100
 ⎕ ← "sample 2"
 ⎕ ← 10 10 10 ∘ .+100 100 100
 ⎕ ← "sample 3"
 ⎕ ← 11 12 13 ∘ .+100 100 100
 ⎕ ← "sample 4"
 ⎕ ← 11 12 13 ∘ .+3 3 ⍴ 100 100 100
 ⎕ ← "sample 5"
 ⎕ ← 11 12 13 ∘ .+3 3 ⍴ ⍳ 9
}
 fn()
sample 1
 101 101 101
sample 2
 110 110 110
 110 110 110
 110 110 110
sample 3
 111 111 111
 112 112 112
 113 113 113
sample 4
 111 111 111
 111 111 111
 111 111 111

 112 112 112
 112 112 112
 112 112 112

 113 113 113
 113 113 113
 113 113 113
sample 5
 11 12 13
 14 15 16
 17 18 19

 12 13 14
 15 16 17
 18 19 20

 13 14 15
 16 17 18
 19 20 21

Page 62

Page 63

Visual APL Programmer's Reference
⊂ Partition (Pattern Enclose)

The Partition function can act as either a monadic or dyadic primitive.
result ← expr1 ⊂ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Partition function splits expr2 into a nested vector, according to the enclosure pattern specified by expr1.

The rules for structuring an enclosure pattern are as follows:

 If an element of expr1 is greater than (>) the previous element of expr1, than a new nesting group is
begun, and the previous group is closed.

 If an element of expr1 is less than or equal (<=) the previous element of expr1, then the corresponding
element of expr2 is included in the current nesting group.

 If an element of expr1 is equal to 0, than the corresponding element of expr2 is not included in the result.

Example

function fn() {
 a = 1 0 1 ⊂ 10 20 30
 ⎕ ← a
 ⎕ ← ⍴
 a = 1 0 1 ⊂ 3 3 ⍴ ⍳
 ⎕ ← a
 ⎕ ← ⍴
 a = 1 1 1 2 1 1 2 1 1 ⊂ ⍳
 ⎕ ← a
 ⎕ ← ⍴
 a = 1 1 1 2 1 1 ⊂ 2 6 ⍴ ⍳ 2
 ⎕ ← a
 ⎕ ← ⍴
}

 fn()
 10 30
2
 0 2
 3 5
 6 8
3 2
 0 1 2 3 4 5 6 7 8
3
 0 1 2 3 4 5
 6 7 8 9 10 11
2 2

Page 64

Visual APL Programmer's Reference
○ Pi Times

The PiTimes function can act as either a monadic or dyadic primitive.
result ← ○ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The PiTimes function multiplies expr1 by the system constant Math.PI.

At the time of this writing, the Math.PI system constant was held at: 3.14159265358979323846

Example

function fn() {
 ⎕ ← ○ 1
 ⎕ ← ○ 2
 ⎕ ← ○ 1 2 ¯3
}
 fn()
3.141592654
6.283185307
3.141592654 6.283185307 ¯9.424777961

Page 65

Visual APL Programmer's Reference
 Pick

The Pick function can act as either a monadic or dyadic primitive.
result ← expr1 ⊃ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: IO

The Pick function indexes into expr2 at the index expr1, and discloses the result.

If the length of expr1 is 1, expr1 is used as an index into expr2, and the element produced from that index
operation is then disclosed once, so that one level of nesting is removed from the element data.

If expr2 has rank greater than 1, then expr1 should contain an enclosed vector of indices, where the length of
the vector is the same as the rank of expr2. Because Pick performs an index into expr2 using the element
from expr1, the enclosed vector can be any value that is valid for indexing into expr2 using bracket indexing.

If the length of expr1 is more than 1, a progressive Pick operation is performed. First, the last element of
expr1 is used to Pick data from expr2. Then, the next element of expr1 is used to Pick data from the result
returned by the first Pick. This continues until all elements of expr1 have been processed. This functionality
allows the short hand of only having to make a single call to the Pick function to perform a progressive Pick
operation.

