
Visual APL Tutorial

This section contains a complete, start to finish tutorial on developing with the Visual APL programming

language. It discusses a wide range of language features, as well as intrinsic .NET objects, commonly used

objects for daily programming tasks.

Page 1

1 What is Visual APL?
Visual APLis a next generation APL. Specifically it is APL without lilmits and designed for the .Net

framework. The .Net framework can be looked at the ultimate batteries-included programming enviroment,

with built-in tools to accomplish almost every computing task.

Visual APLis a .Net language and a peer of C#, VB and managed C++.

Visual APL is integrated with Visual Studio 2005.

Visual APL contains the rich operator set of APL, the right to left execution, the ability to create user defined

functions, dynamically typed variables, and dynamic code execution.

However, Visual APL is much more. Visual APL also implements much of the C# language syntax. This

means that with Visual APL you can build any application, access any resource directly, and are never limited

by the language or the language's access to resources. Never again wait for the next release of APL to have

access to the latest windows controls or OS features. Best of all the enhanced syntax is based on the C#

ECMA standard.

Visual APL is also object oriented, with all the features that object orientation brings to a language.

Visual APL is fully dynamic with interactive interpretation of source code just like all APL's.

Visual APL also has static compilation which produces dll's and exe's which can be called from other .Net

languages such as C#, VB, managed C++ and many more.

Assemblies created with Visual APL are verifiable and managed. There are no native libraries referenced or

used, and all of the assemblies created are 100% .Net.

Page 2

2 What are the differences with legacy APL's?

Visual APL is APL for .Net. It is not a replication of any particular APL or APL environment. The principle

development environment is Visual Studio 2005. This means that development of Visual APL is integrated

with the development of all other .Net languages, such as C#, VB, and managed C++. However, this new

development environment brings new features and concepts when creating APL applications. Because of this

integration, Visual APL projects integrate seamlessly with other .Net language projects both during

development, working in the same solution, during debugging and at run time.

Moving existing APL code to Visual APL is trivial. Visual APL uses the unicode standards for all APL

characters, supports APL syntax, and provides a copy/paste special to facilitate moving functions. Visual APL

can also create objects which are com compatible. This means that Visual APL assemblies can be used in

legacy APLs as a com objects. So as you move your APL code to Visual APL, you can use your new .Net dll's

from your legacy APL applications.

The most significant difference between Visual APL and legacy APLs is in the use of objects and scoping.

Like legacy APLs, Visual APL has both local and global variables. However, legacy APLs have dynamic

localization in which names localized in a function definition were known to further functions invoked within it.

 According to Ken Iverson:

"This decision made it possible to pass any number of parameters to subordinate functions, and therefore

circumvented the limitation of at most two explicit arguments, but it did lead to a sometimes confusing

profusion of names localized at various levels. The introduction of atomic representation (box and enclose)

has made it convenient to pass any number of parameters as explicit arguments; in J this has been exploited

to allow a return to a simpler localization scheme in which any name is either strictly local or strictly global."

Visual APL follows the same simpler localization scheme preferred by Ken Iverson, "in which any name is

either strictly local or strictly global".

In addition, this convention brings Visual APL into compliance with all other .Net languages and makes the

integration with those languages transparent when using development systems such as Visual Studio 2005.

It is also possible to reasonably simulate the legacy dynamic localization using classes, and examples of this

have been created.

In Visual APL a variable is local to the function in which it is created unless specified as global. Visual APL

also supports the C# function syntax in addition to the traditional APL function syntax. This means that

passing variables between functions is both clear and not limited to only two variables. A function can have

an arbitrary number of named arguments, with defaults if desired, so the legacy dynamic localization is no

longer necessary.

Because legacy APLs are based on a native interpreter, they are not and can not be managed or verifiable.

This also means that APL functions which used native code, such as assembler routines, for activities such as

TEXTREPL and WHERE, are also not manageable or verifiable . These same facilities are available in

managed code, but the old assembler routines, can not be part of the managed and verifiable environment.

Objects and object oriented programming will also be a new concept for many APL programmers. At first the

idea of objects may be a bit confusing, but with a bit of use, they will become an indispensable part of

development.

Perhaps the easiest way to think about an object is to consider it a box. You can open the box and add things

to the box, change the contents of the box, but the box does not change, just it's contents. Of course, you

can also replace the box with a new box. As you use Visual APL you will find this object oriented approach

both extremely useful and also quite irritating at times.

Most importantly, by having an object oriented approach, you can now do anything any other language can

Page 3

do and access any resource, create any object any one else can, and most importantly, it makes you a first

class citizen of the programming world.

Visual APL also uses the same set of keywords that are used by C# and most other programming

languages.

Page 4

3 Is Visual APL fast?

The simple answer is that Visual APL is just as fast or faster than any .Net language. Visual APL will even

outperform C# in most cases. However, because Visual APL has a rich and robust syntax, you will discover

that performance can vary depending on how a solution is created.

The examples cover a number of methodologies for both writing code quickly and also creating the fastest

solution.

Since the .Net framework represents an advancement by approximately 5 years of all of the legacy APIs,

DLL's etc that were found in the Windows type folders, it is safe to assume that most applications will perform

better, simply because the underlying calls to databases, gui's, etc are dramatically faster. In addition,

accessing these resources is now native to Visual APL, and does not require a translation interface.

Visual APL also supports adding typing to your functions should you have a function which needs to perform

as quickly as possible. This type of coding usually occurs in less than 5% of an application, but with Visual

APL, typing is native and not an exception.

Page 5

4 Compatibility with .Net and other .Net langauges?

The .Net world is based on a scheme of top level objects called types. The primary top level type you will

create is a class. C lasses are very much like a workspace, in that they contain both methods (functions) and

fields (global variables), but they can also contain a variety of other objects, as well as other types.

To interact with the .Net world, these top level classes follow a formal naming convention.

This naming convention is designed to provide the developer with the ability to create a kind of hierarchy of

classes and bundle classes which are for a common purpose under a common name.

This grouping of classes is called a namespace.

For instance, if you were creating a class which did amortizations and a class which did financial plotting you

might want to place them together in a namespace you would name finance. So the names would be:

 finance.amortizations

 finance.finplot

As you can see, this convention is the name of the namespace followed by a dot and then the name of the

class.

We have followed this naming convention in Visual APL, so that once you have created your .Net project, any

other .Net language can load and use your application.

Page 6

5 What about workspaces?

Legacy APL workspaces have always been proprietary and would only work with a particular APL interpreter.

As a .Net language Visual APL source is kept in unicode text files which any editor can open and modify.

This is one of the principals of .Net and Visual Studio. Everything is open and readable, nothing is

proprietary.

Page 7

6 What does the source file look like?

The basic construct looks something like this:

using System

namespace mynamespace {

 public class myclass {

 ⍝ this is a global variable, and is referred
 ⍝ to as a field in .Net languages
 ga ← 100 200 300

 ⍝ these are user defined functions
 ∇ r← a add b {
 r← a+b
 }

 ∇ r← a minus b {
 r← a-b
 }

 ∇ r← conjugate b {
 r← +b
 }

 ∇ r← getga {
 r← ga
 }
 }
}

That is all there is to a basic APL workspace in a .Net text file. Note that a class is roughly equivalent to a

workspace.

The class would be referenced as mynamespace.myclass from other classes.

The using reference at the top of the sample indicates that the class you are creating will rely on the

functionality found in the .Net System. You might also have:

using System.Windows.Forms

in the event you were building an application which used windows forms.

The reason for this is that each dll or exe is only granted access to those resources it specifically requests

when being created as part of the managed and verifiable framework.

Page 8

7 Is there an Interpreter?

Yes, Visual APL still provides code interpretation on-the-fly.

You can still ⎕ def a function while you are running code.

You can run ⍎ "a← 1+1".

However, the code you create, when run on a particular machine goes through the .Net Just-In-Time compiler

to optimize performance for the machine on which the code is being executed.

Page 9

8 Visual APL Tutorial

This tutorial is an informal introduction to Visual APL. It is not meant to replicate either the information you

will find in your APL manuals or Microsoft's extremely extensive documentation of C# and .Net. While both

the APL and C# knowledge should apply in virtually all cases, this tutorial provides the basic structure of how

this works and how differences are reconciled.

As Visual APL is a .Net language, all of the .Net namespaces, types and other objects are available for use.

In fact you should discover that you can use almost all of your APL code as well as the vast majority of C#

examples. Care should be taken to check C# examples which rely on precedence, such as multiply before

addition. In these cases you may need to add parenthesis, as Visual APL executes right to left. However, our

experience is that in most cases the C# examples already use parenthesis to establish this precedence.

Page 10

9 General Overview

In the following sections, you will find a general overview of the programming practices and patterns when

using the Visual APL programming language.

Page 11

10 Using Visual APL as a desktop calculator

To display your session in Visual Studio, select the View Menu

Then Other Windows

Then C ielo Explorer

The session should remain open between closing and opening Visual Studio. You only need to reopen the

session should you close it by pressing the x close box in the upper right hand corner of the session, or

between reinstalls of Visual APL.

The session is independent from any project or solution you are currently editing or viewing in Visual Studio.

The session should appear very much like any APL session you have encountered.

For instance:

 1 2 3 + 1 2 3
2 4 6

You can make use of both .Net types you have referenced and also other dll's.

The .Net framework is broken up into parts, based on the types you will need for your project. There are

over 4,000 types in the .Net framework. At the root of these types is System. So executing the line:

using System

in your session, will assure that you have access to all of the intrinsic types in .Net, such as Int32, Int64,

UInt64, UInt64, Single, Double, String, Byte, Char, etc.

It is extremely important that Visual APL support all types created in .Net, without this it would be impossible

to integrate with other .Net programs.

For instance, when you type:

 a ← "hello"

by default a is a string type. It will work the way you expect with the APL operators, but it is a .Net String

object.

To see how this works, try this:

 a.IndexOf("el")
1

you should see a 1 returned.

Methods created on objects from other .Net languages are based on an io of 0. Obviously setting ⎕ io in

Page 12

your session will not effect the way the methods which belong to other objects work. But it will effect the APL

operators in your Assembly.

Page 13

11 APL Operators and Functions

In general the APL operators and functions included in Visual APL are designed to be compatible with IBM

APL2. There are a few exceptions based on object requirements and language compatibility.

One of those exceptions if the use of the equal (=) symbol.

The APL equals has always actually done an approximate equals, based on ⎕ct. The APL equal symbol has

always been accessed using the right alt/5 key combination. In the operator set used by Visual APL the

unicode APL symbol for approximately equal (≈) is used for APL equality comparison.

The ascii = symbol is used for assign by reference, as it is in all other computer languages.

The ← assign symbol is assign by value, the same as always in APL.

Having the new = assign by reference provides some powerful options. Remembering that everything is an

object in Visual APL, you can try the following:

 a ← 1 2 3 4 5

 b = a

 a

1 2 3 4 5

 a[1] = 500

 a

1 500 3 4 5

 b

1 500 3 4 5

This works because we have put new data in the object, but not reassigned the object. For instance if we do

this:

 a← a

 a[1] = 20

 a

1 20 3 4 5

 b

1 500 3 4 5

Then the reference is broken, and further index assignments to either a or b will not affect the other object.

Page 14

12 Strings

All strings or character arrays are unicode by definition. For compatibility with .Net, the backslash (\)is

the escape character in string parsing.

For instance:

 'hello'

hello

 'doesn\'t'

doesn't

 "doesn't"

doesn't

 '"Hello", she said.'

"Hello", she said.

 "\"Hello\", she said."

"Hello", she said.

 '"Don\'t", he asked?'

"Don't", he asked?

Implied line continuation occurs for string literals.

∇ makestring {

 a = "this is a
 line of text
 over three lines"
 ⎕ ← a
 a = "this is a\n
 line of text\n
 over three lines"
 ⎕ ← a
 a = @"another line
 of text over
 several lines"
 ⎕ ← a
 a = @"another line\n
 of text over\n
 several lines"
 ⎕ ← a
}

Notice that those string literals which start with the @ symbol are interpreted raw, with escape characters

included. Note also that white space is preserved in the raw strings.

Page 15

For compatiblility you can also add strings:

a = "hello, "
 b = "goodbye"
 a+b
hello, goodbye

 a = "\\\u0066\n"

a now contains backslash, letter f, new line.

Note

The escape code \udddd (where dddd is a four-digit number) represents the Unicode character U+dddd.

The advantage of @ quoting is that it is simple to create fully qualified file names

@"c:\Docs\Source\a.txt" rather than "c:\\Docs\\Source\\a.txt"

To include a double quotation mark in an @-quoted string, double it:

@"""Hello!"" he yelled."
"Hello!" he yelled.

As with all .Net types, strings have a wealth of built in methods. For
instance:
 a = "hello"
 a.Length
5
 a.Substring(2)
llo
 a = " hello "
 a.Length
5
 a.Trim()
hello
 a.Trim().Length
5
 b = a.Trim()
 ⍴ b
5

The same is true for integers, doubles, etc. For instance:
 a = 10
 a.MaxValule
2147483647
 a.MinValue
-2147483648

As well as the intrinsic types, there also new collection types. These .Net types make is trivial to create data

which can be consumed by any .Net language.

To have access to these you would include the following at the top of your file, run it in the session:

Page 16

13 Using System.Collections

The .Net framework includes many new data types. The Collections namespce contains types which are

useful for creating data types which can dynamically add, remove and manage elements. C reating an array

can be done using an ArrayList. Before this will work, you must add:

using System.Collections

To either your project or execute the line in your session.

 a = ArrayList()
 a.Add(10)
 a.Add(100)
 a.Count
2
 a.GetType()

System.Collections.ArrayList

 Another powerful collection is the Hashtable:

 a = Hashtable()
 a["test"] = 100 200 300
 a["hello"] = "some text"
 a["test"]
100 200 300
 a["hello"]
some text

The newest addition to .Net 2.0, Generics, are also supported. To include generics in your project, place this

at the top of your file, or run it in the session:

using System.Collections.Generic

Generics are collections which can be typed. This provides both an increase in speed and compatibility with

other .Net programs. For instance, the Generic Dictionary is similar to the Hashtable shown above, however

it is instantiated in a different manner:

 a = Dictionary[String, Int32]()

 a
System.Collections.Generic.Dictionary`2[System.String,System.Int32]

 a.Add("more", 10)

 a["more"]

10

 a.Add(10, "more")

bad args for method

Page 17

As you can see, only keys of string type and data of integer type can be added to the collection.

You can use ⎕ wi in the session as well:

 "fm" ⎕ wi "Create" "Form"

fm

 "fm.b" ⎕ wi "Create" "Button"

fm.b

 "fm.b" ⎕ wi "where" 10 10
 "fm.b" ⎕ wi "caption" "Click"

 ƒ push(a,b) {⎕ ← a;⎕ ← b}

 "fm.b" ⎕ wi "onClick" "push"

 "fm" ⎕ wi "Show"

You can also use the .Net System.Windows.Forms directly by including this reference at the top of the file:

refbyname System.Windows.Forms
using System.Windows.Forms

You can also just enter these two lines in the session. After these .Net assemblies are available to your

session, the following will create a form:

 a = Form()

 b = Button()

 a.Controls.Add(b)

 b.Text = "Click"

 ƒ push(a,b) {⎕ ← a;⎕ ← b}

 b.Click += push

 a.Show()

If we push the button the following is displayed to the session:

System.Windows.Forms.Button, Text: Click

System.Windows.Forms.MouseEventArgs

If you noticed above we created a function using a function signature which might be new to some APL

programmers. You can review the new method creations in that section.

Page 18

14 Controlling Program Flow
Normally statements in Visual APL are executed one after another in the order they were written. This

sequential order is the default. Control Flow statements alter the flow of a program.

Using the conditional if statement

There are two structures for the if statement, one is the typical APL syntax and the other is the C# structure:

:if x < 10
 a← 100
:else
 a← 200
:endif

alternatively:

if (x < 10) {
 a← 100
} else {
 a← 200
}

In addition, multiple else if statements can be included:

:if x < 10
 a← 100
:elseif x > 100
 a← 200
:else
 a← 300
:endif

alternatively:

if (x < 10) {
 a← 100
} else if (x > 100) {
 a← 200
} else {
 a← 300
}

The last else in both cases is of course optional.

In addition you can use the then/else control structure:

a = (x < 10) then x+100 else x+200

This is also valid:

 a = (x < 10) then (x > 3) then x+100 else x+200 else x+300
 a
105

Using for loops:

Again, both the classic APL and C# for-loop syntax is supported:

Page 19

:for x :in ⍳ 10
 a← x+1
:endfor

foreach (x in ⍳ 10) {
 a← x+1
}

In addition, the for loop with counter is supported:

for (i = 0;i<10;i++) {
 a← i+100
}

Notice that i++ and i-- are also supported, this works for both scalars and arrays.

The for loop with to and step is also supported:

To quickly iterate 100 times:

for (1 to 100) {
 a← x+y
}
or set the step and counter variable:
for (i = 1 to 100 step 2) {
 a ← i+100
}

This for loop localizes the counter variable to the loop, so that:

i = 22.3
for (i = 1 to 10) {
 ⎕ ← i
 for (i = 10 to 30) {
 ⎕ ← i
 }
}
⎕ ← i

This will display the i value for the outer for and then the i values for the inner for and finally display:

22.3

The for loops with counter also support an else control:

x← 0
for (i = 0;i<x;i++) {
 ⎕ ← i
} else {
 ⎕ ← "here"
}

Will display:

Page 20

here

If the for loop is never entered then the else runs.

Using while loops:

Both the APL and C# while loop syntax is supported:

:while x < 10
 x++
:endwhile

while (x < 10) {
 x++
}

In the case of the while loop, you can also use the else control:

while (x < 10) {
 x++
} else {
 x← 100
}

If the while loop is never entered then the else runs.

do...while or :repeat...:until loop

:repeat
 x++
:until x >= 10

do {
 x++
} while (x<10)

break, continue and :continue and :leave statements in loops

break and :leave both exit the immediately enclosing loop :continue and continue statements, continue with

the next iteration of the loop

switch and :select control flow

:select choice
 :case b
 a← 100
 :case c
 a← 200
 :caselist d e
 a← 300
 :else
 a← 1000
:endselect

switch (choice) {
 case b:

Page 21

 a← 100
 break
 case c:
 a← 200
 break
 case d:
 case e:
 a← 300
 break
 default:
 a← 1000
 break
}

The break is required in each case statement in the switch.

All comparisons for selection are done using the identity operator.

goto and :goto statement

goto L1
and
:goto L1
both branch to a label L1:

However, in Visual APL it is not possible to branch to a line number or select labels from an array.

Labels must be a specific label destination.

Page 22

15 Defining Functions

User defined functions are created as follows:

∇ r← a fn2 b {
 r← a+b
}
∇ r← fn1 b {
 r← b
}
∇ r← fn {
 r← 100
}
∇ a fn2 b {
 a+b
 ⎕ ← a+b
}

Except for the use of the {} to begin and end the user defined function the syntax is identical to classic APL

function definition. However, statements that return a value do not display when run in a function unless they

are explicitly output, in this case using the ⎕ ← a+b

In addition it is not necessary to always assign the return variable, for instance:

∇ r← a fn2 b {
 return a+b
}
will return the value of a+b even though r was not set.

Checking for the left argument has also been enhanced with ⎕ monadic or ⎕ dyadic:

∇ r← a fn2 b {
 :if ⎕ monadic
 r← b
 :else
 r← a+b
 :endif
}

In addition to the classic APL user defined functions, Visual APL also supports function signatures compatible

with all .Net languages. This is especially important when you are creating a class which may be consumed

by another .Net language such as C#. It is also important when you are consuming a method on a class

created by another .Net language. For instance:

function fn2(a, b) {
 return a+b
}

Visual APL also includes a new function definition character which is created using right alt/f and displays as

the mathematical symbol for function :–ƒ

ƒ fn2(a, b) {
 return a+b
}

Page 23

or
ƒ r← fn2(a, b) {
 r← a+b
}
or
ƒ fn4(a, b, c, d) {
 e = a+b
 e = e×c+d
 return e
}

Since everything is an object in Visual APL, you can assign a function to a variable at creation or even later:

myfn = ƒ fn3(a, b, c) {
 return a+b+c
}

Then you could run:

 fn3(1, 2, 3)
6

or you could run:

 myfn(1, 2, 3)
6

You could also place this in an array:

 myarr = myfn myfn myfn
 myarr[1](1, 2, 3)
6

You could also assign the function to a variable this way:

 myvar = fn3
 myvar(1, 2, 3)
6

Page 24

16 More about defining functions

Methods can also have default arguments:

function fndef(a, b = 10, c = "hello", d = myfn(1, 2, 3)) {
 ⎕ ← "a" a
 ⎕ ← "b" b
 ⎕ ← "c" c
 ⎕ ← "d" d
}

This function can be called with from one to four arguments:

 fndef(100)
 fndef(100, 200)
 fndef(100, 200, 300)
 fndef(100, 200, 300, 400)

will all work equally well. When an argument is missing, the value for the argument is set to the default.

You can also call this function with the arguments rearranged by using their names:

 fndef(b = 400.3, a = 99)
However, you must always set the value of a, either by position or name, as it does not have a default.

Or you can call this function by order, leaving out values:

 fndef(10,20,,500)
In this case the value of c is the default "hello"

In addition, you can pass an argument list to a function using the ⎕ arglist keyword:

 args = 10 20 30 40
 fndef(⎕ arglist args)

You can also create a matrix of named arguments and values and pass them using ⎕argnames:

 args = 5 3⍴ "a" 100 "desc1" "b" 200 "desc2" "c" 300 "desc3" "d" 400
"desc4" "x" 500 "desc5"
 fndef(⎕ argnames args)
Notice that the arguments a,b,c and d will be set to 100, 200, 300 and 400. This provides the ability to call a

function with a matrix of potential arguments and have it select only that that apply to it. Also notice that you

can have more columns than just the name and value columns. This makes it possible to include argument

descriptions or alternate values in addition columns.

When combining position arguments and named arguments, there can not be positioned arguments after

named arguments, for instance:

fndef(10, c = 99, 100)
Would be illegal.

You can also combing ⎕ arglist and ⎕ argnames:

Page 25

 argsp = 10 20
 argsn = 2 2⍴ "c" 88 "d" 99
 fndef(⎕ arglist argsp, ⎕ argnames argsn)

Important Feature: Default values for parameters are evaluated only once. This is an extremely powerful

feature, but can also be disconcerting if misunderstood.

For instance if we have the following function definition:

public ƒ outerfn(a) {
 return ƒ innerfn(b = a) {
 return b
 }
}

 c = outerfn(10)
 c()
10
 c = outerfn(100)
 c()
100

However, if we use an object, such as the ArrayList collection as our default value, then values accumulate in

the ArrayList.

function fn(a, al = ArrayList()) {
 al.Add(a)
 return al
}
 a = fn(10)
 a.Count
1
 a = fn(20)
 a.Count
2
 a = fn(30)
 a.Count
3
 foreach (n in a) {⎕ ← n}
10
20
30

Each call to the function adds information to the instance of the ArrayList which was assigned to al when the

function was instanced.

If you want the argument to default to an ArrayList but not accumulate data, this construct will work:

function fn(a , al = null) {
 if (al == null) {
 al = ArrayList()
 }
 al.Add(a)
 return al.Count

Page 26

}
 fn(10)
1
 fn(20)
1
 fn(30)
1

In this case there is no accumulation of argument data.

One of the features of many new languages are code blocks or closures. These are created within a function

and can be called at any time with the variables set to the values when the reference to the closure or code

block was created.

To accomplish this, we allow for the creation of anonymous functions as well as named functions.