Example

function fn() {
 ⎕ ← 1 ⊃ 1 2 3
 ⎕ ← 2 ⊃ (1 2 3) (4 5 6) (7 8 9)
 ⎕ ← 1 ⊃ 2 ⊃ (1 2 3) (4 5 6) (7 8 9)
 ⎕ ← 1 2 ⊃ (1 2 3) (4 5 6) (7 8 9)
 ⎕ ← 1 2 ⊃ "hello" "world" "more"
 ⎕ ← (⊂ (1 2) 2) ⊃ 3 3 ⍴ ⍳ 9
}

 fn()
2
7 8 9
8
6
r
5 8

Page 66

Visual APL Programmer's Reference
* Power

The Power function can act as either a monadic or dyadic primitive.
result ← expr1 * expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Power function returns expr1 raised to the expr2 power.

The Power function expands the Math.Pow method to work with numeric arrays.

Math.Pow returns a specified number raised to a specified power.

Note: For a complete and extensive list of how Math.Pow performs with special Double and Float values, such
as Double.NaN and Double.PositiveInfinity, see the Math.Pow documentation available on Microsoft.com

Example

function fn() {
 ⎕ ← 10 * 0
 ⎕ ← 10 * 2
 ⎕ ← 2.2 * 2
 ⎕ ← 1 2 3 * 2
 ⎕ ← 1 2 3 * 2 3 4
 ⎕ ← (3 3 ⍴ ⍳ 9) * 2
 ⎕ ← (3 3 ⍴ ⍳ 9) * 3 3 ⍴ ⍳ 9
}
 fn()
1
100
4.84
1 4 9
1 8 81
 0 1 4
 9 16 25
 36 49 64
 1 1 4
 27 256 3125
 46656 823543 16777216

Page 67

Visual APL Programmer's Reference
, Ravel

The Ravel function can act as either a monadic or dyadic primitive.
result ← , expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Ravel function returns a vector which contains all elements of expr1, regardless of the shape of expr1.

If expr1 is a scalar, the result vector has a length of 1 and contains 1 element.

If expr1 is an array of rank 2, with 2 rows and 2 columns, the result has a length of 4 and contains 4
elements.

The Ravel function never changes the nesting level of expr1, as opposed to the Enlist function, which
completely flattens an array, which includes removing all levels of nesting present in the data.

Example

function fn() {
 a = ,1
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ,1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ,3 3 ⍴ ⍳ 9
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ,(1 2 3) (4 5 6)
 ⎕ ← a
 ⎕ ← ⍴ a
}
 fn()
1
1
1 2 3
3
0 1 2 3 4 5 6 7 8
9
 1 2 3 4 5 6
2

Page 68

Visual APL Programmer's Reference
÷ Reciprocal

The Reciprocal function can act as either a monadic or dyadic primitive.
result ← ÷ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Reciprocal function applies the mathematical reciprocal operation to its operand expr1, or 1 divided by
expr1.

Example

function fn() {
 ⎕ ← ÷1
 ⎕ ← ÷1 2 3
 ⎕ ← ÷3 3 ⍴ 1 2 3 4 5 6 7 8 9
 ⎕ ← ÷ 1 ¯2 ¯3
}
 fn()
1
1 0.5 0.3333333333
 1 0.5 0.3333333333
 0.25 0.2 0.1666666667
 0.1428571429 0.125 0.1111111111
1 ¯0.5 ¯0.3333333333

Page 69

Visual APL Programmer's Reference
/ Reduce (Reduction)

Progressively performs the specified function between each element of expr1
return ← operatorexpr1 / expr1
return ← operatorexpr1 expr1
return ← expr2 operatorexpr1 / expr1
return ← expr2 operatorexpr1 expr1

Where:

result
An expression.

operatorexpr1
An operator expression.

expr1
An expression.

expr2
An expression.

Rem arks

The Reduce function requires that operatorexpr1 evaluate to a dyadic function to be a valid argument
expression.

To see the effect of passing both expr1 and expr2 to the Reduce operator, please read below under: Calling
the Reduce operator dyadically

Processing Order:

The Reduce operator is a specialized short hand construct simulating a single for loop, which progressively
calls the dyadic operatorexpr1 with the result of the last call to operatorexpr1 as its right operand, and an
element taken in receding order from the end of expr1 as its left operand.

The Reduce function works exactly as a reverse for loop, where it iteratively calls a function with the result of
the last iteration of the for loop as the right argument to the function, and the left argument is the next
element in line from expr1. Note that the for loop is a reverse for loop in that it does not take elements from
expr1 starting at the first and proceeding to the last, but rather begins taking elements from end of expr1,
until it reaches the first element.