In its simplest form:

function outerfn(a, b) {
 c ← a×b
 return ƒ (first = a, second = b, third = c) {
 ⎕ ← first
 ⎕ ← second
 ⎕ ← third
 }
}

In this case we return a pointer to the closure with the arguments preset to the variables in the function

where the instance is created:

 p = outerfn(10, 20)
 p()
10
20
200
 p = outerfn(30, 40)
 p()
30
40
1200

Page 27

17 Typing Arguments to Functions

It is also possible to specify the data type of an argument, this is particularly useful when a function is going

to be consumed by another language, such as C#. Functions which include typed arguments and returns

must be defined in classes and cannot be defined directly in the session.

function mytfn(int a, string b) {
 ⎕ ← a
 ⎕ ← b
}

This function can only be called with an integer first argument and a string second argument, and the function

signature will require this when it is called from another language. You can call it like this:

 x1 = 100
 x2 = "hello"
 mytfn(x1, x2)
100
hello

You can also specify the return type:

function Int32 mytfn(Int32 a, Int32 b) {
 return a+b
}

This function requires two integers and returns an integer. Again, when this function is consumed by other

languages they will see that integer arguments are required and are assured that only an integer will be

returned. This provides both speed and verifiability.

When you create a function, it is only available to your assembly by default. If you want other programs to

be able to consume it, you will need to explicitly make it public:

public function Int32 mytfn(Int32 a, Int32 b) {
 return a+b
}

This function can now be seen by other languages who use your class.

When you specify a return type, you can leave out the keyword function:

public Int32 mytfn(Int32 a, Int32 b) {
 return a+b
}

When you want to create a function which does not return a value, the void keyword is used:

Page 28

public void mytfn(Int32 a, Int32 b) {
 c = a+b
}

Other languages who use this function will see that it has no return value.

It is also possible to pass arguments by reference, using ref and other modifiers with function arguments

require that the function be defined within a class and will not work when defining functions dynamically in the

session.

function myref(a, b, ref c) {
 c ← a+b
}

 a = 100
 b = 200
 c = 99
 myref(a,b, ref c)
 c
300

It is also possible to pass an arbitrary number of arguments to a function:

function myarb(a, b, params c) {
 ⎕ ← "a" a
 ⎕ ← "b" b
 foreach (d in c) {
 ⎕ ← "c" d
 }
}

This function will take an arbitrary list of arguments, with the first two being a and b and the rest placed in c

 myarg(1, 2, 3, 4, 5)
a 1
b 2
c 3
c 4
c 5

The params option can also be the only argument

function myarb(params a) {
 foreach (d in a) {
 ⎕ ← "a" d
 }
}

Page 29

Now myarb can be called with any arbitrary number of arguments from 0 to

One of the primary advantages of params is that other languages, such as C#, can pass an arbitrary number

of arguments to your function. The same is true for the ref modifier, which allows languages such as C# to

pass an argument to your function by reference.

Page 30

18 Data Types and Collections

The .Net framework includes numerous types for handling data.

There are the intrinsic types, such as long, float, double, int, etc.

There are also collections and generic collections. The importance of these data structures is both their

usability and their common availability to all .Net languages. Making passing data between applications

simple and efficient.

The ArrayList: a Heterogeneous, Self-Redimensioning Array

This is similar to an APL heterogeneous array. C reating the ArrayList is as simple as:

a = ArrayList()

You can add any type of data to the arraylist:

a.Add(10)
a.Add(10 20 30)
a.Add("hello" 100 "something else" 99.4)
a.Add(3 3⍴ ⍳ 9)

ArrayLists can be used in foreach loops:

:for b :in a
 ⎕ ← b
:endfor

It is possible to access the data in an ArrayList in any order, for instance:

a[1]
a[2]
a[0]
etc...

a.Count returns the number of elements in the ArrayList. Microsoft provides excruciatingly detailed

information on all of these data structures, and their use.

The System.Collections.Queue Class

The Queue class provides adding and removing items on a first come, first served basis.

The Queue class has an internal circular object array and two values that mark the beginning and ending of

the array.

The Enqueue() method returns the current item from the head index. The head index item is set to null and

the head is incremented. If you want to just look, use the Peek() method.

Most importantly, the Queue data structure does not allow the random retrieval of an item, as the ArrayList

did. For instance you can not retrieve the second item in the queue without first dequeing the first item.

However, there is a Contains() method which can be used to determine if an item is in the queue. The Queue

is ideal for processing items in a specific order when it is needed by an application.

Page 31

The Queue class implements a first in, first out or FIFO method of processing items.

The Stack class or First Come, Last Served

The Stack data structure makes it possible to access items on first in, last out order. Similar to the Queue

class, the Stack class maintains items in a circular array. Data is exposed through two methods, Push(item)

which adds an item to the stack, and Pop(), which removes and returns the item at the top of the stack.

The System.Collections.Hashtable Class

The Hashtable provides the ability to store data randomly using keys. When you provide a unique key, a new

item is added. If the key exists in the table, the value is replaced.

The Hashtable has an Add method for adding items:

a = Hashtable()
a.Add("hello", "good morning")
a.Add("what", "is that")
a.Add("nums", (1 2 3 4 5))

To retrieve the data you can use simple indexing:

 a["hello"]
good morning
 a.ContainsKey("test")
false
 a["test"] = 100
 a.ContainsKey("test")
true

To find out is a key is contained in the Hashtable, you can use the ContainsKey method.

All of the classes in the System.Collection are available to use and work as documented in the Microsoft help

files.

Page 32

19 The Generic Collection

Generics provide the ability to restrict the types of data that can be added to a data structure. These data

types are included in the .Net framework and are very useful for exchanging arbitrary data sized objects

between languages.

List

There List data structure works like an ArrayList, but allows you to determine the type of data that can be

added to the List. For instance:

a = List[string]()

This will create a List to which you can only add string data.

 a.Add("hello")
 a.Add("some more stuff")
 a.Add(10)
bad args for method

SortedList

If you ever wanted to have a sorted list with only unique keys, then the SortedList is perfect:

 a = SortedList[String, Int32]()
 a.Add("test", 100)
 a.Add("my info", 200)
 a.Add("abc", 300)

 foreach (n in a) {⎕ ← n}

[abc, 300]

[my, 200]

[test, 100]

 a.Add("abc", 300)
An entry with the same key already exists.

Dictionary

Represents a collection of keys and values, which is typed.

 a = Dictionary[String, Int32]()

 a.Add("one", 10)

 a.Add("two", 100)

 a.Add("three", 1000)

Page 33

 foreach (n in a) {⎕ ← n}

[one, 10]

[two, 100]

[three, 1000]

SortedDictionary

The SortedDictionary generic class is a binary search tree with O(log n) retrieval, where n is the number of

elements in the dictionary. In this respect, it is similar to the SortedList generic class. The two classes have

similar object models, and both have O(log n) retrieval. Where the two classes differ is in memory use and

speed of insertion and removal:

SortedList uses less memory than SortedDictionary.

SortedDictionary has faster insertion and removal operations for unsorted data: O(log n) as opposed to O(n)

for SortedList.

If the list is populated all at once from sorted data, SortedList is faster than SortedDictionary.

 a = SortedDictionary[String, Int32]()

 a.Add("test", 100)

 a.Add("my", 200)

 a.Add("abc", 300)

 foreach (n in a) {⎕ ← n}

[abc, 300]

[my, 200]

[test, 100]

 a.Add("abc", 400)
An entry with the same key already exists.

Queue

The Queue is a first in, first out data structure which is typed.

 a = Queue[string]()

 a.Enqueue("one")

 a.Enqueue("two")

 a.Enqueue("three")

 a.Enqueue("four")

Page 34

 a.Dequeue()

one

 a.Dequeue()

two

 a.Dequeue()

three

 a.Count

1

LinkedList

The LinkedList represents a doubly linked list.

 words = "the" "fox" "jumped" "over" "the" "dog"

 sentence = LinkedList[string](words)

 text = ""

 foreach (word in sentence) {text=text+" "+word}

 text

 the fox jumped over the dog

 sentence.Contains("jumped")

True

 sentence.AddFirst("today")

System.Collections.Generic.LinkedListNode`1[System.String]

 text = ""

 foreach (word in sentence) {text=text+" "+word}
 text

today the fox jumped over the dog

 mark1 = sentence.First

 sentence.RemoveFirst()

 sentence.AddLast(mark1)

 text = ""

 foreach (word in sentence) {text=text+" "+word}

Page 35

 text

the fox jumped over the dog today

 sentence.RemoveLast()

 sentence.AddLast("yesterday")

System.Collections.Generic.LinkedListNode`1[System.String]

 text = ""

 foreach (word in sentence) {text=text+" "+word}

 text

the fox jumped over the dog yesterday

 mark1 = sentence.Last

 sentence.RemoveLast()

 sentence.AddFirst(mark1)

 text = ""

 foreach (word in sentence) {text=text+" "+word}

 text

 yesterday the fox jumped over the dog

 sentence.RemoveFirst()

current = sentence.FindLast("the")

 sentence.AddAfter(current, "old")

System.Collections.Generic.LinkedListNode`1[System.String]

 sentence.AddAfter(current, "lazy")

System.Collections.Generic.LinkedListNode`1[System.String]

 text = ""

 foreach (word in sentence) {text=text+" "+word}

 text

the fox jumped over the lazy old dog

 current = sentence.Find("fox)

sentence.AddBefore(current, "quick")

System.Collections.Generic.LinkedListNode`1[System.String]

 sentence.AddBefore(current, "brown")

System.Collections.Generic.LinkedListNode`1[System.String]

Page 36

 text = ""

 foreach (word in sentence) {text=text+" "+word}

 text

 the quick brown fox jumped over the lazy old dog

Stack

The Stack generic data structure represents a variable size last-in-first-out (LIFO) collection of instances of

the same arbitrary type.

 a = Stack[String]()
 a.Push("one")

 a.Push("two")

 a.Push("three")

 a.Pop()

three

 a.Pop()

two

 a.Count

1

 a.Peek()

one

Page 37

20 Conditions for Flow Control

The structures for, while and if can contain conditions with any valid expression, the only requirement is that

the expression return either true, false, 1, or 0.

a < b ≈ c
would evaluate b ≈ c first, then a < the result of b ≈ c

Two new operators are also supported, these are && and ||

In the case of && the expression to the left of the && is evaluated first, and if it returns a true or 1, then the

right expression is evaluated. If a false or 0 is returned, then the right expression is never evaluated.

For instance:

a < b && b < c
only the a < b will be evaluated if a is greater than b

The inverse is true for ||, if the left expression returns a true or 1, then the right expression is never

evaluated. If a false or 0 is returned, then the right expression is evaluated.

Page 38

21 Comparing objects

When you are using objects, such as an ArrayList, it is important to remember that when checking to see if

two objects are equal, the equal evaluation is only to see if the objects are referenced by the same pointer,

not to determine if there contents are the same.

Page 39

22 Error Handling

Errors are handled using the try, catch, finally flow control structure

For instance:

try {
 a← ⍳ 9
 ind← 12
 a[ind]
} catch {
 ⎕ ← "an error occured"
}

If an error occurs or is thrown within a try block of code flow control is passed to the try handlers, or catch.

The try handlers, or catch can be created either with arguments or without. If there are no arguments, this

catch becomes the general catch clause. Flow control is passed to this general catch after the other catches

with arguments are exhausted. You can think of the catch statements as similar to a switch (select)

statement, with the catch with no arguments as the default (else) choice.

Valid arguments for the catch handlers are either a type or string.

For instance:

try {
 a← ⍳ 9
 a[12]
} catch ("INDEX ERROR") {
 ⎕ ← "index error"
}

In this case the catch will evaluate the error thrown to determine if the text string "INDEX ERROR" is

contained in the error message. If the result is true, then flow control is passed to this handler.

When using types, the default type for all errors is the Exception class.

try {
 a← ⍳ 9
 a[12]
} catch ("JUST AN ERROR") {
 ⎕ ← "didn't happen"
} catch (Exception err) {
 ⎕ ← err.Message
}

In this case flow control passes to the catch with the base Exception type, and the entire error type

information is placed in the variable err.

There are many Exception types that can be used for flow control.

The finally choice is always run when included with a try flow control structure. The try is very useful as it

can guarantee that the code included in the finally block will always run, regardless of how the function is

exited or whether there were errors. For instance, you could include code that closes database connections in

the finally block.

try {

Page 40

 a← ⍳ 9
 return a
} catch {
 ⎕ ← "an error"
} finally {
 ⎕ ← "always runs"
}

The finally block of code always runs.

Page 41

23 Throwing exceptions

When execution is proceeding in the try block you can create an exception in two ways:

throw ApplicationException("error message")
The keyword: throw, will cause the exception class ApplicationException to be thrown. Any

class which inherits from the Exception class can be used as the exception class.

You can also use:

⎕ error "message here"

This will cause an exception to be thrown, with the text string which follows ⎕error

The Exception class which is used for ⎕error is the ApplicationException class.

For instance:

try {
 a← 1+1
 ⎕ error "my error"
} catch ("my error") {
 ⎕ ← "got an error"
} catch {
 ⎕ ← "unknown error"
}

Page 42

24 Defining Clean-up Actions

The try statement has the optional clause which is intended to determine what actions are taken when the

method is exited. It is executed in all circumstances. For instance:

try {
 throw AppllicationException("error")
} finally {
 ⎕ ← "goodbye"
}

A finally clause is executed whether or not an exception has occurred in the try clause. When an exception

has occurred, the exception is re-thrown after the finally clause is executed. The finally clause always

executes when the try statement is exited, regardless of method.

The code in the finally clause is useful for releasing external resources (such as files or network connections),

regardless of whether the use of the resource was successful.

A try statement must either have one or more except clauses or a finally clause. You can only have one

finally clause.

Page 43

25 Namespace.Class

A namespace is the name which proceeds a class name and is used to categorize a group of classes. A

namespace is used only for naming purposes, and has no structure.

For instance:

namespace nm1 {
 class cls1 {
 }
 class cls2 {
 }
}

Will create two classes named, respectively, nm1.cls1 and nm1.cls1. A namespace is a logical

grouping of classes for the purpose of naming.

A class, also called a type, contains both functions (methods) and data. A class can also inherit from another

class, making polymorphism possible. All of the methods and data from the inherited class become available

on the new class being created.

Page 44

26 Some definitions

The data in a class can consist of a number of object types, such as a field. From inside the class a field is at

the same level as the functions and is global to all functions in the class. It is similar to a global variable from

the functions point of view.

Data and methods exist in a class in two primary states. These are instance and static.

Page 45

27 Instance Objects

A method or field is by default in the instance state. This means that the value of each field exists based on

the instance of the class.

An instance of a class is like a private copy of the class. For instance:

class cls1 {
 a = 100
 b = 200
}
 myinst1 = cls1()
 myinst2 = cls1()
 myinst1.a = 300
 myinst2.a = 500
 myinst1.a
300

The value in myinst1.a is distinct from the value of myinst2.a as each of myinst1 and myinst2

are distinct instances of the cls1 class.

Methods which are instance methods use the fields (global variables) in the instance of the class, not the

original values of the fields when the class was defined.

For instance:

class cls1 {
 a = 100
 b = 200
 function add() {
 return a+b
 }
}
 myinst1 = cls1()
 myinst2 = cls1()
 myinst1.a = 300
 myinst2.a = 500
 myinst1.add()
500
 myinst2.add()
700

Variables assigned in a function are by default local. To assign a value to a field (global variable) use the

"this" keyword.

For instance:

function add() {
 this.a = 10
 this.b = 20
 return this.a+this.b
}

In the above example the fields a and b have been modified. To create local variables simply create:

Page 46

function add() {
 a = 10
 b = 20
 return a+b+this.a+this.b
}

This will add the local variables a and b and the fields a and b. The "this" keyword always refers to the

instance of the class.

Referencing a field which has not been overridden by a local variable of the same name does not require the

this keyword. However, assignment to the field does require the "this" keyword to differentiate it from a local

variable.

For instance:

class cls1 {
 a = 100
 b = 200
 function add() {
 a = 10
 c = a+b
 ⎕ ← a
 ⎕ ← this.a
 ⎕ ← c
 }
}
 myinst = cls1()
 myinst.add()
10
100
210

The "global" keyword can also be used to identify fields (variables global to the function) within a function:

function add() {
 global a
 global b,c,d
 a = 10
 b = 20
}

All of the variables, a,b,c and d are fields (global variables) and you do not use the "this" keyword when

assigning to them.

It is important to note the following syntax:

 a = 100
 function add() {
 a = a
 ⎕ ← a+100
 a = 200
 ⎕ ← this.a
 ⎕ ← a
 }
 add()
200
100

Page 47

200

The a referenced on the first line references the field named a and assigns it to a local variable named a, a

clearer syntax would have been to use:

 a = this.a

Page 48

28 Static Objects

The static state does not depend on the instance, and is available on the class itself, but not the instance of

the class.

For instance:

class cls1 {
 public static a = 100
 public static b = 200
 public static function add() {
 return a+b
 }
}
 cls1.a = 10
 cls1.b = 20
 cls1.add()
30

The "this" keyword is not available in static functions, as there is no instance. Static fields and methods are

therefore available from instance functions, however, instance methods and fields are not available from a

static function, as there is no "this" available.

Page 49

29 Inheritance

A class can inherit from another class. This is the basis of polymorphism.

One of the classes in System.Collections available in the .Net framework is the Hashtable class. This class

permits the storage and reference of data by keywords. For instance:

a = Hashtable()
a.Add("one", 100)
a.Add("two", 200)
a.Add("three", 300)

However, if we want to enhance the Hashtable class to also have an override for the Add method which will

only accept a specific range or type of data, we could inherit from Hashtable and then create our Add

method.

For instance:

class myhash : Hashtable {
 public function Add(key, data) {
 ⍝ first only accept text as the key
 if (82 ≠ ⎕ dr key) {
 ⎕ error "Key Error"
 }
 ⍝ accept only integers for data
 if (323 ≠ ⎕ dr data) {
 ⎕ error "Data Error"
 }
 Add(key, data)
 }
}

 myinst = myhash()
 myinst.AddInts("test", 10)
 myinst.AddInts("one", 10.3)

An exception will be thrown with the message of "Data Error" and ⎕ dm will be set to "Data

Error"

All of the other methods and fields of the inherited Hashtable will be available on the myhash class.

Page 50

30 Multiple Inheritance and Access Modifiers

A class can inherit from another class, and from multiple interface classes. An interface class is designed to

provide the structure for a base class, but can not be instantiated itself.

Public, Private, Internal

The scope of fields and methods can be scoped to the class, the assembly (group of namespaces in a project)

or be made public.

For instance:

public class cls1 {
 private a = 100
 internal b = 200
 public c = 300
 public function add() {
 return a+b
 }
 private function minus() {
 return a-b
 }
 internal function times() {
 return a×b
 }
}

 myinst = cls1()

The field (global variable) a and the method minus() can only be accessed within the cls1 class.

The field (global variable) b and the method times() can be accessed within the class or within the same

assembly

The field (global variable) c and the method add() can be accessed publicly from other classes and

assemblies.

The global keyword when used in a function, creates fields which are by default internal in scope.

The default for all methods and fields is internal.

Page 51

31 Size of classes

In general, the .Net structure is optimized for the development model where code is broken into numerous

smaller classes, instead of one giant class. The best design is to encapsulate a particular functionality in a

class or related classes within a namespace and then reuse that functionality.

C reating a single enormous class, with thousands of variables and functions will almost certainly have a

disappointing result.

Page 52

32 Late Binding

Since everything in Visual APL is an object, then the extension of this is that every thing also has attributes.

Most objects will have methods, fields, etc that are available on them, which can be used to manipulate the

object or perform some other functionality related to that object.

For instance:

 a = ArrayList()
 a.Add(10)
 a[0]
10

In this example we created a variable a which is assigned an instance of the ArrayList type. This is a distinct

instance, or copy, of the ArrayList type. We then called the Add method on the "a" instance of ArrayList,

which added the integer 10 to "a" as the first element. Therefore, a[0] returned that value.

When an instance of an object is created, modification to the instance fields and data properties on the

instance effect only that instance. In reality, the code, or methods, of an object are never replicated, only

the data objects are replicated.

We could also have done:

 a = "test"
 a.IndexOf("st")
2

Here, we have created a string object, and then invoked the IndexOf method on that instance of the string

object to discover the location of a substring in this string instance.

Since Visual APL is a dynamic language, any variable can be any object at any moment. Because of this it is

possible to create applications very simply and rapidly.

It is also possible to assign the type to a variable, and then use it:

 al = ArrayList
 b = al()
 b.Add(10)
 b[0]
10

In this case we have assigned the class itself into the variable al, and then created an instance of ArrayList

which is assigned to b. You can also create arrays of types:

 ahl = ArrayList Hashtable ArrayList HashTable
 b = ahl[0]()
 b.Add(10)
 b[0]
10

This provides a very flexible environment to create and manage data, code and solutions.

Page 53

However, this flexibility has a cost. Since any variable can be anything at any moment, when we perform:

a.IndexOf("st")

We have to lookup the method IndexOf on whatever type is currently assigned to the variable a. This lookup

is not expensive, but at the same time it is not free.

Part of the method lookup can be eliminated by specifying the overload for the method using indexing, for

instance:

 a = "test"
 a.IndexOf[string, int](b, c)

In this case, the overload for IndexOf which has as arguments a string and int type is preselected. The

values of b and c will be coerced if possible to the respective datatypes, and a runtime error will be thrown if

this is not possible. The only lookup required is now based on the type of the variable a. For all types of a,

there must be a IndexOf method which takes a string and int as arguments.

When there are many overloads to a method, prespecifying the argument types can improve selection of the

correct overloaded method.

If you are going to be doing something a few hundred thousand times a second, late binding is perfect,

because of its ease of use and simplicity of creation.

However, if you need the maximum iterations per second, you should look at early binding.

Page 54

33 Strong Typing a Variable

Strong typing a variable can provide enormous speed improvements in some cases. This means that you can

take the 5% of your code which can benefit from typing, and with a few hints, dramatically enhance the

performance of your application.

Syntactically this is done as follows:

Int32 a = 10

The variable a is then under contract to always be a single integer within the scope it was specified. If it was

specified in a function, then it is a local in that function and must always be an integer. If it was defined

within a class, then it would be an integer field, which means it is a global variable to the functions in the class

and must always be a single integer.

Later within the same scope, if you were to try and change the type as follows:

string a = "test"

This would throw an error during parsing.

A variable can be typed by using the following syntax:

String a = "test"
String a
String a, b, c

In the last case, all of the variables are set to String type.

For instance, if we create a test function, and create an local variable "a" which is integer, the following

happens:

 ƒ test() {int a = 10;a = 20;⎕ ← a}

 test()

20

If we then try to assign a text string to the integer variable a, we see the following error during parsing:

 ƒ test() {int a = 10;a = "test";⎕ ← a}

Invalid Types, can not assign from System.String to System.Int32

Trying a Double causes the same issue to arise:

 ƒ test() {int a = 10;a = 99.5;⎕ ← a}
Invalid Types, can not assign from System.Double to System.Int32

However, since this is a dynamic language, you can always create a dynamic variable, and then the data type

will be coerced if at all possible during run time. For example, if we assign the Double to the dynamic

variable c, and then assign c to a, we see the following:

 ƒ test() {int a = 10;c = 99.5;a = c;⎕ ← a}

Page 55

 test()

100

In this case the Double was rounded to an integer and assigned to the strong typed variable a.

If we assign a text string to the intermediate variable c, we then see the following:

 ƒ test() {int a = 10;c = "test";a = c;⎕ ← a}

 test()

116

 ⎕ av⍳ 't'

116

As you notice, the first element from the text string is coerced to integer and assigned to a. This is similar to

doing a ⎕ av ⍳ 't' as shown.

In all cases, strong types can be assigned to dynamic types, and vice versa. If no conversion exists or is

possible, then a type change error is thrown during run time.

In some cases data can be lost in assigning from dynamic types to strong types, as in the instance above

where a Double is assigned to an Integer.

In addition you can also specify an array of a given type:

Int32[] a = 1 2 3 4
Int32[] b = ⍳ 10
If you want to guarantee strong types on both sides, the following is supported:

Int32[] a = new Int32[]{1 2 3 4}
You can also initialize an array to the default of the type being created as follows:

Int32[] a = new Int32[1000]
This will create a strong typed array with 1000 elements each set to 0.

You do not have to use strong typing on the left hand side:

a = new Int32[1000]
 ⍴ a
1000
This provides a very fast mechanism for creating arrays. You can also create matrices using this same

syntax:

 a = new Double[100,100]
 ⍴ a
100 100
In this case we have created a matrix which is 100 by 100 and is populated with 0's which are Doubles.

Again, this is a very fast way to create an Array, as it uses the direct calls to create the object. It is also

valid to use the semicolon in place of the common in the example above, as in:

a = new Double[100;100]
You can also create arrays of objects, for instance:

ArrayList al = new ArrayList[5]
for (int i = 0;i<5;i++) {
 al[i] = new ArrayList()
}

Page 56

Then all references to al by index will provide a strong typed object, in this case an ArrayList, so:

a[0].Add(10)
This will use the strong typed ArrayList object and Add the value 10 to the ArrayList.

Page 57

34 Early Binding

What is early binding, and why is it important?

All objects have the potential to have methods, properties, fields, etc. The way you reference a method on

an object is as follows:

 myst = "test"
 myst.IndexOf("st")
2

The myst object is a string. String objects have the method IndexOf, so we can call the IndexOf method as

shown: myst.IndexOf("st"). The result is an index origin 0 index to the first occurrence of the argument

string, in this case "st", or a -1 if the argument string does not exist in myst.

With late binding as shown this can be called a several hundred thousand times a second. Which for the vast

majority of cases is sufficient.

However, if you absolutely need to access a method the most number of times per second possible, in this

example, a couple of million times a second, then you should consider early bound. To make an object early

bound, you simply commit that a variable will always be a particular type with a particular shape. For

instance, if it is defined as a scalar integer, then it must always be a scalar integer. If it is defined as a

integer vector, it must always be an integer vector. Of course, this definition of a variable is limited to its

scope, in most cases local to a function.

For our example:

 string myst = "test"
 myst.IndexOf("st")
2
Now we can call the IndexOf method a couple of million times a second for our string myst. The value of

myst can be changed to any string, but it can never be defined as any other type. For instance, myst could

never be assigned an integer. Because we can count on myst always being a string in our function, we do not

have to wait until the IndexOf function is called, and then lookup what the method IndexOf means for the

current type of myst, as myst is guaranteed to be a string type.

When considering early binding, there are really two parts to the equation. The first part is the typing of the

variable on which the method will be invoked. The second consideration are the arguments to the method.

In our example, the IndexOf method on an instance of the string type was called with a string "st".

However, we could have called the IndexOf method like this:

myst.IndexOf("st",1)
This overload method selected of IndexOf would have started evaluation of the string from the index position

1, and would have still returned a 2.

For the IndexOf method on the string type there are these overloads:

String.IndexOf (Char) Reports the index of the first occurrence of the specified Unicode character in this

string.

Supported by the .NET Compact Framework.

String.IndexOf (String) Reports the index of the first occurrence of the specified String in this instance.

Supported by the .NET Compact Framework.

Page 58

String.IndexOf (Char, Int32) Reports the index of the first occurrence of the specified Unicode character

in this string. The search starts at a specified character position.

Supported by the .NET Compact Framework.

String.IndexOf (String, Int32) Reports the index of the first occurrence of the specified String in this

instance. The search starts at a specified character position.

Supported by the .NET Compact Framework.

String.IndexOf (String, StringComparison) Reports the index of the first occurrence of the specified

string in the current String object. A parameter specifies the type of search to use for the specified string.

Supported by the .NET Compact Framework.

String.IndexOf (Char, Int32, Int32) Reports the index of the first occurrence of the specified character in

this instance. The search starts at a specified character position and examines a specified number of

character positions.

Supported by the .NET Compact Framework.

String.IndexOf (String, Int32, Int32) Reports the index of the first occurrence of the specified String in

this instance. The search starts at a specified character position and examines a specified number of

character positions.

Supported by the .NET Compact Framework.

String.IndexOf (String, Int32, StringComparison) Reports the index of the first occurrence of the

specified string in the current String object. Parameters specify the starting search position in the current

string and the type of search to use for the specified string.

Supported by the .NET Compact Framework.

String.IndexOf (String, Int32, Int32, StringComparison) Reports the index of the first occurrence of

the specified string in the current String object. Parameters specify the starting search position in the current

string, the number of characters in the current string to search, and the type of search to use for the specified

string.

Supported by the .NET Compact Framework.

There are over 40 methods in addition to IndexOf on the string object, and most of these methods have

many overloads.

As can be seen, when an overloaded method is called, to make early binding possible, the types of the

arguments being used to call the method must be clear.

If the argument types are not clear, then the call defaults to late binding. This is quite useful when you want

the selection of the method to be decided based on dynamic argument types. For instance, in our example

with the IndexOf method the argument might be a string during one call and a char during the next call. Late

binding would then choose the method which accepts the string argument one time, and then the method that

accepts the character argument the next time.

For example:

 string a = "test"
 b = "st"
 a.IndexOf(b)
2
 b = (char) "s"
 a.IndexOf(b)
2

Page 59

By typing the variable a to string, we make early binding possible, however, since our argument can be

ambiguous, late binding is selected. In the first case the IndexOf method which accepts a string is called, in

the second, the IndexOf which accepts a char is selected.

If we want early binding, we can do the following:

 sring a = "test"
 string b = "st"
 a.IndexOf(b)

In this case we have committed to both the type of "a" and the type of "b", so we can preselect the correct

IndexOf method to call.

If you remember, we used the following which created early binding also:

 string a = "test"
 a.IndexOf("st")

The reason this resulted in early binding is because we used a string literal "st" as the argument, so again, a

commitment could be made as to which IndexOf method to call, and early binding was possible.

You can also explicitly select the overload by specifying the method arguments as an index.

For instance:

a.IndexOf[string, int](b, c)

In this case the overload for IndexOf that matches the string and int arguments is selected, and the variables

b and c are coerced if possible to string and int respectively. If it is not possible to coerce b and c to the

correct data types, then a run time error is thrown.

The idea is that to have early binding you must commit to data types so that the correct method overload is

selected. Without the type commitment, then late binding occurs and the correct overload is selected at run

time.

You need to remember, that once you have committed to a specific type for a variable, it can not change

within its scope. In our example above, an error would be created if we tried to specify "a" as an integer

later within our function, once defining it as a string.

Both early and late binding are extremely valuable in development, and provide useful alternatives for

invoking methods.

Page 60

35 Types, why do I care

In most cases, you do not have to worry about datatypes in Visual APL, as data typing is handled

automatically. However, data typing is included in Visual APL so that you can overtly control and manage the

data.

There are many built in data types in .Net. For instance, there are several types of integers, Int32, Int64,

UInt32, UInt64, Int16, etc. There are also Double and Single floating point numbers, and Decimal. There are

boolean, character, byte, string, and more. There are data collections, like ArrayList, Hashtable, Dictionary,

etc. You can even create your own types.

Since the .Net framework is the ultimate in a batteries-included programming environment, understanding

types can help you take advantage of all of these tools and utilities. As you use these .Net tools and utilities

you will discover a broad range of datatypes, each with its own set of methods, properties, fields, etc.

We will also want to consume methods written in other .Net programming languages. To do this we will also

want to understand types.

Since everything in .Net is an object, then our data types are also objects. In fact, when we create a class, it

can work as a data object.

It is when we interface to other applications that we will need to concern our selves with types. In particular

a method on an object will take specific types and return a specific type.

Again, in most cases, the automatic type handling of Visual APL will handle the typing, but for occasions when

you need to manage the types explicity, Visual APL includes the tools to both strong type and coerce

datatypes.

Page 61

36 Casting and Coercion of type

Types are extremely specific. An integer scalar type is not an integer array type.

However, Visual APL has a set of rules for coercing between types. This allows you to cast one type as

another if possible.

For instance:

 a = 10.3
 b = (int) a
 b
10

We have coerced a double to an Int32 integer. We could also cast an integer to a double:

 a = (double) b
 a
10
 ⎕ dr a
643
 a.GetType()
System.Double

It is not possible to create explicitly typed variables in the session. If you want to try this with explicit typing

of variables you will need to do that within a function.

All objects have the method GetType which returns the current type of the object. This works similar to ⎕

dr, but with GetType it is the responsibility of the object to return its type. With ⎕ dr it is the

responsibility of a separate function, ⎕ dr in this case, to determine the type of a variable.

It is also possible to cast arrays, for instance:

 c = (Double[]) 1 2 3 4 5
 c.GetType()
System.Double[]

Since Visual APL is fundamentally designed to include arrays, you can also simply type:

 c = (Double) 1 2 3 4 5
 c.GetType()
System.Double[]

While the first instance explicitly states that a vector is to be returned, the second only specifies cast, but

does not explicitly indicate that an array will result.

It is also possible to cast a string to integer:

a = (int) "abc"
 a
97 98 99

However, if you cast the integer array to string, you get the string display of the integers, for instance:

a = (string) 97 98 99
 a
97 98 99

Page 62

 a.GetType()
System.String

This behavior is compatible with other .Net languages, as casting something to string returns the string

representation of the object. All object also have a ToString method which is the method the object uses to

display itself. However, the way an object chooses to display itself may be somewhat surprising.

For instance:

 a = (int) 1 2 3 4 5
 a.GetType()
System.Int32[]
 a.ToString()
System.Int32[]

Even though we might have expected to see the numbers 1 through 5 displayed, the Int32 object chooses to

display only its data type. Again, each object chooses how to display itself using the ToString method.

If you had wanted to convert the 97 98 99 back to abc then you could have done two casts:

 b = (string) (char) 97 98 99
 b
abc

By first casting to characters, we then have the string method on a character array, which then displays the

abc result.

We have also included ⎕ ucs to convert integers to unicode and unicode to characters:

 ⎕ ucs "abc"
97 98 99
 ⎕ ucs 97 98 99
abc

Because all text data in Visual APL is based on unicode, you can by default display any unicode character, for

instance:

 ⎕ ucs '∊ '
8714

The APL epsilon is located at character position 8714 in unicode.

When casting to a variable that has been typed, there are several issues to note. First if we type a variable

as integer array, this must be done in a function, not in the session, we can use:

 Int32[] a = ⍳ 10
 ⎕ ← a
0 1 2 3 4 5 6 7 8 9 10

If we were to create a as an integer singleton, we could do the following:

 Int32 a = ⍳ 10
 ⎕ ← a
0

In this case "a" can only be an integer singleton, and the first element of the integer array created by ⍳I0 is

Page 63

placed in the strong typed variable "a".

Many types will cast to other types, however, it is not possible to cast disparate types to each other, for

instance:

 a = ⍳ 10
 b = (Hashtable) a
Invalid cast: System.Collections.Hashtable

The error thrown indicates that this is an invalid cast.

Casting is particularly important when calling methods from other assemblies. For instance, with our IndexOf

example, we can use castings as follows:

 a = (string) 10⍴ 'hello'
 b = 10.0
 c = 2⍴ "el"
 a.IndexOf((string) c, (int) b)
1

In this case we took data which was not the types expected by the external IndexOf method on the string

type and cast the variable c and b to the correct types for the IndexOf method.

While the automatic type selection process will in most cases choose the correct method, by casting we

guarantee that the data is coerced to the types desired for the method overload we want.

Page 64

37 The Need for Speed

Strong typing can be something of a challenge as it restricts in rather significant ways the manner in which

variables and methods can be used, but when you absolutely need to maximize the speed of a function, it is a

powerful tool.

When dealing with large matrices or vectors, strong typing will provide only a marginal increase in

performance, and in fact in some cases none at all.

However, when dealing with singletons or indexing with scalars it can be quite beneficial. As well as early

binding as discussed i the section on Early Binding.

Page 65

38 Static, Instance and IO, Random Seed...

Understanding static and instance is critical to using classes. Access Modifiers can only be applied within a

class, and will not work in the session.

A method, property, field, etc is defined as static by using the static attribute:

public static a = 10
This creates a static field named a with a value of 10.

On the next line, you could use:

public b = 100
This creates an instance field with a value of 100

Both static and instance can exist in the same class, so what is static?

The static portion of a class is really a unique instance of the class, with the fields, properties, etc. initialized

in the static constructor. The static constructor of a class is run when the type is first loaded by the CLR, that

is the Common Language Runtime, or the system. After that the static portions of a class or type are never

reinitialized. This means changes to any static portion of a class results in that change being seen by every

program that is referencing that class.

Conversely, the instance field, properties, etc are initialized every time an instance of the class is created.

While this provides a very powerful tool, it is important to understand what this means. If we create a class

called myclass:

public class myclass {
 public static x = 10
 public y = 100
}
Then the first reference to myclass will cause the CLR to run the static constructor, which will set the field x to

10. After that whenever an instance of myclass is created, the field y will be set to 100, but the field x will not

be modified.

What this means can best be seen in this example:

 f1 = myclass.x
 f1
10
 myclass.x = 200
 myclass.x
200
 a = myclass()
 a.y
100
 myclass.x
200
 a.y = 300
 a.y
300
 b = myclass()
 b.y
100
 myclass.x
200

The idea of static and instance becomes very important when considering state values, such as ⎕io and ⎕rl.

Page 66

The system variables are scoped to the class. This means that setting ⎕io to 1 or 0 in a static method effects

all of the static methods, but does not impact instance methods. This is critical, because setting ⎕io in a

static method can result in unexpected behaviors if many programs are accessing the static methods of a

class. It is simplest to define ⎕io in the static constructor, and then not change it during processing.

This can be done as:

⎕ io = 0
or
⎕ io = 1

Then when the static constructor is run the first time, ⎕io is set. The same concept applies to all state

variables on static methods, properties, fields, etc. of that class.

In the case of an instance of a class, it is possible to set ⎕ io at any time, as it only impacts the particular

instance of a class.

Setting ⎕ io as a field:

⎕ io = 0
or
⎕ io = 1

Will initialize ⎕io in the instance constructors for a class. Then subsequently setting ⎕io during program

execution will only effect that instance of the class.

Within a static method it is not possible to set the value of ⎕ io for an instance, as no instance exists in the

static method. So, setting:

static fn1() {
 ⎕ io← 1
}

This will set the static ⎕io to 1, which will impact all static methods, fields, properties, etc being referenced at

the time this is set.

It is possible to set the instance value of ⎕io in an instance method also:

ƒ fn2() {
 ⎕ io← 1
}

Remember that the value of ⎕io for an instance is instance specific, where the ⎕io for statics applies to all

references to the static, as there is really only one copy of the static version of the class.

Page 67

Visual APL Development Environment (Integrated with Visual Studio)

Introduction Visual APL
The Visual APL integrated with Visual Studio is a collection of development tools exposed through a Visual

Studio interface. Some of the tools are shared with other Visual Studio languages, and some, such as the

Visual APL compiler, are unique to Visual APL. This documentation provides an overview of how to use the

most important Visual APL tools as you work in Visual Studio in various phases of the development process.

Visual APL Tools

The following are the most important tools and windows in Visual APL. The windows for most of these tools

can be opened from the View menu.

 The Code Editor, for writing source code.

 The Visual APL compiler, for converting Visual APL source code into an executable program.

 The Visual Studio debugger, for testing your program.

 The Toolbox and Designer, for rapid development of user interfaces using the mouse.

 Solution Explorer, for viewing and managing project files and settings.

 Project Designer, for configuring compiler options, deployment paths, resources, and more.

 Class View, for navigating through source code according to types, not files.

 Properties Window, for configuring properties and events on controls in your user interface.

Object Browser, for viewing the methods and classes available in dynamic link libraries including .NET

Framework assemblies and COM objects.

 Document Explorer, for browsing and searching product documentation on your local machine and on

the Internet.

Visual Studio Exposes Tools Overview

You can interact with the VS tools through windows, menus, property pages, and wizards. The basic VS looks

something like this:

You can quickly access any open tool windows or files by pressing CTRL + TAB. For more information, see

Navigating and Searching (Visual APL).

Editor and Windows Form Designer Windows

The large main window is used by both the Code Editor and the Windows Forms Designer. You can toggle

between code view and Design view by pressing F7, or clicking Code or Designer on the View menu. While

in Design view, you can drag controls onto the window from the Toolbox, which you can make visible by

clicking on the Toolbox tab on the left margin. For more information about the Code Editor, see Editing
Code (Visual APL). For more information about the Windows Forms Designer, see Windows Forms
Designer.

Page 68

The Properties window in the lower right is populated only in Design view. It enables you to set properties

and hook up events for user interface controls such as buttons, text boxes, and so on. When you set this

window to Auto Hide, it will collapse into the right margin whenever you switch to Code View. For more

information about the Properties window and the Designer, see Designing a User Interface (Visual APL).

Solution Explorer and Project Designer

The window in the top right is Solution Explorer, which shows all the files in your project in a hierarchical

tree view. When you use the Project menu to add new files to your project, you will see them reflected in

Solution Explorer. In addition to files, Solution Explorer also displays your project settings, and

references to external libraries required by your application.

The Project Designer property pages are accessed by right-clicking on the Properties node in Solution

Explorer, and then clicking Open. Use these pages to modify build options, security requirements,

deployment details, and many other project properties. For more information about Solution Explorer and

the Project Designer, see Creating a Project (Visual APL).

Compiler, Debugger, and Error List Windows

The Visual APL compiler has no window because it is not an interactive tool, but you can set compiler options

in the Project Designer. When you click Build on the Build menu, the Visual APL compiler is invoked by the

IDE. If the build is successful, the status pane displays a Build Succeeded message. If there were build

errors, the Error List window appears below the editor/designer window with a list of errors. Double-click an

error to go to the problem line in your source code. Press F1 to see Help documentation for the highlighted

error.

The debugger has various windows that display values of variables and type information as your application is

running. You can use the Code Editor window while debugging to specify a line at which to pause execution in

the debugger, and to step through code one line at a time. For more information, see Building and
Debugging (Visual APL).

Customizing the IDE

All of the windows in Visual APL can be made dockable or floating, hidden or visible, or can be moved to new

locations. To change the behavior of a window, click the down arrow or push-pin icons on the title bar and

select from among the available options. To move a docked window to a new docked location, drag the title

bar until the window dropper icons appear. While holding down the left mouse button, move the mouse

pointer over the icon at the new location. Position the pointer over the left, right, top or bottom icons to dock

the window on the specified side. Position the pointer over the middle icon to make the window a tabbed

window. As you position the pointer, a blue semi-transparent rectangle appears, which indicates where the

window will be docked in the new location.

Page 69

-- Operator (Visual APL Reference)

The decrement operator (--) decrements its operand by 1. The decrement operator can appear only after its

operand:

Remarks

The postfix decrement operation. The result of the operation is the value of the operand before it has been

decremented.

Numeric and enumeration types have predefined increment operators. Operations on integral types are

generally allowed on enumeration.

Example

using System;
function fn()
{
 x = 1.5;
 print x--;
 print x
 x = 1.5 10 20;
 print x--;
 print x;
}

Output

1.5
0.5
1.5 10 20
0.5 9 19

Page 70

-- Operator (Visual APL Reference)

The decrement operator (--) decrements its operand by 1. The decrement operator can appear only after its

operand:

Remarks

The postfix decrement operation. The result of the operation is the value of the operand before it has been

decremented.

Numeric and enumeration types have predefined increment operators. Operations on integral types are

generally allowed on enumeration.

Example

using System;
function fn()
{
 x = 1.5;
 print x--;
 print x
 x = 1.5 10 20;
 print x--;
 print x;
}

Output

1.5
0.5
1.5 10 20
0.5 9 19

Page 71

>> Operator (Visual APL Reference)

The right-shift operator (>>) shifts its first operand right by the number of bits specified by its second

operand.

Remarks

If the first operand is an int or uint (32-bit quantity), the shift count is given by the low-order five bits of the

second operand (second operand & 0x1f).

If the first operand is a long or ulong (64-bit quantity), the shift count is given by the low-order six bits of the

second operand (second operand & 0x3f).

If the first operand is an int or long, the right-shift is an arithmetic shift (high-order empty bits are set to the

sign bit). If the first operand is of type uint or ulong, the right-shift is a logical shift (high-order bits are

zero-filled).

User-defined types can overload the >> operator; the type of the first operand must be the user-defined

type, and the type of the second operand must be int. For more information, see operator. When a binary

operator is overloaded, the corresponding assignment operator, if any, is also implicitly overloaded.

Example

using System;
function fn()
{
 i = -1000;
 print i >> 3;
}

Output

-125

Page 72

>= Operator (Visual APL Reference)

All numeric and enumeration types define a "greater than or equal" relational operator, >= that returns true if

the first operand is greater than or equal to the second, false otherwise.

Remarks

User-defined types can overload the >= operator. For more information, see operator. If >= is overloaded,

<= must also be overloaded. Operations on integral types are generally allowed on enumeration.

Example

using System;
function fn() {
 print 1.1 >= 1;
 print 1.1 >= 1.1;
}

Output

true
true

Page 73

== Operator (Visual APL Reference)

For predefined value types, the equality operator (==) returns true if the values of its operands are equal,

false otherwise. For reference types other than string, == returns true if its two operands refer to the same

object. For the string type, == compares the values of the strings.

Remarks

User-defined value types can overload the == operator (see operator). So can user-defined reference types,

although by default == behaves as described above for both predefined and user-defined reference types.

Operations on integral types are generally allowed on enumeration.

Example

using System;
function fn() {
 // Numeric equality: True
 print (2 + 2) == 4;

 // Reference equality: different objects,
 // same boxed value: true.
 s = 1;
 t = 1;
 print s == t;

 // Define some strings:
 a = "hello";
 b = String.Copy(a);
 c = "hello";

 // Compare string values of a constant and an instance: True
 print a == b;
 print a == c

}

Output

true
true
true
true

Page 74

<= Operator (Visual APL Reference)

All numeric and enumeration types define a "less than or equal" relational operator (<=) that returns true if

the first operand is less than or equal to the second, false otherwise.

Remarks

User-defined types can overload the <= operator. For more information, see operator. If <= is overloaded,

>= must also be overloaded. Operations on integral types are generally allowed on enumeration.

Example

using System;
function fn() {
 print 1 <= 1.1
 print 1.1 <= 1.1
}

Output

true
true

Page 75

<< Operator (Visual APL Reference)

The left-shift operator (<<) shifts its first operand left by the number of bits specified by its second operand.

The type of the second operand must be an int.

Remarks

If first operand is an int or uint (32-bit quantity), the shift count is given by the low-order five bits of second

operand.

If first operand is a long or ulong (64-bit quantity), the shift count is given by the low-order six bits of second

operand.

The high-order bits of first operand are discarded and the low-order empty bits are zero-filled. Shift

operations never cause overflows.

User-defined types can overload the << operator (see operator); the type of the first operand must be the

user-defined type, and the type of the second operand must be int. When a binary operator is overloaded,

the corresponding assignment operator, if any, is also implicitly overloaded.

Example

using System;
function fn()
{
 i = 1;
 lg = 1L;
 print string.Format("0x{0:x}", i << 1);
 Console.WriteLine("0x{0:x}", i << 33);
 Console.WriteLine("0x{0:x}", lg << 33);
}

Output

0x2
0x2
0x200000000
Comments

Note

The i<<1 and i<<33 give the same result, because 1 and 33 have the same low-order five bits.

Page 76

++ Operator (Visual APL Reference)

The increment operator (++) increments its operand by 1. The increment operator can appear only after its

operand:

Remarks

The postfix increment operation. The result of the operation is the value of the operand before it has been

incremented.

Numeric and enumeration types have predefined increment operators. Operations on integral types are

generally allowed on enumeration.

Example

using System;
function fn()
{
 x = 1.5;
 print x++;
 print x
 x = 1.5 10 20;
 print x++;
 print x;
}

Output

1.5
2.5
1.5 10 20
2.5 11 21

Page 77

|| Operator (Visual APL Reference)

The conditional-OR operator (||) performs a logical-OR of its bool operands, but only evaluates its second

operand if necessary.

Remarks

The operation

x || y

corresponds to the operation

x | y

except that if x is true, y is not evaluated (because the result of the OR operation is true no matter what the

value of y might be). This is known as "short-circuit" evaluation.