Forms of Reduce:

There are two forms of the Reduce function:

/ (Reduce Last Dimension) and (Reduce First Dimension)

Both forms of Reduce perform exactly the same operation, except that they have a different default axis over
which they apply the action on the data from expr1. These two forms of Reduce are provided as a short hand
when processing data, since most data processing occurs on either the first of the last dimension of data. If
an axis is explicitly specified, / (Reduce Last Dimension) and (Reduce First Dimension) perform exactly the same
operations.

Calling the Reduce operator dyadically:

Because of the nature of the Reduce operator, only data from expr1 is ever passed to the dyadic operator
specified in operatorexpr1. With this being the case, data passed to Reduce through expr2 is not used as the
left argument in the call to operatorexpr1, but is rather an argument to the Reduce operator which denotes a
special mode of processing the data in expr1. For more information on this mode of Reduce processing,
please see: Special Reduce Processing.

Example

function fn() {
 ⎕ ← +/1 2 3
 ⎕ ← +/3 3 ⍴ ⍳ 9
 ⎕ ← ×/1 2 3
 ⎕ ← ×/3 3 ⍴ ⍳ 9
 ⎕ ← 3+/1 2 3
 ⎕ ← 3 3+/1 2 3 4 5 6 7 8 9 10 11 12
 ⎕ ← 3 3+/2 12 ⍴ 1 2 3 4 5 6 7 8 9 10 11 12
}

 fn()

Page 70

6
3 12 21
6
0 60 336
6
6 15 24 33
 6 15 24 33
 6 15 24 33

Page 71

Visual APL Programmer's Reference
⍴ Reshape

The Reshape function can act as either a monadic or dyadic primitive.
result ← expr1 ⍴ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Reshape function changes the shape of expr2 to the shape specified in expr1, repeating or removing data
as necessary.

expr1 should be an integral vector.

expr2 can be an array of any kind and shape.

If the number of elements required to fill an array of shape expr1 exceeds the number of elements available
in expr2, the elements of expr2 are repeated as necessary, until all elements of the return array are filled.

If the number of elements required to fill an array of shape expr1 is less than the number of elements
present in expr2, than only as many elements as are needed to fill the result array are taken from expr2.

Following these definitions, if the number of elements required to fill an array of shape expr1 matches the
number of elements present in expr2, than no repeating or eliding of elements is performed.

Example

function fn() {
 ⎕ ← "using shape to create a vector"
 a = 3 ⍴ 0
 ⎕ ← a
 ⎕ ← ⎕ dr a
 ⎕ ← "using typing to create a vector"
 ⎕ ← "creates vector with default value"
 ⎕ ← "much quicker than shape"
 a = new int[3]
 ⎕ ← a
 ⎕ ← ⎕ dr a
 a = new double[3]
 ⎕ ← a
 ⎕ ← ⎕ dr a
 ⎕ ← "create vectors with given values"
 ⎕ ← 3 ⍴ 1
 ⎕ ← "create 2 dimensional arrays"
 ⎕ ← 3 3 ⍴ ⍳ 9
 ⎕ ← "create 3 dimentional and n dimensional arrays"
 ⎕ ← 3 3 3 ⍴ ⍳ 27
 ⎕ ← "use nested arrays"
 ⎕ ← 3 ⍴ ⊂ "test"
 ⎕ ← 3 ⍴ "test" (1 2 3)
 ⎕ ← 3 3 ⍴ "test" (1 2 3)

}
 fn()
using shape to create a vector
0 0 0
323
using typing to create a vector
creates vector with default value
much quicker than shape
0 0 0
323
0 0 0
645
create vectors with given values
1 1 1
create 2 dimensional arrays
 0 1 2

Page 72

 3 4 5
 6 7 8
create 3 dimentional and n dimensional arrays
 0 1 2
 3 4 5
 6 7 8

 9 10 11
 12 13 14
 15 16 17

 18 19 20
 21 22 23
 24 25 26
use nested arrays
 test test test
 test 1 2 3 test
test 1 2 3test
 1 2 3test 1 2 3
test 1 2 3test

Page 73

Visual APL Programmer's Reference
| Residue

The Residue function can act as either a monadic or dyadic primitive.
result ← expr1 | expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Implicit Argument: ⎕ CT

The residue operator (|) computes the remainder after dividing expr2 by expr1.