The conditional-OR operator cannot be overloaded, but overloads of the regular logical operators and

operators true and false are, with certain restrictions, also considered overloads of the conditional logical

operators.

Example

In the following example, observe that the expression using || evaluates only the first operand.

using System;
function Method1()
{
 print "Method1 called";
 return true;
}

static bool Method2()
{
 print "Method2 called";
 return false;
}

static void Main()
{
 print "regular OR:";
 print string.Format("result is {0}", Method1() | Method2());
 print "short-circuit OR:";
 print string.Format("result is {0}", Method1() || Method2());
}

Output

regular OR:
Method1 called
Method2 called
result is true
short-circuit OR:
Method1 called
result is true

Page 78

| Operator (Visual APL Reference)

Binary | operators are predefined for the integral types and bool. For integral types, | computes the bitwise

OR of its operands. For bool operands, | computes the logical OR of its operands; that is, the result is false if

and only if both its operands are false.

Remarks

The | operator evaluates both operators regardless of the first one's value. For example:

Example

using System;
function fn() {
 print true | false; // logical or
 print false | false; // logical or
 print string.Format("0x{0:x}", 0xf8 | 0x3f); // bitwise or
}

Output

True
False
0xff

Page 79

^ Operator (Visual APL Reference)

Binary ^ operators are predefined for the integral types and bool. For integral types, ^ computes the bitwise

exclusive-OR of its operands. For bool operands, ^ computes the logical exclusive-or of its operands; that is,

the result is true if and only if exactly one of its operands is true.

Remarks

Operations on integral types are generally allowed on enumeration.

Note

This operator is created with the shift-6 key, not to be confused with the alt-0 key which creates the array

and operator.

Example

using System;
function fn()
{
 print true ^ false; // logical exclusive-or
 print false ^ false; // logical exclusive-or
 // Bitwise exclusive-or:
 print string.Format("0x{0:x}", 0xf8 ^ 0x3f);
}

Output

True
False
0xc7

Page 80

&& Operator (Visual APL Reference)

The conditional-AND operator (&&) performs a logical-AND of its bool operands, but only evaluates its second

operand if necessary.

Remarks

The operation

x && y

corresponds to the operation

x & y

except that if x is false, y is not evaluated (because the result of the AND operation is false no matter what

the value of y may be). This is known as "short-circuit" evaluation.

The conditional-AND operator cannot be overloaded, but overloads of the regular logical operators and

operators true and false are, with certain restrictions, also considered overloads of the conditional logical

operators.

Example

In the following example, observe that the expression using && evaluates only the first operand.

using System;
function Method1()
{
 print "Method1 called";
 return false;
}

function Method2()
{
 print "Method2 called";
 return true;
}

function fn()
{
 print "regular AND:";
 print string.Format("result is {0}", Method1() & Method2());
 print "short-circuit AND:";
 print string.Format ("result is {0}", Method1() && Method2());
}

Output

regular AND:
Method1 called
Method2 called
result is false
short-circuit AND:
Method1 called
result is false

Page 81

& Operator (Visual APL Reference)

The & operator is a binary operator and works only on scalars.

Remarks

Binary & operators are predefined for the integral types and bool. For integral types, & computes the logical

bitwise AND of its operands. For bool operands, & computes the logical AND of its operands; that is, the result

is true if and only if both its operands are true.

The & operator evaluates both operators regardless of the first one's value.

For example:

int i = 1;
if (false & i == 1)
{
 // i is incremented, but the conditional
 // expression evaluates to false, so
 // this block does not execute.
}

Operations on integral types are generally allowed on enumeration.

Example

using System;
function fn() {
 print true & false; // logical and
 print true & true ; // logical and
 print string.Format(0x{0:x}", 0xf8 & 0x3f); // bitwise and
}

Output

False
True
0x38

Page 82

!= Operator (Visual APL Reference)

The inequality operator (!=) returns false if its operands are equal, true otherwise. Inequality operators are

predefined for all types, including string and object. User-defined types can overload the != operator.

Remarks

For predefined value types, the inequality operator (!=) returns true if the values of its operands are

different, false otherwise. For reference types other than string, != returns true if its two operands refer to

different objects. For the string type, != compares the values of the strings.

User-defined value types can overload the != operator (see operator). So can user-defined reference types,

although by default != behaves as described above for both predefined and user-defined reference types.

Operations on integral types are generally allowed on enumeration.

Example

using System;
function fn() {
 // Numeric inequality:
 print (2 + 2) != 4;

 // Reference equality: two objects, same boxed value
 s = 1;
 t = 1;
 print s != t);

 // String equality: same string value, same string objects
 a = "hello";
 b = "hello";

 // compare string values
 print a != b;

}

Output

false
false
false

Page 83

Visual APL Keywords

Keywords are predefined reserved identifiers that have special meanings to the compiler. They cannot be

used as identifiers in your program.

abstract as and base

bit bool break byte

case catch char class

continue decimal default definition

delegate do double else

elseif enum event false

finally float for foreach

function get global goto

if in int intn

interface is long namespace

new nop null not

object operator or out

override params print private

property protected public readonly

ref refbyfile refbyname repeat

return sbyte sealed set

short sizeof static step

string switch then this

throw to true try

typeof uint ulong until

ushort using value virtual

void volatile while yield

Page 84

Exception Handling Statements (Visual APL Reference)

Visual APL provides built-in support for handling anomalous situations, known as exceptions, which may occur

during the execution of your program. These exceptions are handled by code that is outside the normal flow

of control.

The following exception handling topics are explained in this section:

throw
try-catch
try-finally
try-catch-finally

Page 85

throw (Visual APL Reference)

The throw statement is used to signal the occurrence of an anomalous situation (exception) during the

program execution.

Remarks

The thrown exception is an object whose class is derived from System.Exception, for example:

class MyException : System.Exception {}
// ...
throw new MyException();
Usually the throw statement is used with try-catch or try-finally statements. When an exception is thrown, the

program looks for the catch statement that handles this exception.

You can also rethrow a caught exception using the throw statement. For more information and examples, see

try-catch and Throwing Exceptions.

Example

This example demonstrates how to throw an exception using the throw statement.

using System;
function fn() {
 s = null;

 if (s == null) {
 throw ArgumentNullException("Error thrown");
 }

 print "The string s is null"; // not executed
}

Output

Error thrown

Page 86

try-catch (Visual APL Reference)

The try-catch statement consists of a try block followed by one or more catch clauses, which specify handlers

for different exceptions.

Remarks

The try block contains the guarded code that may cause the exception. The block is executed until an

exception is thrown or it is completed successfully. For example, the following attempt to cast throws an

error.

function fn() {
 int a = 10
 try {
 a = Form()
 } catch (Exception e) {
 print "this is the error"
 print e.Message
 }
}

Output

this is the error
Unable to cast object of type 'System.Windows.Forms.Form' to type
'System.IConvertible'.

The catch clause can be used without arguments, in which case it catches any type of exception, and referred

to as the general catch clause. It can also take an object argument derived from System.Exception, in which

case it handles a specific exception. For example:

catch (InvalidCastException e)
{
}
It is possible to use more than one specific catch clause in the same try-catch statement. In this case, the

order of the catch clauses is important because the catch clauses are examined in order. Catch the more

specific exceptions before the less specific ones.

A throw statement can be used in the catch block to re-throw the exception, which has been caught by the

catch statement. For example:

catch (InvalidCastException e)
{
 throw (e); // Rethrowing exception e
}
If you want to re-throw the exception currently handled by a parameter-less catch clause, use the throw

statement without arguments. For example:

catch
{
 throw;
}

Example

Page 87

In this example, the try block contains a call to the method MyMethod() that may cause an exception. The

catch clause contains the exception handler that simply displays a message on the screen. When the throw

statement is called from inside MyMethod, the system looks for the catch statement and displays the message

Exception caught.

using System;
function ProcessString(s)
 {
 if (s == null)
 {
 throw new ArgumentNullException("Argument is null");
 }
}

function fn()
 {
 try
 {
 s = null;
 ProcessString(s);
 }
 catch (Exception e)
 {
 print string.Format("{0} Exception caught.", e.Message);
 }
}

Output

 fn()
Argument is null Exception caught.

Page 88

try-finally (Visual APL Reference)

The finally block is useful for cleaning up any resources allocated in the try block as well as running any code

that must execute even if there is an exception. Control is always passed to the finally block regardless of

how the try block exits.

Remarks

Whereas catch is used to handle exceptions that occur in a statement block, finally is used to guarantee a

statement block of code executes regardless of how the preceding try block is exited.

Example

In this example, there is one invalid conversion statement that causes an exception. When you run the

program, you get a run-time error message, but the finally clause will still be executed and display the

output.

// try-finally
using System;
function fn() {
 i = 1 2 3;
 try {
 // Invalid index
 a = i[5];
 } finally {
 print string.Format("i = {0}", i);
 }
}

 fn()
i = System.Int32[]
Index was outside the bounds of the array.

Comments

Although an exception was caught, the output statement included in the finally block will still be executed.

Page 89

Jump Statements (Visual APL Reference)

Branching is performed using jump statements, which cause an immediate transfer of the program control.

The following keywords are used in jump statements:

break
continue
goto
return
throw

Page 90

Branch (→) (Visual APL Reference)

The Branch (→) statement transfers the program control to a labeled statement, either by a dynamic selection

of the label to branch to, or directly to the specified label.

Syntax

→ label

label: A label value.

Remarks

In most .Net languages, a goto statement is the only method provided for altering program flow based on

labels in a function, and usually this statement requires that its right argument is a single literally specified

label. Visual APL fully supports this construct via the goto statement.

The Branch statement is the dynamic complement to the static goto statement, in that the argument to the

Branch statement can be any expression which returns a valid label within the function in which the Branch

statement has been called.

Label Values

Labels in all .Net languages are in actuality just integers (or System.Int32).

The label value which is passed to the Branch statement is therefore a simple Integer, which is the index of

the label in the function to which code flow will be transferred.

There are three categories of label values which can be passed to the Branch statement:
1. A value of 0. If a 0 is passed to the branch statement, the function returns immediately, returning

either the value of the default return variable of the function, or if there is no default return variable

declared, the value null is returned.
2. A value which is one of the declared labels in the function.

If labels L1 and L2 are sequentially declared in a function, then L1 will be assigned the value 1, and

L2 will be assigned the value 2. In this function, the Branch statement will transfer control to L1 if its

argument is the number 1, and L2 if the argument is the number 2.
3. Values greater then the number of declared labels. Any integer argument to the Branch statement

which is greater then the number of declared label statements in the function will have no branching

effect, meaning that code flow will be transferred to the next statement after the Branch statement in

the function, and has the net result as a nop in the function.

Example

function fn(a) {
 if (a == 10) {
 lb = L2
 } else {
 lb = L1
 }

 // branch to the specified statement
 → lb

Page 91

 print "dont show this text"

 L1:
 print "a was not 10"
 L2:
 print "end"
}

 fn(10)
end
 fn(11)
a was not 10
end

Page 92

break (Visual APL Reference)

The break statement terminates the closest enclosing loop or switch statement in which it appears. Control is

passed to the statement that follows the terminated statement, if any.

Example

In this example, the conditional statement contains a counter that is supposed to count from 1 to 100;

however, the break statement terminates the loop after 4 counts.

using System;
function fn() {
 for (i = 1; i <= 100; i++) {
 if (i == 5)
 {
 break;
 }
 print i;
 }
}

Output
1
2
3
4
This example demonstrates the use of break in a switch statement.

using System;
function fn(n) {
 switch (n)
 {
 case 1:
 print string.Format("Current value is {0}", 1);
 break;
 case 2:
 print string.Format("Current value is {0}", 2);
 break;
 case 3:
 print string.Format("Current value is {0}", 3);
 break;
 default:
 print string.Format("default selection.");
 break;
 }
}

 fn(1)
Current value is 1
 fn(2)
Current value is 2
 fn(3)
Current value is 3
 fn(4)
default selection.

Page 93

continue (Visual APL Reference)

The continue statement passes control to the next iteration of the enclosing iteration statement in which it

appears.

Example

In this example, a counter is initialized to count from 1 to 10. By using the continue statement in conjunction

with the expression (i < 9), the statements between continue and the end of the for body are skipped.

using System;
function fn() {
 for (i = 1; i <= 10; i++) {
 if (i < 9) {
 continue;
 }
 print i;
 }
}

Output
9
10

Page 94

goto (Visual APL Reference)

The goto statement transfers the program control directly to a labeled statement.

Remarks

A common use of goto is to transfer control to a specific switch-case label or the default label in a switch

statement.

The goto statement is also useful to get out of deeply nested loops.

For dynamic and conditional branching, see the Branch statement.

Example

function fn(a) {
 if (a == 10) {
 goto L1
 }
 print "a was not 10"
 L1:
 print "end"
}

 fn(10)
end
 fn(11)
a was not 10
end

Page 95

return (Visual APL Reference)

The return statement terminates execution of the method in which it appears and returns control to the calling

method. It can also return an optional value. If the method is a void type, the return statement can be

omitted.

Example

In the following example, the method CalculateArea() returns the variable Area as a double value.

using System;
function CalculateArea(r) {
 area = r × r × Math.PI;
 return area;
}

function fn() {
 radius = 5;
 r = CalculateArea(radius)
 a = string.Format("The area is {0:0.00}", r);
 print a
}

 fn()
The area is 78.54

Page 96

Selection Statements (Visual APL Reference)

A selection statement causes the program control to be transferred to a specific flow based upon whether a

certain condition is true or not.

The following keywords are used in selection statements:

if
else
elseif
switch
case
default

Page 97

http://msdn2.microsoft.com/en-us/library/5011f09h.aspx
http://msdn2.microsoft.com/en-us/library/5011f09h.aspx
http://msdn2.microsoft.com/en-us/library/06tc147t.aspx
http://msdn2.microsoft.com/en-us/library/06tc147t.aspx
http://msdn2.microsoft.com/en-us/library/06tc147t.aspx

foreach, in (Visual APL Reference)

The foreach statement repeats a group of embedded statements for each element in an array or an object

collection. The foreach statement is used to iterate through the collection to get the desired information, but

should not be used to change the contents of the collection to avoid unpredictable side effects.

Remarks

The embedded statements continue to execute for each element in the array or collection. After the iteration

has been completed for all the elements in the collection, control is transferred to the next statement

following the foreach block.

At any point within the foreach block, you can break out of the loop using the break keyword, or step directly

to the next iteration in the loop by using the continue keyword.

A foreach loop can also be exited by the goto, return, or throw statements.

Example

In this example, foreach is used to display the contents of an array of integers.

function fn(a) {
 foreach (i in a) {
 print i
 }
}

 fn(⍳ 3)
0
1
2
 fn("one" "two")
one
two

The foreach also supports multiple variables:

function fn() {
 foreach (a b c in (1 2 3) (4 5 6)) {
 print a
 print b
 print c
 }
}

 fn()
1
2
3
4
5
6

Page 98

if-else (Visual APL Reference)

The if statement selects a statement for execution based on the value of a Boolean expression. In the

following example a Boolean flag flagCheck is set to true and then checked in the if statement. The output is:

The flag is set to true.

Example

function fn(flagCheck) {
 if (flagCheck == true) {
 print "The flag is set to true.";
 } else {
 print "The flag is set to false.";
 }
}

Remarks

If the expression in the parenthesis is evaluated to be true, then the print "The boolean flag is set to true.";

statement is executed. After executing the if statement, control is transferred to the next statement. The else

is not executed in this example.

If you wish to execute more than one statement, multiple statements can be conditionally executed by

including them into blocks using {} as in the example above.

The statement(s) to be executed upon testing the condition can be of any kind, including another if statement

nested into the original if statement. In nested if statements, the else clause belongs to the last if that does

not have a corresponding else.

For example:

function fn(x,y) {
 if (x > 10) {
 if (y > 20) {
 print "Statement_1";
 } else {
 print "Statement_2";
 }
 } else if (x < 5) {
 print “Statement_3”
 }
}
In this case, Statement_2 will be displayed if the condition (x > 10) evaluates to false

If x is less than 5 then Statement_3 will be displayed.

Page 99

switch-case (Visual APL Reference)

The switch statement provides a method for controlling the code flow based on the Identity comparison of a

value to a series of values.

function fn(a) {
 switch (a) {
 case 10:
 print "10"
 break
 case "test":
 print "test"
 break
 default:
 print "default"
 break
 }
}

 fn(10)
10
 fn(“"test"”)
test
 fn(100)
default

Page 100

Iteration Statements (Visual APL Reference)

You can create loops by using the iteration statements. Iteration statements cause embedded statements to

be executed a number of times, subject to the loop-termination criteria. These statements are executed in

order, except when a jump statement is encountered.

The following keywords are used in iteration statements:

do
for
foreach
in
while

Page 101

do (Visual APL Reference)

The do statement executes a statement or a block of statements enclosed in {} repeatedly until a specified

expression evaluates to false. In the following example the do-while loop statements execute as long as the

variable y is less than 5.

Example

using System;
function fn() {
 x = 0;
 do {
 print x;
 x++;
 } while (x < 5);
}

Output

0
1
2
3
4

Remarks

Unlike the while statement, a do-while loop is executed once before the conditional expression is evaluated.

At any point within the do-while block, you can break out of the loop using the break statement. You can step

directly to the while expression evaluation statement by using the continue statement; if the expression

evaluates to true, execution continues at the first statement in the loop. If the expression evaluates to false,

execution continues at the first statement after the do-while loop.

A do-while loop can also be exited by the goto, return, or throw statements.

Page 102

for (Visual APL Reference)

The for loop executes a statement or a block of statements repeatedly until a specified expression evaluates

to false. The for loop is handy for iterating over arrays and for sequential processing. In the following

example, the value of int i is written to the session and i is incremented each time through the loop by 1.

Example

using System;
function fn()
{
 for (i = 1; i <= 5; i++)
 {
 print i
 }
}

Output

1
2
3
4
5

Remarks

The for statement executes the enclosed statement or statements repeatedly as follows:

First, the initial value of the variable i is evaluated.

Then, while the value of i is less than or equal to 5, the condition evaluates to true, the print statement is

executed and i is reevaluated.

When i is greater than 5, the condition becomes false and control is transferred outside the loop.

Because the test of conditional expression takes place before the execution of the loop, therefore, a for

statement executes zero or more times.

All of the expressions of the for statement are optional; for example, the following statement is used to write

an infinite loop:

for (;;)
{
 // ...
}

The for statement also supports an else block. The else block is only evaluated if the for block is never

evaluated.

Example:

function fn(a) {
 for (i=0;i<a;i++) {
 print i
 } else {
 print "no iteration"
 }

Page 103

}

 fn(3)
0
1
2
 fn(0)
no iteration

Page 104

while (Visual APL Reference)

The while statement executes a statement or a block of statements until a specified expression evaluates to

false.

Example

using System;
function fn(a) {
 n = 1;
 while (n < a)
 {
 print string.Format("Current value of n is {0}", n);
 n++;
 }
}

 fn(3)
Current value of n is 1
Current value of n is 2

The while statement also supports an else block. In the event the while loop is never entered then the else

block will be evaluated.

Example:

function fn(a) {
 n = 1;
 while (n < a)
 {
 print string.Format("Current value of n is {0}", n);
 n++;
 } else {
 print "never entered"
 }
}

 fn(3)
Current value of n is 1
Current value of n is 2
 fn(1)
never entered

A while loop can be terminated when a break, goto, return, or throwstatement transfers control outside the

loop. To pass control to the next iteration without exiting the loop, use the continuestatement. Notice the

difference in output in the three previous examples, depending on where int n is incremented. In the example

below no output is generated.

Page 105

Exception Handling Statements (Visual APL Reference)

Visual APL provides built-in support for handling anomalous situations, known as exceptions, which may occur

during the execution of your program. These exceptions are handled by code that is outside the normal flow

of control.

The following exception handling topics are explained in this section:

throw
try-catch
try-finally
try-catch-finally

Page 106

throw (Visual APL Reference)

The throw statement is used to signal the occurrence of an anomalous situation (exception) during the

program execution.

Remarks

The thrown exception is an object whose class is derived from System.Exception, for example:

class MyException : System.Exception {}
// ...
throw new MyException();
Usually the throw statement is used with try-catch or try-finally statements. When an exception is thrown, the

program looks for the catch statement that handles this exception.

You can also rethrow a caught exception using the throw statement. For more information and examples, see

try-catch and Throwing Exceptions.

Example

This example demonstrates how to throw an exception using the throw statement.

using System;
function fn() {
 s = null;

 if (s == null) {
 throw ArgumentNullException("Error thrown");
 }

 print "The string s is null"; // not executed
}

Output

Error thrown

Page 107

try-catch (Visual APL Reference)

The try-catch statement consists of a try block followed by one or more catch clauses, which specify handlers

for different exceptions.

Remarks

The try block contains the guarded code that may cause the exception. The block is executed until an

exception is thrown or it is completed successfully. For example, the following attempt to cast throws an

error.

function fn() {
 int a = 10
 try {
 a = Form()
 } catch (Exception e) {
 print "this is the error"
 print e.Message
 }
}

Output

this is the error
Unable to cast object of type 'System.Windows.Forms.Form' to type
'System.IConvertible'.

The catch clause can be used without arguments, in which case it catches any type of exception, and referred

to as the general catch clause. It can also take an object argument derived from System.Exception, in which

case it handles a specific exception. For example:

catch (InvalidCastException e)
{
}
It is possible to use more than one specific catch clause in the same try-catch statement. In this case, the

order of the catch clauses is important because the catch clauses are examined in order. Catch the more

specific exceptions before the less specific ones.

A throw statement can be used in the catch block to re-throw the exception, which has been caught by the

catch statement. For example:

catch (InvalidCastException e)
{
 throw (e); // Rethrowing exception e
}
If you want to re-throw the exception currently handled by a parameter-less catch clause, use the throw

statement without arguments. For example:

catch
{
 throw;
}

Example

Page 108

In this example, the try block contains a call to the method MyMethod() that may cause an exception. The

catch clause contains the exception handler that simply displays a message on the screen. When the throw

statement is called from inside MyMethod, the system looks for the catch statement and displays the message

Exception caught.

using System;
function ProcessString(s)
 {
 if (s == null)
 {
 throw new ArgumentNullException("Argument is null");
 }
}

function fn()
 {
 try
 {
 s = null;
 ProcessString(s);
 }
 catch (Exception e)
 {
 print string.Format("{0} Exception caught.", e.Message);
 }
}

Output

 fn()
Argument is null Exception caught.

Page 109

try-finally (Visual APL Reference)

The finally block is useful for cleaning up any resources allocated in the try block as well as running any code

that must execute even if there is an exception. Control is always passed to the finally block regardless of

how the try block exits.

Remarks

Whereas catch is used to handle exceptions that occur in a statement block, finally is used to guarantee a

statement block of code executes regardless of how the preceding try block is exited.

Example

In this example, there is one invalid conversion statement that causes an exception. When you run the

program, you get a run-time error message, but the finally clause will still be executed and display the

output.

// try-finally
using System;
function fn() {
 i = 1 2 3;
 try {
 // Invalid index
 a = i[5];
 } finally {
 print string.Format("i = {0}", i);
 }
}

 fn()
i = System.Int32[]
Index was outside the bounds of the array.

Comments

Although an exception was caught, the output statement included in the finally block will still be executed.

Page 110

Types (Visual APL Reference)

The Visual APL typing system contains the following categories:

Value types

Reference types

Variables of the value types store data, while those of the reference types store references to the actual data.

Reference types are also referred to as objects.

Visual APL is ambivalent about data types, and all identifiers can be dynamically typed and contain any object

or value type. Visual APL also supports strong typing within a class or function. Strong data typing is optional

and is used primarily when there is a need to manipulate value types as scalars.

This section also introduces void.

Value types are also nullable, which means they can store an addition non-value state.

Page 111

Value Types (Visual APL Reference)

ValueTypes are most often the primitive types used by the .Net framework, such as Int32, Int64, Double,

Char, etc.