Example

function fn() {
 ⎕ ← 10 ∣ 10 11 12 20 21 22
 ⎕ ← 10 ∣ 1 2 3
 ⎕ ← 10 11 12 ∣ 10 11 12
 ⎕ ← 10 ∣ 3 3 ⍴ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) ∣ 3 3 ⍴ ⍳ 9
 ⎕ ← 10 ∣ 10.1 10.2
}
 fn()
0 1 2 0 1 2
1 2 3
0 0 0
 0 1 2
 3 4 5
 6 7 8
 0 0 0
 0 0 0
 0 0 0
0.1 0.2

Page 74

Visual APL Programmer's Reference
? Roll and Deal

The Deal function can act as either a monadic or dyadic primitive.
result ← expr1 ? expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO, ⎕ RL

Roll, monadic ?:

The Roll function selects a random integer between ⎕IO and (expr2 - ⎕IO), for each element in expr2. expr2
should evaluate to a single integer or an integer vector.

Deal, dyadic ?:

The Deal function creates a vector(s) of unique random integers, each equal in length to the each integer
specified in expr1. For each element of expr1, the corresponding integer in expr2 must be of a greater than
or equal value.

Example

function fn() {
 ⎕ ← ?6
 ⎕ ← 6 ? 6
 ⎕ ← 6 6 ? 6
 ⎕ ← 6 6 ? 6 6
 ⎕ ← ? 3 3 ⍴ 6
 ⎕ ← 6 ? 2 2 ⍴ 6
 ⎕ ← 6 10 ? 6 10
 ⎕ ← ? 10 5 20 8
}
 fn()
5
5 3 4 0 2 1
 3 5 2 0 4 1 1 4 0 5 3 2
 5 0 4 1 3 2 0 3 1 4 2 5
 5 2 5
 0 4 0
 3 0 1
 2 5 1 4 0 3 4 0 5 2 3 1
 2 0 1 3 4 5 3 1 2 5 4 0
 1 0 3 2 4 5 0 7 1 6 4 5 2 8 3 9
1 0 11 4

Page 75

Visual APL Programmer's Reference
⌽ ⊖ Rotate and Reverse

The Rotate function can act as either a monadic or dyadic primitive.
result ← expr1 ⌽ expr2
result ← expr1 ⊖ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Rotate function rotates the data supplied by expr2 by the number if iterations specified by expr1.

The Reverse function, or the monadic form of Rotate, completely reverses the contents of expr2.

Dyadic Forms of Rotate:

The Rotate function has two dyadic forms:
-
⌽ (Rotate Last Dimension) and ⊖ (Rotate First Dimension)

The only difference between the two dyadic forms of Rotate is the default axis on which they rotate data in
expr2. If the axis is explicitly specified, both forms produce the same result.

Monadic Forms of Reverse:

The Reverse function has two monadic forms:

⌽ (Reverse Last Dimension) and ⊖ (Reverse First Dimension)

The only difference between the two monadic forms of Reverse is the default axis on which they reverse data
in expr2. If the axis is explicitly specified, both forms produce the same result.

Example

function fn1() {
 ⎕ ← ⌽ "hello world"
 ⎕ ← ⌽ 1 2 3 4.5 4.6 4.7
 ⎕ ← ⌽ 3 3 ⍴ ⍳ 9
 ⎕ ← 5 ⌽ "hello world"
 ⎕ ← 1 ⌽ 3 3 ⍴ ⍳ 9
}
 fn1()
dlrow olleh
4.7 4.6 4.5 3 2 1
 2 1 0
 5 4 3
 8 7 6
 worldhello
 1 2 0
 4 5 3
 7 8 6

function fn2() {
 ⎕ ← "rotate scalar"
 ⎕ ← ⊖ 1
 ⎕ ← "rotate vector"
 ⎕ ← ⊖ 1 2 3
 ⎕ ← "rotate matrix"
 ⎕ ← ⊖ 3 3 ⍴ ⍳ 9
 ⎕ ← "specify amount to rotate axis"
 ⎕ ← 1 2 ¯1 ⊖ 3 3 ⍴ ⍳ 9
 ⎕ ← ⊖ 2 5 ⍴ "helloworld"
}

Page 76

 fn2()
rotate scalar
1
rotate vector
3 2 1
rotate matrix
 6 7 8
 3 4 5
 0 1 2
specify amount to rotate axis
 3 7 8
 6 1 2
 0 4 5
world
hello

Page 77

Visual APL Programmer's Reference

\ ⍀ Scan

The Scan operator can act as either a monadic or dyadic primitive.
result ← operatorexpr1 \ expr1

Where:
result

An expression.
operatorexpr1

An operator expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Scan operator is a specialized short hand construct simulating a repeated call to the Reduce operator.

The Scan operator runs the Reduce operation on all element of expr2, then on (expr2.Length - 1) elements
of expr2, then on (expr2.Length - 2) elements of expr2. Scan continues to decrement the number of
elements on which it performs the Reduce operation, until there are no elements left across which to Reduce.
 The result of the Scan operation is the concatenated result of each call that was made to the Reduce
operator during the Scan.

The result of each Scan operation is inserted into the result vector beginning at the last position and ending at
the first, so that the result of the first Reduce operation is assigned into the last element of the return vector,
and the last Reduce operation performed by the Scan is assigned to the first element of the result vector.

Example

function fn() {
 ⎕ ← +\1
 ⎕ ← +\ ⍳ 9
 ⎕ ← +\3 3 ⍴ ⍳ 9
 ⎕ ← 3+\1 2 3 4 5 6 7 8 9 10 11 12
 ⎕ ← 3 3+\1 2 3 4 5 6 7 8 9 10 11 12
 a ← ,\"ab" "cd" "ed"
 ⎕ ← a
 a ← ,\2 6 ⍴ 10+ ⍳ 12
 ⎕ ← a
}
 fn()
1
0 1 3 6 10 15 21 28 36
 0 1 3
 3 7 12
 6 13 21
6 9 12 15 18 21 24 27 30 33
6 15 24 33
 ab cdab edcdab
 10 10 11 10 11 12 10 11 12 13 10 11 12 13 14 10 11 12 13 14 15
 16 16 17 16 17 18 16 17 18 19 16 17 18 19 20 16 17 18 19 20 21

Page 78

Visual APL Programmer's Reference
⍴ Shape

The Shape function can act as either a monadic or dyadic primitive.
result ← ⍴ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Shape function returns a vector of integers which are the current lengths of the dimensions of expr2.

Example

function fn() {
 ⎕ ← "shape of scalar"
 ⎕ ← ⍴ 1
 ⎕ ← "shape of vector"
 ⎕ ← ⍴ ,1
 ⎕ ← ⍴ 1 2 3
 ⎕ ← ⍴ 3 3 ⍴ ⍳ 9
 ⎕ ← ⍴ 1 "abc" (2 3 4) "more"
}
 fn()
shape of scalar

shape of vector
1
3
3 3
4

Page 79

Visual APL Programmer's Reference
× Sign

The Sign function can act as either a monadic or dyadic primitive.
result ← × expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Returns a value indicating the sign of a number, where a negative number has a sign of -1, a positive number
has a sign of 1, and a 0 has a sign of 0.

Example

function fn() {
 ⎕ ← × 10
 ⎕ ← × 0
 ⎕ ← × ¯10
 ⎕ ← × 10 0 ¯10
 ⎕ ← × 3 3 ⍴ 10 0 ¯10
}

 fn()
1
0
¯1
1 0 ¯1
 1 0 ¯1
 1 0 ¯1
 1 0 ¯1

Page 80

Visual APL Programmer's Reference
⌷ Squad Index

The Squad Index function can act as either a monadic or dyadic primitive.
result ← expr1 ⌷ expr2

Where:

result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Provides a primitive for indexing.

expr1 is any array which is valid for bracket indexing.

Example

function fn() {
 a = 1 2 3 4
 ⎕ ← "index a vector with a scalar"
 ⎕ ← 1 ⌷ a
 ⎕ ← "index a vector with a vector"
 ⎕ ← (1 2) ⌷ a
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← "index a matrix with a vector"
 ⎕ ← 1 1 ⌷ a
 ⎕ ← "index a matrix specifying axis"
 ⎕ ← 1 ⌷ [1] a
 ⎕ ← "index a matrix with a vector"
 ⎕ ← (1 2) ⌷ a
 ⎕ ← "index a matrix with a vector and scalar"
 ⎕ ← (1 2) 1 ⌷ a
 ⎕ ← "index a matrix with two vectors"
 ⎕ ← (1 2) (,1) ⌷ a
}
 fn()
index a vector with a scalar
2
index a vector with a vector
2 3
index a matrix with a vector
4
index a matrix specifying axis
1 4 7
index a matrix with a vector
5
index a matrix with a vector and scalar
4 7
index a matrix with two vectors
 4
 7

Page 81

Visual APL Programmer's Reference
- Subtract

The Subtract function can act as either a monadic or dyadic primitive.
result ← expr1 - expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Subtract functions subtract the second operand from the first. Subtract functions are predefined for all
numeric and enumeration types

User-defined types can contain cross language overloads to the - operator.