The value types consist of two main categories:

Structs

Enumerations

Structs fall into these categories:

Numeric types

Integral types

Floating-point types

Decimal

Boolean

Main Features of Value Types

Variables that are based on value types directly contain values. Assigning one value type variable to another

copies the contained value. This differs from the assignment of reference type variables, which copies a

reference to the object but not the object itself using the assign by reference operator =.

However, using the assign by value ← operator copies the value types out of a reference type and places

them in a new instance of the reference type.

All value types are derived implicitly from the System.ValueType.

Unlike reference types, it is not possible to derive a new type from a value type. In particular this means that

a class can not inherit from Int32, Double, etc.

Unlike reference types, it is not possible for a value type to contain the null value. However, the nullable

types feature does allow values types to be assigned to null. In addition all arrays in Visual APL

automatically promote to a nullable type when a null is assigned to a reference object.

Each value type has an implicit default constructor that initializes the default value of that type. For

information on default values of value types, see Default Values Table.

Main Features of Simple Types

All of the simple types -- those integral to the Visual APL language -- are aliases of the .NET Framework

System types. For example, int is an alias of System.Int32. For a complete list of aliases, see Built-In Types

Table (Visual APL Reference).

Constant expressions, whose operands are all simple type constants, are evaluated at compilation time.

Simple types can be initialized using literals. For example, 'A' is a literal of the type char and 2001 is a literal

of the type int.

Initializing Value Types

Local variables are created automatically when they are first assigned.

Example:

function fn() {

Page 112

 a = 10
 b = 30.4
 c = "test"
}

Local variables in Visual APL are automatically initialized if declared using strong typing. Therefore, if you

declare a local variable without initialization like this:

int myInt;

which is equivalent to:

myInt = 0; // Assign an initial value, 0 in this example.
You can, of course, have the declaration and the initialization in the same statement like this:

int myInt = 0;
Once a variable has been declared as a specific type and shape it can only contain that type and shape.

Page 113

Value Types Table (Visual APL Reference)

The following table lists the Visual APL value types by category.

Value type Category

bool Boolean

byte Unsigned, numeric, integral

char Unsigned, numeric, integral

decimal Numeric, decimal

double Numeric, floating-point

enum Enumeration

float Numeric, floating-point

int Signed, numeric, integral

long Signed, numeric, integral

sbyte Signed, numeric, integral

short Signed, numeric, integral

struct User-defined structure

uint Unsigned, numeric, integral

ulong Unsigned, numeric, integral

ushort Unsigned, numeric, integral

Page 114

http://msdn2.microsoft.com/en-us/library/c8f5xwh7.aspx
http://msdn2.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn2.microsoft.com/en-us/library/x9h8tsay.aspx
http://msdn2.microsoft.com/en-us/library/364x0z75.aspx
http://msdn2.microsoft.com/en-us/library/678hzkk9.aspx
http://msdn2.microsoft.com/en-us/library/sbbt4032.aspx
http://msdn2.microsoft.com/en-us/library/b1e65aza.aspx
http://msdn2.microsoft.com/en-us/library/5kzh1b5w.aspx
http://msdn2.microsoft.com/en-us/library/ctetwysk.aspx
http://msdn2.microsoft.com/en-us/library/d86he86x.aspx
http://msdn2.microsoft.com/en-us/library/ybs77ex4.aspx
http://msdn2.microsoft.com/en-us/library/ah19swz4.aspx
http://msdn2.microsoft.com/en-us/library/x0sksh43.aspx
http://msdn2.microsoft.com/en-us/library/t98873t4.aspx
http://msdn2.microsoft.com/en-us/library/cbf1574z.aspx

void (Visual APL Reference)

When used as the return type for a method, void specifies that the method does not return a value.

void is not allowed in a method's parameter list. A method that takes no parameters and returns no value is

declared as follows. this is only valid within a class, and will not work in the session:

function void SampleMethod();

This will create a method signature which can be consumed by any .Net language and there will be no return

from the method. However, when invoking the method in Visual APL, as with all methods that have a void

return value, if an assignment is made from the method, the variable will receive a null.

void is an alias for the .NET Framework System.Void type.

Page 115

Built-In Types Table (Visual APL Reference)

The following table shows the keywords for built-in Visual APL types, which are aliases of predefined types in

the System namespace.

Visual APL Type .NET Framework Type

bool - System.Boolean

byte - System.Byte

sbyte - System.SByte

char - System.Char

decimal - System.Decimal

double - System.Double

float - System.Single

int - System.Int32

uint - System.UInt32

long - System.Int64

ulong - System.UInt64

object - System.Object

short - System.Int16

ushort - System.UInt16

string - System.String

ivar - APL variable type

Remarks

All of the types in the table, except ivar, object and string, are referred to as simple types.

The Visual APL type keywords and their aliases are interchangeable. For example, you can declare an integer

variable by using either of the following declarations:

 int x = 123;
 System.Int32 x = 123;
 a = 123
 a.GetType(()
System.Int32

To display the actual type for any Visual APL type, use the system method GetType(). For example, the

following statement displays the system alias that represents the type of myVariable:

print myVariable.GetType();

You can also use the typeof operator.

Page 116

Page 117

Default Values Table (Visual APL Reference)

The following table shows the default values of value types returned by the default constructors. Default

constructors are invoked by using the new operator, as follows:

int myInt = new int();

The preceding statement has the same effect as the following statement:

int myInt = 0;

Remember that variables are initialized when they are first assigned or when their type is defined.

Value

type Default value

bool false

byte 0

char '\0'

decimal 0.0M

double 0.0D

enum The value produced by the expression (E)0, where E is the enum identifier.

float 0.0F

int 0

long 0L

sbyte 0

short 0

struct The value produced by setting all value-type fields to their default values and all reference-type

fields to null.

uint 0

ulong 0

ushort 0

Page 118

http://msdn2.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn2.microsoft.com/en-us/library/x9h8tsay.aspx
http://msdn2.microsoft.com/en-us/library/364x0z75.aspx
http://msdn2.microsoft.com/en-us/library/678hzkk9.aspx
http://msdn2.microsoft.com/en-us/library/sbbt4032.aspx
http://msdn2.microsoft.com/en-us/library/b1e65aza.aspx
http://msdn2.microsoft.com/en-us/library/5kzh1b5w.aspx
http://msdn2.microsoft.com/en-us/library/ctetwysk.aspx
http://msdn2.microsoft.com/en-us/library/d86he86x.aspx
http://msdn2.microsoft.com/en-us/library/ybs77ex4.aspx
http://msdn2.microsoft.com/en-us/library/ah19swz4.aspx
http://msdn2.microsoft.com/en-us/library/x0sksh43.aspx
http://msdn2.microsoft.com/en-us/library/t98873t4.aspx
http://msdn2.microsoft.com/en-us/library/cbf1574z.aspx

Explicit Numeric Conversions Table (Visual APL Reference)

Explicit numeric conversion is used to convert any numeric type to any other numeric type, for which there is

no implicit conversion, by using a cast expression. The following table shows these conversions.

From To

sbyte byte, ushort, uint, ulong, or char

byte Sbyte or char

short sbyte, byte, ushort, uint, ulong, or char

ushort sbyte, byte, short, or char

int sbyte, byte, short, ushort, uint, ulong, or char

uint sbyte, byte, short, ushort, int, or char

long sbyte, byte, short, ushort, int, uint, ulong, or char

ulong sbyte, byte, short, ushort, int, uint, long, or char

char sbyte, byte, or short

float sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal

double sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal

decimal sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double

Remarks

The explicit numeric conversion may cause loss of precision or result in throwing exceptions.

When you convert a decimal value to an integral type, this value is rounded towards zero to the nearest

integral value. If the resulting integral value is outside the range of the destination type, an

OverflowException is thrown.

When you convert from a double or float value to an integral type, the value is truncated. If the resulting

integral value is outside the range of the destination value, the result depends on the overflow checking

context. In a checked context, an OverflowException is thrown, while in an unchecked context, the result is an

unspecified value of the destination type.

When you convert double to float, the double value is rounded to the nearest float value. If the double value

is too small or too large to fit into the destination type, the result will be zero or infinity.

When you convert float or double to decimal, the source value is converted to decimal representation and

rounded to the nearest number after the 28th decimal place if required. Depending on the value of the source

value, one of the following results may occur:

If the source value is too small to be represented as a decimal, the result becomes zero.

If the source value is NaN (not a number), infinity, or too large to be represented as a decimal, an

OverflowException is thrown.

When you convert decimal to float or double, the decimal value is rounded to the nearest double or float

value.

Page 119

Page 120

Floating-Point Types Table (Visual APL Reference)

The following table shows the precision and approximate ranges for the floating-point types.

Type Approximate range Precision

float ±1.5e−45 to ±3.4e38 7 digits

double ±5.0e−324 to ±1.7e308 15-16 digits

Page 121

http://msdn2.microsoft.com/en-us/library/b1e65aza.aspx
http://msdn2.microsoft.com/en-us/library/678hzkk9.aspx

Implicit Numeric Conversions Table (Visual APL Reference)

The following table shows the predefined implicit numeric conversions. Implicit conversions might occur in

many situations, including method invoking and assignment statements.

This is particularly important when selecting a method overload.

From To

sbyte short, int, long, float, double, or decimal

byte short, ushort, int, uint, long, ulong, float, double, or decimal

short int, long, float, double, or decimal

ushort int, uint, long, ulong, float, double, or decimal

int long, float, double, or decimal

uint long, ulong, float, double, or decimal

long float, double, or decimal

char ushort, int, uint, long, ulong, float, double, or decimal

float double

ulong float, double, or decimal

Remarks

The conversions from int, uint, or long to float and from long to double may cause a loss of precision, but not

a loss of magnitude.

There are no implicit conversions to the char type.

There are no implicit conversions between floating-point types and the decimal type.

A constant expression of type int can be converted to sbyte, byte, short, ushort, uint, or ulong, provided the

value of the constant expression is within the range of the destination type.

In all cases, a conversion will be made if possible. This primarily occurs when using strong typed variables.

Example:

 int a = 10
 a = 33.4
 print a
33

When using dynamically typed variables this data conversion is not necessary.

Page 122

http://msdn2.microsoft.com/en-us/library/d86he86x.aspx
http://msdn2.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn2.microsoft.com/en-us/library/ybs77ex4.aspx
http://msdn2.microsoft.com/en-us/library/cbf1574z.aspx
http://msdn2.microsoft.com/en-us/library/5kzh1b5w.aspx
http://msdn2.microsoft.com/en-us/library/x0sksh43.aspx
http://msdn2.microsoft.com/en-us/library/ctetwysk.aspx
http://msdn2.microsoft.com/en-us/library/x9h8tsay.aspx
http://msdn2.microsoft.com/en-us/library/b1e65aza.aspx
http://msdn2.microsoft.com/en-us/library/t98873t4.aspx

Integral Types Table (Visual APL Reference)

The following table shows the sizes and ranges of the integral types, which constitute a subset of simple

types.

Type Range Size

sbyte -128 to 127 Signed 8-bit integer

byte 0 to 255 Unsigned 8-bit integer

char U+0000 to U+ffff Unicode 16-bit character

short -32,768 to 32,767 Signed 16-bit integer

ushort 0 to 65,535 Unsigned 16-bit integer

int -2,147,483,648 to 2,147,483,647 Signed 32-bit integer

uint 0 to 4,294,967,295 Unsigned 32-bit integer

long -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807 Signed 64-bit integer

ulong 0 to 18,446,744,073,709,551,615 Unsigned 64-bit integer

intn -arbritrary large to arbitrary large N bit integer

Page 123

http://msdn2.microsoft.com/en-us/library/5bdb6693.aspx
http://msdn2.microsoft.com/en-us/library/x9h8tsay.aspx
http://msdn2.microsoft.com/en-us/library/ybs77ex4.aspx
http://msdn2.microsoft.com/en-us/library/cbf1574z.aspx
http://msdn2.microsoft.com/en-us/library/5kzh1b5w.aspx
http://msdn2.microsoft.com/en-us/library/x0sksh43.aspx
http://msdn2.microsoft.com/en-us/library/ctetwysk.aspx
http://msdn2.microsoft.com/en-us/library/t98873t4.aspx

Modifiers (Visual APL Reference)

Modifiers are used to modify declarations of types and type members. This section introduces the Visual APL

modifiers:

Modifier Purpose

Access

Modifiers

public

private

internal

protected

Specify the declared accessibility of types and type members.

abstract Indicates that a class is intended only to be a base class of other classes.

event Declares an event.

new Hides an inherited member from a base class member.

override Provides a new implementation of a virtual member inherited from a base class.

readonly Declares a field that can only be assigned values as part of the declaration or in a constructor

in the same class.

sealed Specifies that a class cannot be inherited.

static Declares a member that belongs to the type itself rather than to a specific object.

virtual Declares a method or an accessor whose implementation can be changed by an overriding

member in a derived class.

volatile Indicates that a field can be modified in the program by something such as the operating

system, the hardware, or a concurrently executing thread.

Page 124

http://msdn2.microsoft.com/en-us/library/wxh6fsc7.aspx
http://msdn2.microsoft.com/en-us/library/wxh6fsc7.aspx
http://msdn2.microsoft.com/en-us/library/st6sy9xe.aspx
http://msdn2.microsoft.com/en-us/library/7c5ka91b.aspx
http://msdn2.microsoft.com/en-us/library/bcd5672a.aspx
http://msdn2.microsoft.com/en-us/library/sf985hc5.aspx
http://msdn2.microsoft.com/en-us/library/8627sbea.aspx
http://msdn2.microsoft.com/en-us/library/51y09td4.aspx
http://msdn2.microsoft.com/en-us/library/ebca9ah3.aspx
http://msdn2.microsoft.com/en-us/library/acdd6hb7.aspx
http://msdn2.microsoft.com/en-us/library/88c54tsw.aspx
http://msdn2.microsoft.com/en-us/library/98f28cdx.aspx
http://msdn2.microsoft.com/en-us/library/9fkccyh4.aspx
http://msdn2.microsoft.com/en-us/library/x13ttww7.aspx

Types Reference Tables (Visual APL Reference)

The following reference tables summarize the Visual APL types:

Built-in Types Table

Integral types

Floating-point types

Default values

Value types

Implicit numeric conversions

Explicit Numeric Conversions Table

For information on formatting the output of numeric types, see ⎕fmt.

Page 125

Access Keywords (Visual APL Reference)

This section introduces the following access keywords:

base

Accesses the members of the base class.

this

Refers to the current instance of the class.

Page 126

base (Visual APL Reference)

The base keyword is used to access members of the base class from within a derived class:

Call a method on the base class that has been overridden by another method.

Specify which base-class constructor should be called when creating instances of the derived class.

A base class access is permitted only in a constructor, an instance method, or an instance property accessor.

It is an error to use the base keyword from within a static method.

Example

In this example, both the base class, Person, and the derived class, Employee, have a method named

Getinfo. By using the base keyword, it is possible to call the Getinfo method on the base class, from within the

derived class.

using System;
public class Person {
 protected string ssn = "444-55-6666";
 protected string name = "John L. Malgraine";

 public virtual void GetInfo() {
 print string.Format("Name: {0}", name);
 print string.Format("SSN: {0}", ssn);
 }
}
class Employee : Person {
 public string id = "ABC567EFG";
 public override void GetInfo() {
 // Calling the base class GetInfo method:
 base.GetInfo();
 print string.Format("Employee ID: {0}", id);
 }
}

class TestClass {
 public function fn() {
 Employee E = new Employee();
 E.GetInfo();
 }
}

This example shows how to specify the base-class constructor called when creating instances of a derived

class.

using System;
public class BaseClass {
 int num;

 public BaseClass() {
 print "in BaseClass()";
 }

 public BaseClass(int i) {
 num = i;
 Console.WriteLine("in BaseClass(int i)");
 }

 public int GetNum() {

Page 127

 return num;
 }
}

public class DerivedClass : BaseClass
{
 // This constructor will call BaseClass.BaseClass()
 public DerivedClass() : base() {
 }

 // This constructor will call BaseClass.BaseClass(int i)
 public DerivedClass(int i) : base(i) {
 }

 public function fn()
 {
 DerivedClass md = new DerivedClass();
 DerivedClass md1 = new DerivedClass(1);
 }
}

Output

Name: John L. Malgraine
SSN: 444-55-6666
Employee ID: ABC567EFG

Output

in BaseClass()
in BaseClass(int i)

Page 128

this (Visual APL Reference)

The this keyword refers to the current instance of the class.

The following are common uses of this:

To qualify members hidden by similar names, for example:

public Employee(name, alias)
{
 this.name = name;
 this.alias = alias;
}

Page 129

Literal Keywords (Visual APL Reference)

Visual APL has the following literal keywords:

null
true
false
default

Page 130

null (Visual APL Reference)

The null keyword is a literal that represents a null reference, one that does not refer to any object. null is the

default value of reference-type variables.

Page 131

false Literal (Visual APL Reference)

Represents the boolean value true.

Example

using System;
 function fn() {
 a = false;
 if (a) {
 print "yes"
 } else {
 print "no"
 }
 }

Output
no

Page 132

true Literal (Visual APL Reference)

Represents the boolean value true.

Example

using System;
 function fn() {
 a = true;
 if (a) {
 print "yes"
 }
 }

Output
yes

Page 133

default (Visual APL Reference)

The default keyword.

The default keyword can be used in the switch statement.

Page 134

Contextual Keywords (Visual APL Reference)

A contextual keyword is used to provide a specific meaning in the code, but it is not a reserved word in Visual

APL. The following contextual keywords are introduced in this section:

get Defines an accessor method for a property or an indexer.
set Defines an accessor method for a property or an indexer.
yield Used in an iterator block to return a value to the enumerator object
or to signal the end of iteration.
value Used to set accessors and to add or remove event handlers.

Page 135

get (Visual APL Reference)

Defines an accessor method in a property or indexer that retrieves the value of the property or the indexer

element. See Properties and Indexers for more information.

This is an example of a get accessor in a property called Seconds:

class TimePeriod
{
 private _seconds;
 public Seconds {
 get { return _seconds; }
 set { _seconds = value; }
 }
}

Page 136

set (Visual APL Reference)

Defines an accessor method in a property or indexer that retrieves the value of the property or the indexer

element. See Properties and Indexers for more information.

This is an example of a set accessor in a property called Seconds:

class TimePeriod
{
 private _seconds;
 public Seconds {
 get { return _seconds; }
 set { _seconds = value; }
 }
}

Page 137

value (Visual APL Reference)

The implicit parameter value is used in setting accessors.

class TimePeriod
{
 private _seconds;
 public Seconds {
 get { return _seconds; }
 set { _seconds = value; }
 }
}

Page 138

yield (Visual APL Reference)

The yield keyword acts like return, but instead of exiting the function, the information is returned and when

the function is accessed again, the function begins execution immediately following the yield.

See the tutorial for examples of using yield.

Page 139

Namespace Keywords (Visual APL Reference)

This section describes the keywords and operators that are associated with using namespaces:

namespace
using
refbyfile
refbyname

Page 140

using (Visual APL Reference)

The using keyword has two major uses:

As a directive, when it is used to create an alias for a namespace or to import types defined in other

namespaces. See using Directive.

Page 141

using Directive (Visual APL Reference)

The using directive has two uses:

To permit the use of types in a namespace so you do not have to qualify the use of a type in that namespace:

using System.Text;

To create an alias for a namespace or a type.

using Project = PC.MyCompany.Project;

The using keyword is also be used to create using statements, which define when an object will be disposed.

See using Statement for more information.

Remarks

The scope of a using directive is limited to the file in which it appears.

Create a using alias to make it easier to qualify an identifier to a namespace or type.

Create a using directive to use the types in a namespace without having to specify the namespace. A using

directive does not give you access to any namespaces that are nested in the namespace you specify.

The using directive provides the ability to include static methods on a type without having to specify the type.

Static methods with the AplFunctionAttribute are included as APL Functions, other methods appear as normal

methods.

It is also possible to override primitives and system functions when the using directive specifies a type. Static

methods on the type which have the AplOpsFunctionAttribute are evaluated and the returned hashtable is

incorporated into the system primitives. When a primitive or system function name already exists, the

current specification replaces the existing version. This makes it possible to override both primitives and

system functions.

Page 142

namespace (Visual APL Reference)

The namespace keyword is used to declare a scope. This namespace scope lets you organize code and gives

you a way to create globally unique types.

namespace SampleNamespace
{
 class SampleClass{}
 interface SampleInterface{}
 enum SampleEnum{a,b}
}

Remarks

Within a namespace, you can declare one or more of the following types:

class
interface
enum

Whether or not you explicitly declare a namespace in a Visual APL source file, the compiler adds a default

namespace. This unnamed namespace, sometimes called the global namespace, is present in every file. Any

identifier in the global namespace is available for use in a named namespace.

Namespaces implicitly have public access and this is not modifiable.

Page 143

prestmt (Visual APL Reference)

The prestmt directive allows code to be run during the directive processing state of the assembly creation

process, and also during the initial startup of any classes present in the same file as the prestmt directive.

This directive effectively allows the specified code to run at the earliest possible moment during the building

of an assembly, and also at the earliest possible moment during the instantiation of any static or instance

classes in the same file as the prestmt directive.

Here is an example of using the prestmt directive:

using System
using System.IO
prestmt var1 = @"c:\clients\aplnext\"
refbyfile var1+"nsref1.dll"
using nsref1.cs

namespace nsref2 {
 public class cs {
 public fn(a,b) {
 ⎕ ← var1+@"nsref1.dll"
 return a add b
 }
 }
}

Here is the code for the "nsref1.dll" assembly referenced above:

using System

namespace nsref1 {

 public class cs {

 public ∇ r ← a add b {

 r ← a + b

 }

 }

}

If we run this:

 using nsref2
 a = cs()
 a.fn(10,20)
c:\clients\aplnext\nsref1.dll
30

Notice that this brings in the nsref1.dll from the "c:\clients\aplnext\" directory by assigning this directory to

the var1 variable.

This allows you to actually add code into the directive statements. The important thing to remember is that

since this code is part of the directives, it is run at the time the assembly is being created and also when the

assembly is being instanced or first accessed by .Net in the case of static assemblies.

Page 144

This means that what is available when a dll is being instanced or used by another dll may not be available

when the dll is being created.

An example of this would be referencing a svglobal variable. When the dll is being created, this would quite

reasonably be null, however, when the dll is being instanced or referenced from another assembly it could

have a value.

The prestmt permits any valid statement as its argument. So, you could do an if statement or even create a

function. For instance:

prestmt svglobal svgv

prestmt if (svgv == null) {svgv = @”c:\mydir\when\creating\dll\”}

Notice that only one statement can be used as the argument to the prestmt directive, therefore statement

separators like diamond would be an error.

This directive gives you very finite control over both the assembly build and the assembly initialization.

 However, because this occurs both when the assembly is being created and also at the time the class is

being referenced, any errors in this section will result in creation errors or instantiation errors when you try to

reference the class.

Since it is so far up in the creation process, you need to be careful about what you enter, as errors will keep

the class from initializing or even being used.

Page 145

refbyfile Directive (Visual APL Reference)

This adds a reference to a specific assembly referenced by file.

using System
refbyname @"c:\mydir\myfile.dll"
using myassembly

The namespace, myassembly, from the myfile.dll is referenced by the using.

Page 146

refbyname Directive (Visual APL Reference)

This adds a reference to the assembly to the project.

For instance, the System.Windows.Forms assembly is not part of the default System assembly. So, to create

a project which can access the windows forms the top of the file should include:

using System
refbyname System.Windows.Forms
using System.Windows.Forms

Page 147

Operator Keywords (Visual APL Reference)

Used to perform miscellaneous actions such as creating objects, checking the run-time type of an object,

obtaining the size of a type, and so forth. This section introduces the following keywords:

as Converts an object to a compatible type.
is Checks the run-time type of an object.
new
new Operator Creates objects.
new Modifier Hides an inherited member.
new Constraint Qualifies a type parameter.
typeof Obtains the System.Type object for a type.
true Literal Represents the boolean value true.
false Literal Represents the boolean value false.

Page 148

as (Visual APL Reference)

Used to perform conversions between compatible reference types.