Example

function fn() {
 ⎕ ← 2 - 1
 ⎕ ← 2 - 1 2 3
 ⎕ ← 1 2 3 - 1 2 3
 ⎕ ← 1.1 1.2 1.3 - 1
 ⎕ ← 1.1 1.2 1.3 - 1.1 1.2 1.3
 ⎕ ← 1 - 3 3 ⍴ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) - 3 3 ⍴ ⍳ 9
}
 fn()
1
1 0 ¯1
0 0 0
0.1 0.2 0.3
0 0 0
 1 0 ¯1
 ¯2 ¯3 ¯4
 ¯5 ¯6 ¯7
 0 0 0
 0 0 0
 0 0 0

Page 82

Visual APL Programmer's Reference
↑ Take

The Take function can act as either a monadic or dyadic primitive.
result ← expr1 ↑ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Take function returns data from dimensions of expr2, according to the amounts specified in expr1.

The length of expr1 should match the rank of expr2, and each element of expr1 specifies the amount of data
to Take from the respective dimension of expr2.

The elements of expr1 can be either negative, positive, or 0. If an element of expr1 is positive, that length is
taken from the related dimension of expr2. If an element of expr1 is negative, that length is taken from
opposite end of the related dimension of expr2. If an element of expr1 is 0, the data is elided from the
resultant dimension of the result.

Example

function fn() {
 ⎕ ← 1 ↑ 10
 ⎕ ← 2 ↑ 10
 ⎕ ← 2 ↑ "a"
 ⎕ ← 10 ↑ 10
 ⎕ ← 2 2 ↑ 3 3 ⍴ ⍳ 9
 ⎕ ← ¯2 ¯2 ↑ 3 3 ⍴ ⍳ 9
 ⎕ ← 4 ↑ (1 2) (3 4)
}
 fn()
10
10 0
a
10 0 0 0 0 0 0 0 0 0
 0 1
 3 4
 4 5
 7 8
 1 2 3 4 0 0 0 0

Page 83

Visual APL Programmer's Reference
⊥ To Base 10 (Decode)

Produces a single number of radix base 10 from expr2, where expr2 is a vector of numbers, and expr1 is
a vector of numbers specifying the radix of each element of expr2.

result ← expr1 ⊥ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

If expr1 is a scalar, expr1 is considered to be the same length as expr2 (scalar expansion).

Example

function fn() {
 ⎕ ← 10 10 10 10 ⊥ 1 7 7 6
 ⎕ ← "Convert 2 days, 12 hours, 22 minutes to total minutes"
 ⎕ ← 1 24 60 ⊥ 2 12 22
 ⎕ ← "Convert 8 bits to base 10 number"
 ⎕ ← 2 2 2 2 2 2 2 2 ⊥ 0 0 0 0 1 0 1 0
}
 fn()
1776
Convert 2 days, 12 hours, 22 minutes to total minutes
3622
Convert 8 bits to base 10 number
10

Page 84

Visual APL Programmer's Reference
⍉ Transpose

The Transpose function can act as either a monadic or dyadic primitive.
result ← expr1 ⍉ expr2
result ← ⍉ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dyadic Transpose:

The Transpose function creates a result array that contains all elements of expr2, except that the dimensions
of the data, and consequently the positions of the data in the result array, are remapped according to the
remap sequence specified by expr1.

The length of expr1 must be equal to the rank of expr2.

expr1 must be a vector of indices, where no index is greater than the rank of expr2.

If all elements of expr1 are unique, then following definition of Transpose applies:

The result of Transpose is obtained by iterating sequentially through each element of expr2, determining the
array index if that element, remapping that array index according to expr1, and then assigning the indexed
element into the result array at the remapped index.

If elements of expr1 are repeated, then the following definition applies:

The elements of the result of Transpose are the elements in expr2 where the following definition holds true:

An element is selected from expr2, where the array index of that element has repeated
indices at the same locations as the repeated indices in expr1.

Monadic Transpose:

If the left argument to the Transpose function is omitted, the dimensions of expr2 are reversed. The result of
Monadic Transpose can be replicated with dyadic Transpose, if the supplied expr1 is a reversed vector of
indices from 1 to the rank of expr2.