For example:

s = someObject as string;
if (s != null) {

 // someObject is a string.
}

Page 149

is (Visual APL Reference)

Checks if an object is compatible with a given type. For example, it can be determined if an object is

compatible with the string type like this:

if (obj is string) {
}

Page 150

new (Visual APL Reference)

In Visual APL, the new keyword can be used as an operator.

It is specifically used for the creation of types, in the case of generics it makes the < and > delimiters.

Example:

 a = new Dictionary<string, int>()

Page 151

typeof (Visual APL Reference)

Used to obtain the System.Type object for a type. A typeof expression takes the following form:

type = typeof(int);

Page 152

Method Parameters (Visual APL Reference)

If a parameter is declared for a method without ref or out, the parameter can have a value associated with it.

That value can be changed in the method, but the changed value will not be retained when control passes

back to the calling procedure. By using a method parameter keyword, you can change this behavior.

This section describes the keywords you can use when declaring method parameters:

params
ref

Page 153

ref (Visual APL Reference)

The ref keyword causes arguments to be passed by reference. The effect is that any changes made to the

parameter in the method will be reflected in that variable when control passes back to the calling method. "In

Visual APL the ref key word is not required when calling a method, however, in other .Net languages, both

the method definition and the calling method must explicitly use the ref keyword.

For example:

class RefExample
{
 static void Method(ref int i)
 {
 i = 44;
 }
}

The value of i will be 44 when the Method returns.

An argument passed to a ref parameter must first be initialized.

Using ref should only be used when creating methods within a formal class and
this is not intended for use in scripting.

Page 154

params (Visual APL Reference)

The params keyword lets you specify a method parameter that takes an argument where the number of

arguments is variable.

No additional parameters are permitted after the params keyword in a method declaration, and only one

params keyword is permitted in a method declaration.

Note

This only works in a class and will not work in scripting scenarios. The params requires a type be specified

for the argument, and in most cases this construct should be used in the creation of a Type to be formally

consumed through an assembly.

Example:

public class cs1 {
 public function fn(params int[] a) {
 for (i = 0;i<a.Length;i++) {
 print a[i]
 }
 }
}

 a = cs1()
 a.fn(1,2,3)
1
2
3

Page 155

.NET Framework Tools

Assembly Registration Tool (Regasm.exe)

This is the .Net Assembly Tool that makes it possible to register Assemblies you create which are to be

exposed as COM objects. The Assembly Registration tool reads the metadata within an assembly and adds

the necessary entries to the registry, which allows COM clients to create .NET Framework classes

transparently. Once a class is registered, any COM client can use it as though the class were a COM class.

The class is registered only once, when the assembly is installed. Instances of classes within the assembly

cannot be created from COM until they are actually registered.

Microsoft has extensive documentation on using their numerous .Net Frameword Tools
at: http://msdn2.microsoft.com/en-us/library/ms299153.aspx

regasm assemblyFile [options]

Parameters

Parameter Description

assemblyFile The assembly to be registered with COM.

Option Description

/codebase Creates a Codebase entry in the registry. The Codebase entry specifies the file path
for an assembly that is not installed in the global assembly cache. You should not
specify this option if you will subsequently install the assembly that you are registering
into the global assembly cache. The assemblyFile argument that you specify with the
/codebase option must be a strong-named assembly.

/registered Specifies that this tool will only refer to type libraries that have already been
registered.

/asmpath:director
y

Specifies a directory containing assembly references. Must be used with the /regfile
option.

/nologo Suppresses the Microsoft startup banner display.
/regfile [:regFile] Generates the specified .reg file for the assembly, which contains the needed registry

entries. Specifying this option does not change the registry. You cannot use this option
with the /u or /tlb options.

/silent or /s Suppresses the display of success messages.
/tlb [:typeLibFile] Generates a type library from the specified assembly containing definitions of the

accessible types defined within the assembly.
/unregister or /u Unregisters the creatable classes found in assemblyFile. Omitting this option causes

Regasm.exe to register the creatable classes in the assembly.
/verbose Specifies verbose mode; displays a list of any referenced assemblies for which a type

library needs to be generated, when specified with the /tlb option.
/? or /help Displays command syntax and options for the tool.

Note

The Regasm.exe command-line options are case insensitive. You only need to provide enough of the option
to uniquely identify it. For example, /n is equivalent to /nologo and /t:outfile.tlb is equivalent to /tlb:
outfile.tlb.
Remarks

Page 156

http://msdn2.microsoft.com/en-us/library/ms299153.aspx

You can use the /regfile option to generate a .reg file that contains the registry entries instead of making

the changes directly to the registry. You can update the registry on a computer by importing the .reg file with

the Registry Editor tool (Regedit.exe). Note that the .reg file does not contain any registry updates that can be

made by user-defined register functions. Note that the /regfile option only emits registry entries for

managed classes. This option does not emit entries for TypeLibIDs or InterfaceIDs.

When you specify the /tlb option, Regasm.exe generates and registers a type library describing the types

found in the assembly. Regasm.exe places the generated type libraries in the current working directory or the

directory specified for the output file. Generating a type library for an assembly that references other

assemblies may cause several type libraries to be generated at once. You can use the type library to provide

type information to development tools like Visual Studio 2005. You should not use the /tlb option if the

assembly you are registering was produced by the Type Library Importer (Tlbimp.exe). You cannot export a

type library from an assembly that was imported from a type library. Using the /tlb option has the same

effect as using the Type Library Exporter (Tlbexp.exe) and Regasm.exe, with the exception that Tlbexp.exe

does not register the type library it produces. If you use the /tlb option to registered a type library, you can

use /tlb option with the /unregister option to unregistered the type library. Using the two options together

will unregister the type library and interface entries, which can clean the registry considerably.

When you register an assembly for use by COM, Regasm.exe adds entries to the registry on the local

computer. More specifically, it creates version-dependent registry keys that allow multiple versions of the

same assembly to run side by side on a computer. The first time an assembly is registered, one top-level key

is created for the assembly and a unique subkey is created for the specific version. Each time you register a

new version of the assembly, Regasm.exe creates a subkey for the new version.

For example, consider a scenario where you register the managed component, myComp.dll, version 1.0.0.0

for use by COM. Later, you register myComp.dll, version 2.0.0.0. You determine that all COM client

applications on the computer are using myComp.dll version 2.0.0.0 and you decide to unregister

myComponent.dll version 1.0.0.0. This registry scheme allows you to unregister myComp.dll version 1.0.0.0

because only the version 1.0.0.0 subkey is removed.

After registering an assembly using Regasm.exe, you can install it in the global assembly cache so that it can

be activated from any COM client. If the assembly is only going to be activated by a single application, you

can place it in that application's directory.

Examples

The following command registers all public classes contained in myTest.dll.

regasm myTest.dll

The following command generates the file myTest.reg, which contains all the necessary registry entries.

This command does not update the registry.

regasm myTest.dll /regfile:myTest.reg

The following command registers all public classes contained in myTest.dll, and generates and registers

the type library myTest.tlb, which contains definitions of all the public types defined in myTest.dll.

regasm myTest.dll /tlb:myTest.tlb

Page 157

Visual APL Programming Guide

Arrays (Visual APL Programming Guide)

An array is a data structure that contains a number of variables of the same type. Arrays are declared with a

type:

type[] arrayName;

The following examples create single-dimensional, multidimensional, and jagged arrays:

Visual APL

public class TestArraysClass

{

 public void StrongArrays()

 {

 // Declare a single-dimensional array

 int[] array1 = new int[5];

 // Declare and set array element values

 int[] array2 = new int[] { 1, 3, 5, 7, 9 };

 // Alternative syntax

 int[] array3 = { 1, 2, 3, 4, 5, 6 };

 // Declare a two dimensional array

 int[,] multiDimensionalArray1 = new int[2, 3];

 // Declare and set array element values

 int[,] multiDimensionalArray2 = new int[,]{ { 1, 2, 3 }, { 4, 5, 6 }

};

 // Declare a jagged array

 int[][] jaggedArray = new int[6][];

 // Set the values of the first array in the jagged array

 // structure

 jaggedArray[0] = new int[4] { 1, 2, 3, 4 };

 }

 public void DynamicArrays() {

 a1 = 1 2 3 4 5

 a1 = 3⍴100

 a1 = ⍳10

 a1 = 3 3⍴⍳9

 a1 = 3 3⍴1 2 3 4 5 6 7 8 9

 a1 = (1,2,3) (1,2,3)

 }

 public void DynamicStrongArrays() {

 // this creates a strong typed array containing

 // the elements 0 through 9

 int[] array1 = ⍳10

 // b is dynamically typed and at this moment

Page 158

 // contains the same elements as array1

 b = array1

 // now b will hold a text string

 b = “test““

 }

}

Array Overview

An array has the following properties:

 An array can be Single-Dimensional, Multidimensional or Jagged.

 The default value of numeric array elements are set to zero, and reference elements are set to null.

 A jagged array is an array of arrays, and therefore its elements are reference types and are initialized to

null.

 Arrays are zero indexed: an array with n elements is indexed from 0 to n-1.

 Array elements can be of any type, including an array type.

 Array types are reference types derived from the abstract base type Array. Since this type implements

IEnumerable and IEnumerable, you can use foreach iteration on all arrays in Visual APL.

Page 159

Visual APL Programming Guide

Single-Dimensional Arrays (Visual APL Programming Guide)
You can declare an array of five integers as in the following example:

In all cases strong and dynamically typed objects can be assigned to each other.

Visual APL

// this is a very fast way to create an array of zeros

int[] array = new int[5];

a1 = 5⍴0

array = ⍳10
This array contains the elements from array[0] to array[4]. The new operator is used to create the

array and initialize the array elements to their default values. In this example, all the array elements are

initialized to zero.

An array that stores string elements can be declared in the same way. For example:

Visual APL

string[] stringArray = new string[6];

a1 = 6⍴⊂" "
Array Initialization

It is possible to initialize an array upon declaration, in which case, the rank specifier is not needed because it

is already supplied by the number of elements in the initialization list. For example:

Visual APL

int[] array1 = new int[5] { 1, 3, 5, 7, 9 };

int[] array1 = {1, 3, 5, 7, 9};

a1 = 1 3 5 7 9

array1 = 3⍴100
A string array can be initialized in the same way. The following is a declaration of a string array where each

array element is initialized by a name of a day:

Visual APL

string[] weekDays = new string[] { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };

When you initialize an array upon declaration, it is possible to use the following shortcuts:

Visual APL

int[] array2 = { 1, 3, 5, 7, 9 };

string[] weekDays2 = { "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" };

It is possible to declare an array variable without initialization, but you must use the new operator when you

assign an array to this variable. For example:

Visual APL

int[] array3;

Page 160

array3 = new int[] { 1, 3, 5, 7, 9 }; // OK

//array3 = {1, 3, 5, 7, 9}; // Error

Value Type and Reference Type Arrays

Consider the following array declaration:

Visual APL

SomeType[] array4 = new SomeType[10];

A1 = new SomeType[10]

The result of this statement depends on whether SomeType is a value type or a reference type. If it is a

value type, the statement results in creating an array of 10 instances of the type SomeType. If SomeType is
a reference type, the statement creates an array of 10 elements, each of which is initialized to a null

reference.

For more information on value types and reference types, see Types (Visual APL Reference).

Page 161

Visual APL Programming Guide

Using foreach with Arrays (Visual APL Programming Guide)
Visual APL also provides the foreach statement. This statement provides a simple, clean way to iterate

through the elements of an array. For example, the following code creates an array called numbers and

iterates through it with the foreach statement:

Visual APL

int[] numbers = { 4, 5, 6, 1, 2, 3, -2, -1, 0 };

foreach (i in numbers)

{

 print i;

}

foreach (i in ⍳10) {
 print i;

}

With multidimensional arrays, you can use the same method to iterate through the elements, for example:

Visual APL

int[,] numbers2D = new int[3, 2] { { 9, 99 }, { 3, 33 }, { 5, 55 } };

foreach (i in numbers2D)

{

 print i;

}

foreach (i in 3 3⍴⍳9) {
 print i;

}

The output of this example is:

9 99 3 33 5 55

However, with multidimensional arrays, using a nested for loop gives you more control over the array

elements.

Page 162

Visual APL Programming Guide

Jagged Arrays (Visual APL Programming Guide)
A jagged array is an array whose elements are arrays. The elements of a jagged array can be of different

dimensions and sizes. A jagged array is sometimes called an "array of arrays." The following examples show

how to declare, initialize, and access jagged arrays.

These are also referred to as nested arrays, and with dynamic typing can contain a heterogeneous mix of

data types.

The following is a declaration of a single-dimensional array that has three elements, each of which is a

single-dimensional array of integers:

Visual APL

int[][] jaggedArray = new int[3][];

ja = (1 2 3) (1 2 3 4) (1 2 3)

Before you can use jaggedArray, its elements must be initialized. You can initialize the elements like this:

Visual APL

jaggedArray[0] = new int[5];

jaggedArray[1] = new int[4];

jaggedArray[2] = new int[2];

ja[0] = ⊂1 2 3 4 5 6
Each of the elements is a single-dimensional array of integers. The first element is an array of 5 integers, the

second is an array of 4 integers, and the third is an array of 2 integers.

It is also possible to use initializers to fill the array elements with values, in which case you do not need the

array size. For example:

Visual APL

jaggedArray[0] = new int[] { 1, 3, 5, 7, 9 };

jaggedArray[1] = new int[] { 0, 2, 4, 6 };

jaggedArray[2] = new int[] { 11, 22 };

jaggedArray[2] = new int[] { 11, 22 };

ja[0] = ⊂11 12 13
You can also initialize the array upon declaration like this:

Visual APL

 int[][] jaggedArray2 = new int[][] {{1,3,5,7,9},{0,2,4,6},{11,22}};

 ja2 = (1 3 5 7 9) (0 2 4 6) (11 12)

A jagged array is an array of arrays, and therefore its elements are reference types and are initialized to

null.

You can access individual array elements like these examples:

Visual APL

// Assign 77 to the second element ([1]) of the first array ([0]):

jaggedArray3[0][1] = 77;

// Assign 88 to the second element ([1]) of the third array ([2]):

jaggedArray3[2][1] = 88;

It is possible to mix jagged and multidimensional arrays. The following is a declaration and initialization of a

single-dimensional jagged array that contains two-dimensional array elements of different sizes:

Visual APL

int[][,] jaggedArray4 = new int[3][,];

jaggedArray4[0] = new int[,]{{1,2,3},{4,5,6},{7,8,9}}

Page 163

You can access individual elements as shown in this example, which displays the value of the element [1,0]
of the first array (value 5):

Visual APL

print "value: ", jaggedArray4[0][1, 0];

The method Length returns the number of arrays contained in the jagged array. For example, assuming you

have declared the previous array, this line:

Visual APL

print “length: “+jaggedArray4.Length;

will return a value of 3.

Example

This example builds an array whose elements are themselves arrays. Each one of the array elements has a

different size.

Visual APL

publicclass ArrayTest

{

 public ArrayTest()

 {

 // Declare the array of two elements:

 int[][] arr = new int[2][];

 // Initialize the elements:

 arr[0] = new int[5] { 1, 3, 5, 7, 9 };

 arr[1] = new int[4] { 2, 4, 6, 8 };

 // Display the array elements:

 for (int i = 0; i < arr.Length; i++)

 {

 print "Element: ", i);

 for (int j = 0; j < arr[i].Length; j++)

 {

 print arr[i][j];

 }

 }

 }

}

Output

Element(0): 1 3 5 7 9

Element(1): 2 4 6 8

Page 164

Visual APL Programming Guide

Multidimensional Arrays (Visual APL Programming Guide)
Arrays can have more than one dimension. For example, the following declaration creates a two-dimensional

array of four rows and two columns:

Visual APL

int[,] array = new int[4, 2];

a1 = 4 2⍴0

array = 4 2⍴⍳8

Also, the following declaration creates an array of three dimensions, 4, 2, and 3:

Visual APL

int[, ,] array1 = new int[4, 2, 3];

a1 = 4 2 3⍴0

array1 = 4 2 3⍴0

Array Initialization

You can initialize the array upon declaration as shown in the following example:

Visual APL

int[,] array2D = new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } };

int[, ,] array3D = 3 3 3⍴⍳27

a3d = 3 3 3⍴⍳29

You can also initialize the array without specifying the rank:

Visual APL

int[,] array4 = 3 2⍴⍳6

a4 = 3 2⍴⍳6

If you choose to declare an array variable without initialization, you must use the new operator to assign an

array to the variable. For example:

Visual APL

int[,] array5;

array5 = new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } };

a5 = 3 3⍴⍳9

array5 = 4 4⍴⍳16

It is important to remember, that when you indexing strong typed object, you should use a strong typed

index to assure that all of the code is strong typed. You can also assign a value to an array element, for

example:

Visual APL

array5[2, 1] = 25;

a4[2;1] = 10;

a4[1 2;1 2] = 10

array5[1 2;1 2] = 25

The following code example initializes the array variables to default (except for jagged arrays):

Visual APL

int[,] array6 = new int[10, 10];

Page 165

Visual APL Programming Guide

Arrays as Objects (Visual APL Programming Guide)

In Visual APL, arrays are actually objects, and not just addressable regions of contiguous memory as in C

and C++. Array is the abstract base type of all array types. You can use the properties, and other class

members, that Array has. An example of this would be using the Length property to get the length of an

array. The following code assigns the length of the numbers array, which is 5, to a variable called

lengthOfNumbers:

Visual APL

numbers = 1 2 3 4 5

lengthOfNumbers = numbers.Length;

The System.Array class provides many other useful methods and properties for sorting, searching, and

copying arrays.

Example:

This example uses the Rank property to display the number of dimensions of an array.

Visual APL

public class TestArraysClass

{

 public TestArrayClass ()

 {

 // Declare and initialize an array:

 int[,] theArray = new int[5, 10];

 print "The array has “+theArray.Rank+” dimensions.";

 newArray = 5 10⍴0

 print “"The array has “+newArray.Rank+” dimensions.";

 }

}

Output

The array has 2 dimensions.

The array has 2 dimensions.

Page 166

Visual APL Programming Guide

Passing Arrays as Parameters (Visual APL Programming Guide)
Arrays may be passed to methods as parameters. As arrays are reference types, the method can change the

value of the elements.

Passing single-dimensional arrays as parameters

You can pass an initialized single-dimensional array to a method. For example:

Visual APL

PrintArray(theArray);

The method called in the line above could be defined as:

Visual APL

void PrintArray(int[] arr)

{

 // method code

}

// or dynamic, no type given, will accept all types

void PrintArray(arr)

{

 // method code

}

You can also initialize and pass a new array in one step. For example:

Visual APL

PrintArray(new int[] { 1, 3, 5, 7, 9 });

// or dynamic

PrintArry(1 3 5 7 9)

Example 1

In the following example, a string array is initialized and passed as a parameter to the PrintArray method,

where its elements are displayed:

Visual APL

Public class ArrayClass

{

 public void PrintArray(string[] arr)

 {

 for (int i = 0; i < arr.Length; i++)

 {

 print arr[i]

 }

 }

 public ArrayClass()

 {

 // Declare and initialize an array:

 string[] weekDays = new string[] { "Sun", "Mon", "Tue", "Wed", "Thu",

"Fri", "Sat" };

 // Pass the array as a parameter:

 PrintArray(weekDays);

 }

}

// or dynamic, in which case arr can be an array of anything

Public class ArrayClass

{

 public void PrintArray(arr)

Page 167

 {

 for (i = 0; i < arr.Length; i++)

 {

 print arr[i]

 }

 }

 public ArrayClass()

 {

 // Declare and initialize an array:

 weekDays = "Sun" "Mon" "Tue" "Wed" "Thu" "Fri" "Sat"

 // Pass the array as a parameter:

 PrintArray(weekDays);

 }

}

Output 1

Sun Mon Tue Wed Thu Fri Sat

Passing multidimensional arrays as parameters

You can pass an initialized multidimensional array to a method. For example, if theArray is a two

dimensional array:

Visual APL

PrintArray(theArray);

The method called in the line above could be defined as:

Visual APL

void PrintArray(int[,] arr)

{

 // method code

}

// or dynamic

void PrintArray(arr)

{

 // method code

}

You can also initialize and pass a new array in one step. For example:

Visual APL

PrintArray(new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } });

// or dynamic

PrintArray(4 2⍴1+⍳8)
Example 2

In this example, a two-dimensional array is initialized and passed to the PrintArray method, where its

elements are displayed.

Visual APL

public class ArrayClass2D

{

 static void PrintArray(int[,] arr)

 {

 // Display the array elements:

 for (int i = 0; i < 4; i++)

Page 168

 {

 for (int j = 0; j < 2; j++)

 {

 print "Element(" + i + “,”+ j +”)”+ “=” +arr[i, j];

 }

 }

 }

 public ArrayClass2D()

 {

 // Pass the array as a parameter:

 PrintArray(new int[,] { { 1, 2 }, { 3, 4 }, { 5, 6 }, { 7, 8 } });

 }

}

// or dynamic

public class ArrayClass2D

{

 static void PrintArray(arr)

 {

 // Display the array elements:

 for (i = 0; i < 4; i++)

 {

 for (j = 0; j < 2; j++)

 {

 print "Element(" + i + “,”+ j +”)”+ “=” +arr[i, j];

 }

 }

 }

 public ArrayClass2D()

 {

 // Pass the array as a parameter:

 PrintArray(4 2⍴1+⍳8);
 }

}

Output 2

Element(0,0)=1

Element(0,1)=2

Element(1,0)=3

Element(1,1)=4

Element(2,0)=5

Element(2,1)=6

Element(3,0)=7

Element(3,1)=8

Page 169

Visual APL Programming Guide

How to: Implement Interface Events (Visual APL Programming
Guide)
It is also possible for an interface to declare an event. This example demonstrates how to implement

interface events in a class. Basically the rules are the same as when implementing any interface method or

property.

To implement interface events in a class

 Declare the event in your class and then invoke it in the appropriate places.

public interface IDrawingObject

{

 event ShapeChanged;

}

public class MyEventArgs : EventArgs { }

public class Shape : IDrawingObject

{

 public event ShapeChanged;

 public void ChangeShape()

 {

 // Do something before the event…

 OnShapeChanged(new MyEventsArgs());

 // or do something after the event.

 }

 protected virtual void OnShapeChanged(MyEventArgs e)

 {

 if(ShapeChanged != null)

 {

 ShapeChanged(this, e);

 }

 }

}

Page 170

Visual APL Programming Guide

How to: Raise Base Class Events in Derived Classes (Visual APL
Programming Guide)
This simple example shows how to declare events in a base class so that they can also be raised from

derived classes. This pattern is used extensively in Windows Forms classes in the .NET Framework base class

library.

When you create a class that can be used as a base class for other classes, you address the fact that events

are a special type of delegate that can only be invoked from within the class that declared them. C lasses

which are derived from or inherit from these classes cannot directly invoke events that are declared within

the base class. Although sometimes you may want an event that can only be raised by the base class, in

most cases you should enable the derived class to invoke base class events. To do this, you can create a

protected invoking method in the base class that wraps the event. By calling or overriding this invoking

method, derived classes can invoke the event indirectly.

Example

Visual APL

namespace BaseClassEvents

{

 using System;

 using System.Collections.Generic;

 // Special EventArgs class to hold info about Shapes.

 public class ShapeEventArgs : EventArgs

 {

 private newArea;

 public ShapeEventArgs(d)

 {

 newArea = d;

 }

 public NewArea

 {

 get { return newArea; }

 }

 }

 // Base class event publisher

 public abstract class Shape

 {

 protected area;

 public Area

 {

 get { return area; }

 set { area = value; }

 }

 // The event. Note that by using the generic EventHandler<T> event

type

 // we do not need to declare a separate delegate type.

 public event EventHandler<ShapeEventArgs> ShapeChanged;

Page 171

 public abstract void Draw() { };

 //The event-invoking method that derived classes can override.

 protected virtual void OnShapeChanged(ShapeEventArgs e)

 {

 // Make a temporary copy of the event to avoid possibility

 // of

 // a race condition if the last subscriber unsubscribes

 // immediately after the null check and before the event is

 // raised.

 handler = ShapeChanged;

 if (handler != null)

 {

 handler(this, e);

 }

 }

 }

 public class Circle : Shape

 {

 private radius;

 public Circle(d)

 {

 radius = d;

 area = 3.14 × radius;

 }

 public void Update(d)

 {

 radius = d;

 area = 3.14 × radius;

 OnShapeChanged(new ShapeEventArgs(area));

 }

 protected override void OnShapeChanged(ShapeEventArgs e)

 {

 // Do any circle-specific processing here.

 // Call the base class event invocation method.

 base.OnShapeChanged(e);

 }

 public override void Draw()

 {

 print "Drawing a circle";

 }

 }

 public class Rectangle : Shape

 {

 private length;

 private width;

 public Rectangle(length, width)

 {

 this.length = length;

 this.width = width;

 area = length × width;

 }

 public void Update(length, width)

Page 172

 {

 this.length = length;

 this.width = width;

 area = length × width;

 OnShapeChanged(new ShapeEventArgs(area));

 }

 protected override void OnShapeChanged(ShapeEventArgs e)

 {

 // Do any rectangle-specific processing here.

 // Call the base class event invocation method.

 base.OnShapeChanged(e);

 }

 public override void Draw()

 {

 print "Drawing a rectangle";

 }

 }

 // Represents the surface on which the shapes are drawn

 // Subscribes to shape events so that it knows

 // when to redraw a shape.

 public class ShapeContainer

 {

 _list = null;

 public ShapeContainer()

 {

 _list = new List<Shape>();

 }

 public void AddShape(Shape s)

 {

 _list.Add(s);

 // Subscribe to the base class event.

 s.ShapeChanged += HandleShapeChanged;

 }

 // ...Other methods to draw, resize, etc.

 private void HandleShapeChanged(sender, ShapeEventArgs e)

 {

 Shape s = (Shape)sender;

 // Diagnostic message for demonstration purposes.

 print String.Format("Received event. Shape area is now {0}",

e.NewArea);

 // Redraw the shape here.

 s.Draw();

 }

 }

 class Test

 {

Page 173

 static void Test()

 {

 //Create the event publishers and subscriber

 c1 = Circle(54);

 r1 = Rectangle(12, 9);

 sc = ShapeContainer();

 // Add the shapes to the container.

 sc.AddShape(c1);

 sc.AddShape(r1);

 // Cause some events to be raised.

 c1.Update(57);

 r1.Update(7, 7);

 }

 }

}

Output

Received event. Shape area is now 178.98

Drawing a circle

Received event. Shape area is now 49

Drawing a rectangle

Page 174

Visual APL Programming Guide

How to: Setting an Event or Subscribe to and Unsubscribe from
Events (Visual APL Programming Guide)
You can subscribe to an event that is published by another class when you want to write custom code that is

called when that event is fired. For example, you could subscribe to a button's "click" event in order to make

your application do something useful when a user clicks the button.

To subscribe to events by using the Visual Studio 2005 IDE

1. If the Properties window is not visible, in Design view, right-click on the form or control for which

you want to create an event handler, and select Properties.

2. On top of the Properties window, click the Events icon.

3. Double-click the event that you want to create, for example the Load event.

Visual Visual APL creates an empty event handler method and adds it to your code. Alternatively you

can add the code manually in Code view. For example, the following lines of code declare an event

handler method that will be called when the Form class raises the Load event.

Visual APL

private void Form1_Load(sender, event)

{

 // Add your form load event handling code here.

}

The line of code that is needed to subscribe to the event is also automatically generated in the

InitializeComponent method in the Form1.Designer.cs file in your project. It looks like this:

this.Load += this.Form1_Load

To subscribe to events programmatically

1. Define an event handler method whose signature matches the delegate signature for the event. For

example, if the event is based on the EventHandler delegate type, then the following code represents

the method stub:
 void HandleCustomEvent(sender, event)
 {
 // Do something useful here.

 }

2. Use the addition assignment operator (+=) to attach your event handler to the event. In the following

example, assume that an object named publisher has an event named RaiseCustomEvent. Note

that the subscriber class needs a reference to the publisher class in order to subscribe to its events.

publisher.RaiseCustomEvent += HandleCustomEvent;

To subscribe to events by using an anonymous method

 Use the addition assignment operator (+=) to attach your method to the event. In the following example,

assume that an object named publisher has an event named RaiseCustomEvent and that a

CustomEventArgs class has also been defined to carry some kind of specialized event information.

Note that the subscriber class needs a reference to publisher in order to subscribe to its events.

publisher.RaiseCustomEvent += ƒ(o, e)

 {

 print o

 print e

Page 175

 }

It is important to note that you cannot easily unsubscribe from an event if you used an anonymous method to

subscribe to it. To unsubscribe in this scenario, go back to the code where you subscribe to the event, store

the anonymous method in a variable, and then add the method to the event.

Unsubscribing

To prevent your event handler from being invoked when the event is fired, simply unsubscribe from the

event. In order to prevent resource leaks, it is important to unsubscribe from events before you dispose of a

subscriber object. Until you unsubscribe from an event, the multicast delegate that underlies the event in the

publishing object has a reference the subscriber's event handler. As long as the publishing object holds that

reference, your subscriber object will not be garbage collected.

To unsubscribe from an event

 Use the subtraction assignment operator (-=) to unsubscribe from an event:

publisher.RaiseCustomEvent -= HandleCustomEvent;

When all subscribers have unsubscribed from an event, the event instance in the publisher class is set to

null.

Page 176

Visual APL Programming Guide

How to: Publish Events that Conform to .NET Framework Guidelines
(Visual APL Programming Guide)

The following procedure demonstrates how to add events that follow the standard .NET Framework pattern to
your own classes.

If you follow these steps you should have no problem generating events that can be consumed by any other
.Net languages.

Although events in classes that you define can be based on any valid delegate type, including delegates that
return a value, it is generally recommended that you base your events on the .NET Framework pattern by
using EventHandler, as shown in the following example.

Take particular note that both the arguments to the CustomEventArgs class and the fields and properties in
the class are strong typed. This is useful when the class is to be consumed by other .Net languages, such as
C#. However, all of the typing could have been omitted, and the other .Net languages would have seen
Object as the data types, instead of string.

To publish events based on the EventHandler pattern
1. (Skip this step and go directly to Step 3a if you have no need to send custom data with your event.)

Declare your class at a scope visible to both your publisher and subscriber classes, and add the

members needed to hold your custom event data. In this example, a simple string is returned.

public class CustomEventArgs : EventArgs

{

 public CustomEventArgs(string s)

 {

 msg = s;

 }

 private string msg;

 public string Message

 {

 get { return msg; }

 }

}

2. Declare the event in your publishing class by using one of the following steps.

a. If you have no custom EventArgs class, then your Event type will be the non-generic

EventHandler delegate. You do not need to declare it because it is already declared in the

System namespace which is included by default in your Visual APL project:

public event RaiseCustomEvent;

b. If you are using the generic version, you do not need a custom delegate. Instead, you specify

your event type as EventHandler<CustomEventArgs>, substituting the name of your own class

between the angle brackets.

public event EventHandler<CustomEventArgs> RaiseCustomEvent;

Example

The following example demonstrates the steps given above using a custom EventArgs class and

EventHandler<T> as the event type.

Visual APL

namespace DotNetEvents

{

 using System;

 using System.Collections.Generic;

 // Define a class to hold custom event info

 public class CustomEventArgs : EventArgs

 {

Page 177

 public CustomEventArgs(string s)

 {

 message = s;

 }

 private string message;

 public string Message

 {

 get { return message; }

 set { message = value; }

 }

 }

 // Class that publishes an event

 class Publisher

 {

 // Declare the event using EventHandler<T>

 public event EventHandler<CustomEventArgs> RaiseCustomEvent;

 public void DoSomething()

 {

 // Write some code that does something useful here

 // then raise the event. You can also raise an event

 // before you execute a block of code.

 OnRaiseCustomEvent(new CustomEventArgs("Did something"));

 }

 // Wrap event invocations inside a protected virtual method

 // to allow derived classes to override the event invocation behavior

 protected virtual void OnRaiseCustomEvent(CustomEventArgs e)

 {

 // Make a temporary copy of the event to avoid possibility

 // of

 // a race condition if the last subscriber unsubscribes

 // immediately after the null check and before the event is

 // raised.

 handler = RaiseCustomEvent;

 // Event will be null if there are no subscribers

 if (handler != null)

 {

 // Format the string to send inside the CustomEventArgs

 // parameter

 e.Message += String.Format(" at {0}",

 DateTime.Now.ToString());

 // Use the () operator to raise the event.

 handler(this, e);

 }

 }

 }

 //Class that subscribes to an event

 class Subscriber

 {

 private id;

Page 178

 public Subscriber(ID, pub)

 {

 id = ID;

 // Subscribe to the event using Visual APL 2.0 syntax

 pub.RaiseCustomEvent += HandleCustomEvent;

 }

 // Define what actions to take when the event is raised.

 void HandleCustomEvent(object sender, CustomEventArgs e)

 {

 print String.Format(id + " received this message: {0}",

e.Message);

 }

 }

 class Program

 {

 public Program()

 {

 pub = new Publisher();

 sub1 = new Subscriber("sub1", pub);

 sub2 = new Subscriber("sub2", pub);

 // Call the method that raises the event.

 pub.DoSomething();

 // Keep the console window open

 print "Press Enter to close this window.";

 }

 }

}

Page 179

Visual APL Programming Guide

Main() Return Values (Visual APL Programming Guide)
The Main method can have a return type of void:

Visual APL

static void Main()

{

 //...

}

It can also return an int:

Visual APL

static int Main()

{

 //...

 return 0;

}

If the return value from Main is not to be used, then returning void allows slightly simpler code. However,

returning an integer enables the program to relate status information to other programs or scripts that invoke

the executable. An example of using the return value from Main is shown in the following example.

In this example a batch file is used to execute a program and test the return value of the Main function.

When a program is executed in Windows, any value returned from the Main function is stored in an

environment variable called ERRORLEVEL. By inspecting the ERRORLEVEL variable, batch files can therefore

determine the outcome of execution. Traditionally, a return value of zero indicates successful execution.

Below is a very simple program that returns zero from the Main function.

Page 180

Visual APL

class MainReturnValTest

{

 static int Main()

 {

 //...

 return 0;

 }

}

Because this example uses a batch file, it is best to compile this code from the command line.

Next, a batch file is used to invoke the executable resulting from the previous code example. Because the

code returns zero, the batch file will report success, but if the previous code is changed to return a non-zero

value, and is then re-compiled, subsequent execution of the batch file will indicate failure.

rem test.bat

@echo off

MainReturnValueTest

@if "%ERRORLEVEL%" == "0" goto good

:fail

 echo Execution Failed

 echo return value = %ERRORLEVEL%

Page 181

 goto end

:good

 echo Execution Succeded

 echo return value = %ERRORLEVEL%

 goto end

:end

Execution Succeded

return value = 0

Page 182

Visual APL Programming Guide

How to: Display Command Line Arguments (Visual APL
Programming Guide)
Arguments provided to an executable (exe) on the command-line are accessible through an optional

parameter to Main. The arguments are provided in the form of an array of strings. Each element of the array

contains one argument. White-space between arguments is removed. For example, consider these

command-line invocations of a fictitious executable:

Input on Command-line Array of strings passed to Main

exec.exe a b c "a"
"b"
"c"

exec.exe one two "one"
"two"

exec.exe “one two” three "one two"
"three"

Example

This example displays the command line arguments passed to a command-line application. The output shown

is for the first entry in the table above.

Visual APL

class CommandLine

{

 static void Main(string[] args)

 {

 // The Length property provides the number of array elements

 System.Console.WriteLine("parameter count = {0}", args.Length);

 for (int i = 0; i < args.Length; i++)

 {

 System.Console.WriteLine("Arg[{0}] = [{1}]", i, args[i]);

 }

 }

}

Output

Visual APL

parameter count = 3

Arg[0] = [a]

Arg[1] = [b]

Arg[2] = [c]

Page 183

Visual APL Programming Guide

How to: Access Command-Line Arguments Using foreach (Visual
APL Programming Guide)
Another approach to iterating over an array is to use the foreach statement as shown in this example. The

foreach statement can be used to iterate over an array, a .NET Framework collection class, or any class or

struct that implements the IEnumerable interface.

Example

This example demonstrates how to print out the command line arguments using foreach.

Visual APL

// arguments: John Paul Mary

class CommandLine2

{

 static void Main(string[] args)

 {

 System.Console.WriteLine("Number of command line parameters = {0}",

args.Length);

 foreach (s in args)

 {

 System.Console.WriteLine(s);

 }

 }

}

Output

Visual APL

Number of command line parameters = 3

John

Paul

Mary

Page 184

Visual APL Programming Guide

Indexers (Visual APL Programming Guide)
Indexers make it possible for instances of a class to be indexed in the same way as arrays. Indexers are

similar to properties except that their accessors take parameters.

In the following example, a class is defined and provided with simple get and set accessor methods as a

means for assigning and retrieving values. The class Test creates an instance of this class for storing

strings.

Visual APL

class SampleCollection

{

 private int arr = new int[100];

 public int this[int i]

 {

 get

 {

 return arr[i];

 }

 set

 {

 arr[i] = value;

 }

 }

}

// This class shows how client code uses the indexer

public class Test

{

 public Test()

 {

 intCollection = new SampleCollection();

 stringCollection[0] = 1000;

 print intCollection[0];

 }

}

Indexers Overview
 Indexers enable objects to be indexed in a similar way to arrays.

 A get accessor returns a value. A set accessor assigns a value.

 The this keyword is used to define the indexers.

 The value keyword is used to define the value being assigned by the set indexer.

 Indexers do not have to be indexed by an integer value; it is up to you how to define the specific look-up

mechanism.

 Indexers can be overloaded.

 Indexers can have more than one formal parameter, for example, when accessing a two-dimensional array.

Page 185

Visual APL Programming Guide

Comparison Between Properties and Indexers (Visual APL
Programming Guide)

Indexers are similar to properties. Except for the differences shown in the following table, all of the rules

defined for property accessors apply to indexer accessors as well.

Property Indexer

Allows methods to be called as though they
were public data members.

Allows methods on an object to be called as though the object is an
array.

Accessed through a simple name. Accessed through an index.
Can be a static or an instance member. Must be an instance member.
A get accessor of a property has no
parameters.

A get accessor of an indexer has the same formal parameter list as the
indexer.

A set accessor of a property contains the
implicit value parameter.

A set accessor of an indexer has the same formal parameter list as the
indexer, in addition to the value parameter.

Page 186

Visual APL Programming Guide

Using Indexers (Visual APL Programming Guide)
Indexers allow you to index a class or interface in the same way as an array. For more information about

using indexers with an interface, see Interface Indexers.

To declare an indexer on a class or struct, use the this keyword, as in this example:

public int this[int index] // Indexer declaration

{

 // get and set accessors

}

Remarks

The type of an indexer and the type of its parameters must be at least as accessible as the indexer itself. For

more information about accessibility levels, see Access Modifiers.

The signature of an indexer consists of the number and types of its defined parameters. It does not include

the indexer type or the names of the defined parameters. If you declare more than one indexer in the same

class, they must have different signatures.

An indexer value is not classified as a variable; therefore, it is not possible to pass an indexer value as a ref

or out parameter.

The default name of the indexer is Item, however, substituting another name for this in the indexer

declaration changes the name of the indexer to the name given.

Example 1

The following example shows how to declare a private array field, arr, and an indexer. Using the indexer

enables direct access to the instance test[i]. The alternative to using the indexer is to declare the array as

a public member and access its members, arr[i], directly.

Visual APL

class IndexerClass

{

 private int[] arr = new int[100];

 public int this[int index] // Indexer declaration

 {

 get

 {

 // Check the index limits.

 if (index < 0 || index >= 100)

 {

 return 0;

 }

 else

 {

 return arr[index];

 }

 }

 set

 {

 if (!(index < 0 || index >= 100))

 {

 arr[index] = value;

Page 187

 }

 }

 }

}

class Test

{

 public Test()

 {

 test = new IndexerClass();

 // Call the indexer to initialize the elements #3 and #5.

 test[3] = 256;

 test[5] = 1024;

 for (int i = 0; i <= 10; i++)

 {

 print "Element “ + i + ” = " + test[i];

 }

 }

}

Output

Element #0 = 0

Element #1 = 0

Element #2 = 0

Element #3 = 256

Element #4 = 0

Element #5 = 1024

Element #6 = 0

Element #7 = 0

Element #8 = 0

Element #9 = 0

Element #10 = 0

Notice that when an indexer's access is evaluated, for example, in a print statement, the get accessor is

invoked. Therefore, if no get accessor exists, a compile-time error occurs.

Indexing Using Other Values

Visual APL does not limit the index type to integer. For example, it may be useful to use a string with an

indexer. Such an indexer might be implemented by searching for the string within the collection, and

returning the appropriate value. As accessors can be overloaded, the string and integer versions can co-exist.

Example 2

In this example, a class is declared that stores the days of the week. A get accessor is declared that takes a

string, the name of a day, and returns the corresponding integer. For example, Sunday will return 0, Monday

will return 1, and so on.

Visual APL

// Using a string as an indexer value

Page 188

class DayCollection

{

 string[] days = { "Sun", "Mon", "Tues", "Wed", "Thurs", "Fri", "Sat" };

 // This method finds the day or returns -1

 private int GetDay(string testDay)

 {

 int i = 0;

 foreach (string day in days)

 {

 if (day == testDay)

 {

 return i;

 }

 i++;

 }

 return -1;

 }

 // The get accessor returns an integer for a given string

 public int this[string day]

 {

 get

 {

 return (GetDay(day));

 }

 }

}

public class Test

{

 public Test()

 {

 week = new DayCollection();

 print “value: “+week["Fri"];

 print “value: “+week["Made-up Day"];

 }

}

Output

5

-1

Robust Programming

There are two main ways in which the security and reliability of indexers can be improved:

 Always ensure that your code performs range checks when setting and retrieving values from

any buffer or array accessed by the indexers.

 Always ensure that your code performs type checks when setting and retrieving values from any

buffer or array accessed by the indexers.

Page 189

Visual APL Programming Guide

Indexers in Interfaces (Visual APL Programming Guide)
Indexers can be declared on an interface (Visual APL Reference). Accessors of interface indexers differ

from the accessors of class indexers in the following ways:

 An interface accessor does not have a body.

Thus, the purpose of the accessor is to indicate whether the indexer is read-write, read-only, or write-only.

The following is an example of an interface indexer accessor:

Visual APL

public interface ISomeInterface

{

 //...

 // Indexer declaration:

 public string this[int index]

 {

 get;

 set;

 }

}

The signature of an indexer must differ from the signatures of all other indexers declared in the same

interface.

Example

The following example shows how to implement interface indexers.

Visual APL

// Indexer on an interface:

public interface ISomeInterface

{

 // Indexer declaration:

 public int this[int index]

 {

 get;

 set;

 }

}

// Implementing the interface.

class IndexerClass : ISomeInterface

{

 private int[] arr = new int[100];

 public int this[int index] // indexer declaration

 {

 get

 {

 // Check the index limits.

 if (index < 0 || index >= 100)

 {

 return 0;

 }

 else

 {

Page 190

 return arr[index];

 }

 }

 set

 {

 if (!(index < 0 || index >= 100))

 {

 arr[index] = value;

 }

 }

 }

}

Public class Test

{

 public void Test()

 {

 test = new IndexerClass();

 // Call the indexer to initialize the elements #2 and #5.

 test[2] = 4;

 test[5] = 32;

 for (int i = 0; i <= 10; i++)

 {

 print "Element “+j+” = ", test[i];

 }

 }

}

Output

Element #0 = 0

Element #1 = 0

Element #2 = 4

Element #3 = 0

Element #4 = 0

Element #5 = 32

Element #6 = 0

Element #7 = 0

Element #8 = 0

Element #9 = 0

Element #10 = 0

Page 191

Visual APL Programming Guide

How to: Create and Terminate Threads (Visual APL Programming
Guide)
This example demonstrates how an auxiliary or worker thread can be created and used to perform

processing in parallel with the primary thread. Making one thread wait for another and gracefully terminating

a thread are also demonstrated. For background information on multi-threading, see Managed Threading

and Using Threading (Visual APL Programming Guide).

The example creates a class named Worker that contains the method that the worker thread will execute

called DoWork. The worker thread will begin execution by calling this method, and terminate automatically

when this method returns. The DoWork method looks like this:

Visual APL

 public function DoWork() {

 a = Form()

 t = TextBox()

 t.Multiline = true

 t.Size = Size(200, 200)

 a.Controls.Add(t)

 a.Show()

 for (i=0;i<100;i++) {

 if (_shouldStop) {

 break;

 }

 t.AppendText(i+". worker thread: working...\n")

 }

 MessageBox.Show("Worker thread: terminating gracefully")

 }

The Worker class contains an additional method that is used to indicate to DoWork that it should return. This

method is called RequestStop, and looks like this:

Visual APL

public void RequestStop()

{

 _shouldStop = true;

}

The RequestStop method merely assigns the _shouldStop data member to true. Because this data

member is checked by the DoWork method, this has the indirect effect of causing DoWork to return, thereby

terminating the worker thread. However, it is important to note that DoWork and RequestStop will be

executed by different threads. DoWork is executed by the worker thread, and RequestStop is executed by

the primary thread, so the _shouldStop data member is declared volatile, like this:

Visual APL

private volatile bool _shouldStop;

The volatile keyword alerts the compiler that multiple threads will access the _shouldStop data member,

and therefore it should not make any optimization assumptions about the state of this member. For more

information, see volatile (Visual APL Reference).

Page 192

The use of volatile with the _shouldStop data member allows us to safely access this member from

multiple threads without the use of formal thread synchronization techniques, but only because

_shouldStop is a bool. This means that only single, atomic operations are necessary to modify

_shouldStop. If, however, this data member were a class, struct, or array, accessing it from multiple

threads would likely result in intermittent data corruption. Consider a thread that changes the values in an

array. Windows regularly interrupts threads in order to allow other threads to execute, so this thread could be

halted after assigning some array elements but before assigning others. This means the array now has a

state that the programmer never intended, and another thread reading this array may fail as a result.

Before actually creating the worker thread, the test function creates a Worker object and an instance of

Thread. The thread object is configured to use the Worker.DoWork method as an entry point by passing a

reference to this method to the Thread constructor, like this:

Visual APL

wo = Worker();

wt = new Thread((ThreadStart)wo.DoWork);

At this point, although the worker thread object exists and is configured, the actual worker thread has yet

been created. This does not happen until test calls the Start method:

Visual APL

wt.Start();

At this point the system initiates the execution of the worker thread, but it does so asynchronously to the

primary thread. This means that the test function continues to execute code immediately while the worker

thread simultaneously undergoes initialization. To insure that the test function does not try to terminate the

worker thread before it has a chance to execute, the test function loops until the worker thread object's

IsAlive property gets set to true:

Visual APL

while (!wt.IsAlive);

Next, the primary thread is halted briefly with a call to Sleep. This insures that the worker thread's DoWork
function will execute the loop inside the DoWork method for a few iterations before the test function

executes any more commands:

Visual APL

Thread.Sleep(300);

After the 300 millisecond elapses, test signals to the worker thread object that it should terminate using the

Worker.RequestStop method introduced previously:

Visual APL

wo.RequestStop();

It is also possible to terminate a thread from another thread with a call to Abort, but this forcefully terminates

the affected thread without concern for whether it has completed its task and provides no opportunity for the

cleanup of resources. The technique shown in this example is preferred.

Finally, the test function calls the Join method on the worker thread object. This method causes the current

thread to block, or wait, until the thread that the object represents terminates. Therefore Join will not return

until the worker thread returns, thereby terminating itself:

Visual APL

wt.Join();

Page 193

At this point only the primary thread executing test exists. It displays one final message, and then returns,

terminating the primary thread as well.