Example

function fn() {
 ⎕ ← ⍉ 1
 ⎕ ← ⍉ 1 2 3
 ⎕ ← ⍉ 2 4 ⍴ ⍳ 8
 ⎕ ← "specify axis"
 ⎕ ← 0 1 ⍉ 2 4 ⍴ ⍳ 8
 ⎕ ← "reorder axis"
 ⎕ ← 1 0 ⍉ 2 4 ⍴ ⍳ 8
 ⎕ ← "reorder axis"
 ⎕ ← 2 0 1 ⍉ 2 4 2 ⍴ ⍳ 16
}
 fn()
1
1 2 3
 0 4
 1 5
 2 6
 3 7
specify axis
 0 1 2 3
 4 5 6 7
reorder axis
 0 4

Page 85

 1 5
 2 6
 3 7
reorder axis
 0 8
 1 9

 2 10
 3 11

 4 12
 5 13

 6 14
 7 15

Page 86

Visual APL Programmer's Reference
○ Trigonometric Functions

The Trigonometric function can act as either a monadic or dyadic primitive.
result ← expr1 ○ expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

This primitive provides array extensions to all of the System.Math libraries, and also provides additional
functionallity not found on System.Math.

Valid expr1 elements and their meaning are:

¯7 - Hyperbolic Arc Tan
¯6 - Hyperbolic Arc Cos
¯5 - Hyperbolic Arc Sin
¯4 - (¯1+expr2*2)*0.5
¯3 - Arc Tan
¯2 - Arc Cos
¯1 - Arc Sin
 0 - (1-expr2*2)*0.5
 1 - Sin
 2 - Cos
 3 - Tan
 4 - (1+expr2*2)*0.5
 5 - Hyperbolic Sin
 6 - Hyperbolic Cos
 7 - Hyperbolic Tan

expr1 can be either a scalar or array, and is applied to expr2.

Example

function fn() {
 ⎕ ← 0 2 ○ .5 .5
 ⎕ ← 1 ○ .5
}
 fn()
0.8660254038 0.8775825619
0.4794255386

Page 87

Visual APL Programmer's Reference
~ Without

Dyadic function ~ evaluates whether the elements in expr1 exist in expr2, and returns those elements of
expr1 which do not exit in expr2.
result ← expr1 ~ expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dependent state: ⎕ CT

Dyadic function ~ evaluates whether the elements in expr1 exist in expr2, and returns those elements of
expr1 which do not exit in expr2.

Example

function fn() {
 ⎕ ← 1 2 3 ∼ 1 2 3 4 5 6
 ⎕ ← 1 2 3 4 5 6 ∼ 1 2 3
 ⎕ ← 1 ∼ 2
 ⎕ ← 1 ∼ 1
 ⎕ ← "test" "two" ∼ "test" "three"
}

 fn()

4 5 6
1

 two

Page 88

	Visual APL Operators
	Operators
	Add
	And
	Axis
	Binomial
	Bracket Index
	Catenate
	Ceiling
	Compress Replicate
	Depth
	Disclose (Build Array From)
	Divide
	Drop
	Each (For-Each data iteration)
	Enclose
	Enlist (Flatten Array)
	Equality (Approximately Equal)
	Execute
	Expand (Pad)
	Exponential (Exp)
	Factorial
	Find
	First
	Floor
	Format
	From Base 10 (Encode)
	Grade Down
	Grade Up
	Greater Than (Gt)
	Greater Than or Equal (Gte)
	Index Of
	Inner Product
	Interval
	Laminate
	Less Than (Lt)
	Less Than or Equal (Lte)
	Logarithm (Log)
	Magnitude (Absolute Value) (Abs)
	Match (Identity)
	Matrix Divide
	Matrix Inverse
	Maximum (Max)
	Member (Is Element Of)
	Minimum (Min)
	Multiply
	Nand
	Natural Logarithm (NatLog)
	Negative (Negate)
	Nor
	Not
	Not Equality (Not Approximately Equal)
	Or
	Outer Product
	Partition (Pattern Enclose)
	Pi Times
	Pick
	Power
	Ravel
	Reciprocal
	Reduce (Reduction)
	Reshape
	Residue
	Roll and Deal
	Rotate and Reverse
	Scan
	Shape
	Sign
	Squad Index
	Subtract
	Take
	To Base 10 (Decode)
	Transpose
	Trigonometric Functions
	Without