The complete example appears below.

Example

Visual APL

using System

using System.Threading

refbyname System.Windows.Forms

using System.Windows.Forms

refbyname System.Drawing

using System.Drawing

public class Worker {

 // This method will be called when the thread is started.

 public function DoWork() {

 a = Form()

 t = TextBox()

 t.Multiline = true

 t.Size = Size(200, 200)

 a.Controls.Add(t)

 a.Show()

 for (i=0;i<100;i++) {

 if (_shouldStop) {

 break;

 }

 t.AppendText(i+". worker thread: working...\n")

 }

 MessageBox.Show("Worker thread: terminating gracefully")

 }

 public void RequestStop() {

 _shouldStop = true;

 }

 // Volatile is used as hint to the compiler that this data

 // member will be accessed by multiple threads.

 private volatile _shouldStop = false;

}

static function test() {

 // Create the thread object. This does not start the thread.

 wo = Worker()

 wt = Thread((ThreadStart)wo.DoWork)

 // Start the worker thread.

 wt.Start()

 print "main thread: starting worker thread..."

 // Put the main thread to sleep for 300 milliseconds to

Page 194

 // allow the worker thread to do some work:

 Thread.Sleep(300)

 // Request that the worker thread stop itself:

 wo.RequestStop()

 // Use the Join method to block the current thread

 // until the object's thread terminates.

 wt.Join()

 print "main thread: worker thread has terminated"

}

Sample Output

main thread: starting worker thread...

1. worker thread: working...

2. worker thread: working...

3. worker thread: working...

4. worker thread: working...

5. worker thread: working...

6. worker thread: working...

7. worker thread: working...

8. worker thread: working...

9. worker thread: working...

10. worker thread: working...

11. worker thread: working...

Shown in MessageBox - worker thread: terminating gracefully...

main thread: worker thread has terminated

Page 195

Visual APL Programming Guide

How to: Access a Collection Class with foreach (Visual APL
Programming Guide)
The following code sample illustrates how to write a non-generic collection class that can be used with

foreach. The class is a string tokenizer, similar to the C run-time function strtok.

In the following example, Tokens breaks the sentence "This is a sample sentence." into tokens using ' ' and

'-' as separators, and enumerates those tokens with the foreach statement:

Visual APL

f = Tokens("This is a sample sentence.", (' ' '-'));

foreach (item in f)

{

 print item;

}

Internally, Tokens uses an array, which implements IEnumerator and IEnumerable itself. The code

example could have used the array's enumeration methods as its own, but that would have defeated the

purpose of this example.

In Visual APL, it is not strictly necessary for a collection class to inherit from IEnumerable and IEnumerator

in order to be compatible with foreach; as long as the class has the required GetEnumerator, MoveNext,

 Reset, and Current members, it will work with foreach. Omitting the interfaces has the advantage of

allowing you to define the return type of Current to be more specific than object, thereby providing

type-safety.

The disadvantage of omitting IEnumerable and IEnumerator is that the collection class is no longer

interoperable with the foreach statements, or equivalents, of other common language runtime-compatible

languages.

Creating CLS compliant enumerators within Visual APL for interoperability with other common language

runtime-compatible languages, by inheriting from IEnumerable and IEnumerator and using explicit

interface implementation is demonstrated in the following example.

Example

Visual APL

using System

using System.Collections;

// Declare the Tokens class:

public class Tokens : IEnumerable

{

 private elements;

 public Tokens(source, delimiters)

 {

 // Parse the string into tokens:

 elements = source.Split(delimiters, source.Length);

 }

 // IEnumerable Interface Implementation:

 // Declaration of the GetEnumerator() method

Page 196

 // required by IEnumerable

 // the return type of IEnumerator is required for override

 public IEnumerator GetEnumerator()

 {

 return TokenEnumerator(this);

 }

 // Inner class implements IEnumerator interface:

 private class TokenEnumerator : IEnumerator

 {

 private position = -1;

 private t;

 public TokenEnumerator(t)

 {

 this.t = t;

 }

 // Declare the MoveNext method required by IEnumerator:

 // note that the return type must be bool to override the MoveNext

method on the

 // interface IEnumerator

 public bool MoveNext()

 {

 if (position < t.elements.Length - 1)

 {

 position++;

 return true;

 }

 else

 {

 return false;

 }

 }

 // Declare the Reset method required by IEnumerator:

 // Reset also requires void as the return type for override

 public void Reset()

 {

 position = -1;

 }

 // Declare the Current property required by IEnumerator:

 // Current returns type, so there is no need to specify the return

type for override

 public Current

 {

 get

 {

 return t.elements[position];

 }

 }

 }

 // Test Tokens, TokenEnumerator

 public static test()

 {

 // Testing Tokens by breaking the string into tokens:

 f = new Tokens("This is a sample sentence.", (' ' '-'));

Page 197

 foreach (item in f)

 {

 print item;

 }

 }

}

Output

This

is

a

sample

sentence.

Page 198

Visual APL Programming Guide

How to: Use COM Interop to Create an Excel Spreadsheet (Visual
APL Programming Guide)
The following code example illustrates how to use COM interop to create an Excel spreadsheet. For more

information on Excel, see Microsoft Excel Objects, and Open Method

This example illustrates how to open an existing Excel spreadsheet in Visual APL using .NET Framework COM

interop capability. The Excel assembly is used to open and enter data into a range of cells in the Excel

spreadsheet.

Note

You must have Excel installed on your system for this code to run properly.

Note

The members, such as properties, methods, etc displayed with intellisense may differ from those available on the
object. Simply type the member you would normally select from intellisense and the code should run fine.
To create an Excel spreadsheet with COM interop

Visual APL

using System;

refbyname Microsoft.Office.Interop.Excel

using Microsoft.Office.Interop;

using Microsoft.Office.Interop.Excel;

 function excel()

 {

 xlApp = Excel.ApplicationClass();

 if (xlApp == null)

 {

 print "EXCEL could not be started. Check that your office

installation and project references are correct.";

 return;

 }

 xlApp.Visible = true;

 wb = xlApp.Workbooks.Add(XlWBATemplate.xlWBATWorksheet);

 ws = (Worksheet)wb.Worksheets[1];

 if (ws == null)

 {

 print "Worksheet could not be created. Check that your office

installation and project references are correct.";

 }

 // Select the Excel cells, in the range c1 to c7 in the worksheet.

 aRange = ws.get_Range("C1", "C7");

 if (aRange == null)

 {

 print "Could not get a range. Check to be sure you have the

correct versions of the office DLLs.";

 }

 // Change the cells in the C1 to C7 range of the worksheet to the

number 8.

 aRange.Value2 = 8;

 }

Security

Page 199

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaxl10/html/xlmthopen.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaxl10/html/xlmthopen.asp

To use COM interop, you must have administrator or Power User security permissions. For more

information on security, see .NET Framework Security.

Page 200

http://www.msdn.microsoft.com/security/securecode/dotnet/default.aspx

Visual APL Programming Guide

How to: Write a Copy Constructor (Visual APL Programming
Guide)
Visual APL does not include an explicit copy constructor, but Visual APL does permit multiple instance

constructors based on signature. If you create an instance of a type and want to copy the values from an

existing instantiation, you can write the appropriate constructor method.

Example

In this example, the Employee class contains a constructor that takes as the argument another object of

type Employee. The contents of the fields in this object are then assigned to the fields in the new object.

Visual APL

class Employee

{

 private name;

 private age;

 // Copy constructor.

 public Employee(previousEmployee)

 {

 name = previousEmployee.name;

 age = previousEmployee.age;

 }

 // Instance constructor.

 public Employee(name, age)

 {

 this.name = name;

 this.age = age;

 }

 // Get accessor.

 public string Details

 {

 get

 {

 return name + " is " + age.ToString();

 }

 }

}

class TestEmployee

{

 static void Main()

 {

 // Create a new person object.

 person1 = Employee("Sam", 40);

 // Create another new object, copying person1.

 person2 = Employee(person1);

 print person2.Details;

 }

}

Page 201

Output

Sam is 40

Page 202

Visual APL Programming Guide

How to: Implement Interface Members (Visual APL Programming
Guide)
This example creates an interface, IDimensions, and a class, Box, which explicitly implements or inherits

from the interface members getLength and getWidth. The members are accessed through the interface

instance dimensions.

Example

Visual APL

interface IDimensions

{

 function float getLength()

 function float getWidth()

}

class Box : IDimensions

{

 public float lengthInches;

 public float widthInches;

 Box(length, width)

 {

 lengthInches = length;

 widthInches = width;

 }

 // Explicit interface member implementation:

 public float getLength()

 {

 return lengthInches;

 }

 // Explicit interface member implementation:

 public float IDimensions.getWidth()

 {

 return widthInches;

 }

 public void Test()

 {

 // Declare a class instance box1:

 box1 = new Box(30.0f, 20.0f);

 // Declare an interface instance dimensions:

 dimensions = (IDimensions)box1;

 // The following commented lines would produce compilation

 // errors because they try to access an explicitly implemented

 // interface member from a class instance:

 // print "Length: " + box1.getlength();

 // print "Width: " + box1.getwidth());

 // Print out the dimensions of the box by calling the methods

Page 203

 // from an instance of the interface:

 print "Length: " + dimensions.getLength();

 print "Width: " + dimensions.getWidth();

 }

}

Output

Length: 30

Width: 20

Page 204

Visual APL Programming Guide

Static Constructors (Visual APL Programming Guide)
A static constructor is run only once when the system first loads a type, and is used to initialize any static

data, or to perform a particular action that needs to be performed once only. The system automatically calls

this method before the first instance is created or any static members are referenced.

Visual APL

class SimpleClass

{

 // Static constructor

 static SimpleClass()

 {

 //...

 }

}

Static constructors have the following properties:

 A static constructor does not take access modifiers or have parameters.

 A static constructor is called automatically to initialize the class before the first instance is created or any

static members are referenced.

 A static constructor cannot be called directly.

 The user has no control on when the static constructor is executed in the program.

 A typical use of static constructors is when the class is using a log file and the constructor is used to write

entries to this file.

 Static constructors are also useful when creating wrapper classes for unmanaged code, when the

constructor can call the LoadLibrary method.

Example

In this example, the class One has a static constructor and one static member, Two(). When Two() is
called, the static constructor is invoked to initialize the class.

Visual APL

public class One

{

 // Static constructor:

 static One()

 {

 print "The static constructor invoked."

 }

 public static void Two()

 {

 print "The Two method invoked."

 }

}

class TestOne

{

 static void Main()

 {

 One.Two();

 }

}

Output

The static constructor invoked.

Page 205

The Drive method invoked.

Page 206

Visual APL Programming Guide

Instance Constructors (Visual APL Programming Guide)
A class can have both static and instance members. An instance class can have multiple constructors or

latent expressions. A constructor is the latent expression or method that is invoked when the class is first

used, or instantiated. When a method is created with the same name as the class this becomes a constructor

or latent expression. In addition to running the code in the constructor method, the constructor also assures

that all of the fields (global variable) x and y in this case, are set to the original default values when the class

is instantiated. There can be more than one constructor, as the entire signature of the constructor is used to

determine which constructor is called, for example:

Visual APL

class Coordinates

{

 public x, y;

 // constructor

 public Coordinates()

 {

 x = 0;

 y = 0;

 }

}

In this case the method named Coordinates is called when ever an instance of the Coordinates class is

created. When a constructor or latent expression has no arguments, then it is called the default constructor,

which other programs will use when no arguments are available to create an instance of a class. However,

there can be numerous latent expressions or constructor methods. For example, we can add a constructor to

the Coordinates class that allows us to specify the initial values for the data members:

Visual APL

// A constructor with two arguments:

public Coordinates(x, y)

{

 this.x = x;

 this.y = y;

}

This constructor will assign values to the global variables, or fields, x and y when the class is initialized, such

as:

Visual APL

p1 = new Coordinates();

p2 = new Coordinates(5, 3);

A class can inherit from another class. In this case, the constructors also call the instance constructors of

base classes, that is the class from which they inherit. The constructor or latent expression automatically

selects the base constructor that matches the signature, or uses the base default constructor if no match is

found. The following show this:

Visual APL

class Circle : Shape

{

 public Circle(radius)

 {

 }

}

Page 207

In this case the C ircle constructor also calls the Shape constructor that matches the arguments.

Example 1

This example shows a class which has two constructors or latent expressions. They have the same name as

the class, but are made unique by having different arguments.

Visual APL

class Coordinates

{

 public x, y;

 // Default constructor:

 public Coordinates()

 {

 x = 0;

 y = 0;

 }

 // A constructor with two arguments:

 public Coordinates(x, y)

 {

 this.x = x;

 this.y = y;

 }

 // Override the ToString method:

 public override string ToString()

 {

 return (System.String.Format("({0},{1})", x, y));

 }

}

class TestClass

{

 static void Test()

 {

 p1 = new Coordinates();

 p2 = new Coordinates(5, 3);

 // Display the results using the overriden ToString method:

 print "Coordinates #1 at "+ p1;

 print "Coordinates #2 at "+ p2;

 }

}

Output

Coordinates #1 at (0,0)

Coordinates #2 at (5,3)

Example 2

This class does not have an explicit constructor, but instead one is automatically created, which assures that

the fields (global variables) age and name are set each time the class is instantiated.

Page 208

Visual APL

public class Person

{

 public age = 0;

 public name = “”;

}

class TestPerson

{

 public static void Test()

 {

 p = new Person();

 print "Name: "+p.name+", Age: " + p.age;

 }

}

Output

Name: , Age: 0

Example 3

This example shows how a constructor will also call a base constructor, or the constructor of the class from

which the present class inherited. The Circle class is derived from the general class Shape, and the

Cylinder class is derived from the Circle class. The constructor on each derived class is using its base

class initializer, constructor or latent expression.

Visual APL

abstract class Shape

{

 public pi = System.Math.PI;

 public x, y;

 public Shape(x, y)

 {

 this.x = x;

 this.y = y;

 }

 public abstract Area();

}

class Circle : Shape

{

 public Circle(radius) : base(radius, 0)

 {

 }

 public override Area()

 {

 return pi × x × x;

 }

}

class Cylinder : Circle

Page 209

{

 public Cylinder(radius, height) : base(radius)

 {

 y = height;

 }

 public override Area()

 {

 return (2 * base.Area()) + (2 * pi * x * y);

 }

}

class TestShapes

{

 public void TestShapes()

 {

 radius = 2.5;

 height = 3.0;

 ring = Circle(radius);

 tube = Cylinder(radius, height);

 print "Area of the circle = "+ ring.Area();

 print "Area of the cylinder = "+ tube.Area();

 }

}

Output

Area of the circle = 19.63

Area of the cylinder = 86.39

Page 210

Visual APL Programming Guide

Example COM Class (Visual APL Programming Guide)
The following is an example of a class that you would expose as a COM object. After this code has been

placed in a .apl file and added to your project, set the Register for COM Interop property to True. For

more information, see How to: Register a Component for COM Interop.

Exposing Visual Visual APL objects to COM requires declaring a class interface, an events interface if it is

required, and the class itself. C lass members must follow these rules to be visible to COM:

 The class must be public.

 Properties, methods, and events must be public.

 Properties and methods must be declared on the class interface.

 Events must be declared in the event interface.

Other public members in the class that are not declared in these interfaces will not be visible to COM, but they

will be visible to other .NET Framework objects.

To expose properties and methods to COM, you must declare them on the class interface and mark them with

a DispId attribute, and implement them in the class. The order in which the members are declared in the

interface is the order used for the COM vtable.

To expose events from your class, you must declare them on the events interface and mark them with a

DispId attribute. The class should not implement this interface.

The class implements the class interface; it can implement more than one interface, but the first

implementation will be the default class interface. Implement the methods and properties exposed to COM

here. They must be marked public and must match the declarations in the class interface. Also, declare the

events raised by the class here. They must be marked public and must match the declarations in the events

interface.

Example

Visual APL

using System

using System.Runtime.InteropServices;

namespace project_name

{

 [ClassInterface(ClassInterfaceType.AutoDual)]

 [ProgId("TestCom.TestAdd")]

 public class TestCom {

 public TestCom() {

 }

 public function add(a, b) {

 return a+b

 }

 }

}

Page 211

Visual APL Programming Guide

Namespaces (Visual APL Programming Guide)
Namespaces are heavily used in Visual APL programming in two ways. First, the .NET Framework uses

namespaces to organize its many classes, as follows:

Visual APL

System.String.Format("Hello World!")

System is a namespace and String is a class contained within that namespace. The using keyword can be

used so that the entire name is not required, like this:

Visual APL

using System;

String.Format("Hello");

For more information, see the topic using Directive (Visual APL Reference).

Second, declaring your own namespaces can help you control the scope of class and method names in larger

programming projects. Use the namespace keyword to declare a namespace, as in the following example:

Visual APL

namespace SampleNamespace

{

 class SampleClass

 {

 public void SampleMethod()

 {

 System.Console.WriteLine(

 "SampleMethod inside SampleNamespace");

 }

 }

}

Namespaces Overview

A namespace has the following properties:

 They organize large code projects.

 They are delimited with the . operator.

 The using directive means you do not need to specify the name of the namespace for every class.

Page 212

Visual APL Programming Guide

Using Namespaces (Visual APL Programming Guide)
Namespaces are heavily used within Visual APL programs in two ways. Firstly, the .NET Framework classes

use namespaces to organize its many classes. Secondly, declaring your own namespaces can help control the

scope of class and method names in larger programming projects.

Accessing Namespaces

Most Visual APL applications begin with a section of using, refbyname or refbyfile directives. This section

lists the namespaces that the application will be using frequently, and saves the programmer from specifying

a fully qualified name every time a method contained within is used.

For example, by including the line:

Visual APL

using System;

At the start of a program, the programmer can use the code:

Visual APL

String.Format("Hello, World!");

Instead of:

Visual APL

System.String.Format("Hello, World!");

Namespace Aliases

The using Directive (Visual APL Reference) can also be used to create an alias for a namespace. For

example, if you are using a previously written namespace that contains nested namespaces, you might want

to declare an alias to provide a shorthand way of referencing one in particular, like this:

Visual APL

using Co = Company.Proj.Nested; // define an alias to represent a namespace

Using Namespaces to control scope

The namespace keyword is used to declare a scope. The ability to create scopes within your project helps

organize code and provides a way to create globally-unique types. In the following example, a class entitled

SampleClass is defined in two namespaces, one nested inside the other. The . Operator (Visual APL
Reference) is used to differentiate which method gets called.

Visual APL

namespace SampleNamespace

{

 class SampleClass

 {

 public void SampleMethod()

 {

 print "SampleMethod inside SampleClass";

 }

 }

 class SampleClassNext

Page 213

 {

 public void SampleMethod()

 {

 print "SampleMethod inside SampleClassNext");

 }

 }

 class Program

 {

 public function fn()

 {

 // Displays "SampleMethod inside SampleNamespace."

 outer = new SampleClass();

 outer.SampleMethod();

 // Displays "SampleMethod inside SampleNamespace."

 outer2 = new SampleClassNext();

 outer2.SampleMethod();

 }

 }

}

Fully Qualified Names

Namespaces and types have unique titles described by fully qualified names that indicate a logical hierarchy.

For example, the statement A.B implies that A is the name of the namespace or type, and B is nested inside

it.

In the following example, there are nested classes and namespaces. The fully qualified name is indicated as a

comment following each entity.

Visual APL

namespace N1 // N1

{

 class C1 // N1.C1

 {

 class C2 // N1.C1.C2

 {

 }

 }

}

namespace N2 // N2

{

 class C2 // N2.C2

 {

 }

}

In the preceding code segment:

 The namespace N1 is a member of the global namespace. Its fully qualified name is N1.

 The namespace N2 is a member of global namespace. Its fully qualified name is N2.

 The class C1 is a member of N1. Its fully qualified name is N1.C1.

 The class name C2 is used twice in this code. However, the fully qualified names are unique. The first

one is declared inside C1; thus, its fully qualified name is: N1.C1.C2.The second is declared inside a

Page 214

namespace N2; thus, its fully qualified name is N2.C2.

Using the preceding code segment, you can add a new class member, C3, to the namespace N1.N2 as

follows:

Visual APL

namespace N2

{

 class C3 // N2.C3

 {

 }

}

See the topic How to: Use the Namespace Alias Qualifier (Visual APL Programming Guide) for more

details regarding the alias.

Page 215

Top of Form
Visual APL Programming Guide

How to: Use the My Namespace (Visual APL Programming Guide)
The Microsoft.VisualBasic.MyServices namespace (My in Visual Basic) provides easy and intuitive access to a

number of .NET Framework classes, enabling you to write code that interacts with the computer, application,

settings, resources, and so on. Although originally designed for use with Visual Basic, the MyServices

namespace can be used in Visual APL applications.

For more information about using the MyServices namespace from Visual Basic, see Development with My.

Adding a Reference

Before you can use the MyServices classes in your solution, you must add a reference to the Visual Basic

library.

This is done using the keyword refbyname or refbyfile, in this example, we will use refbyname

This example calls various static methods contained in the MyServices namespace. For this code to compile,

a reference to Microsoft.VisualBasic.DLL must be added to the project.

Visual APL

using System;

refbyname Microsoft.VisualBasic

using Microsoft.VisualBasic.Devices;

class TestMyServices

{

 public MyTest()

 {

 // Play a sound with the Audio class:

 myAudio = new Audio();

 print "Playing sound...";

 myAudio.Play(@"c:\WINDOWS\Media\chimes.wav");

 // Display time information with the Clock class:

 myClock = new Clock();

 print "Current day of the week: ";

 print myClock.LocalTime.DayOfWeek;

 print "Current date and time: ";

 print myClock.LocalTime;

 // Display machine information with the Computer class:

 myComputer = new Computer();

 print "Computer name: " + myComputer.Name;

 if (myComputer.Network.IsAvailable)

 {

 print "Computer is connected to network.";

 }

 else

 {

 print "Computer is not connected to network.";

 }

 }

}

Not all the classes in the MyServices namespace can be called from a Visual APL application: for example,

the FileSystemProxy class is not compatible. In this particular case, the static methods that are part of

FileSystem, which are also contained in VisualBasic.dll, can be used instead. For example, here is how to use

Page 216

http://msdn2.microsoft.com/en-us/library/microsoft.visualbasic.myservices.aspx
http://msdn2.microsoft.com/en-us/library/5btzf5yk.aspx
http://msdn2.microsoft.com/en-us/library/microsoft.visualbasic.myservices.filesystemproxy.aspx
http://msdn2.microsoft.com/en-us/library/microsoft.visualbasic.fileio.filesystem.aspx

one such method to duplicate a directory:

Visual APL

// Duplicate a directory

Microsoft.VisualBasic.FileIO.FileSystem.CopyDirectory(

 @"C:\original_directory",

 @"C:\copy_of_original_directory");

Bottom of Form

Page 217

Visual APL Programming Guide

Statements (Visual APL Programming Guide)
A statement is a procedural building-block from which all Visual APL programs are constructed. A statement

can declare a local variable or constant, call a method, create an object, or assign a value to a variable,

property, or field. A control statement can create a loop, such as a for loop, or make a decision and branch to

a new block of code, such as an if or switch statement. Statements are usually terminated by a semicolon.

For more information, see Statement Types (Visual APL Reference). The easiest way to think about

statements, is that they do not return a value, whereas an expression will. The definition of a function is a

statement, whereas invoking the function would be an expression.

A series of statements surrounded by curly braces form a block of code. A method body is one example of a

code block. Code blocks often follow a control statement. Variables or constants declared within a function or

method are only available to statements within the same function or method. Using the key word global

variables created within a function can be exposed as global to the enclosing class. For example, the

following code shows a method block and a code block following a control statement:

Visual APL

function IsPositive(number)

{

 if (number > 0) {

 return true;

 } else {

 return false;

 }

}

Statements in Visual APL often contain expressions. An expression in Visual APL is a fragment of code

containing a literal value, a simple name, or an operator and its operands. Most common expressions, when

evaluated, yield a literal value, a variable, or an object property or object indexer access. Whenever a

variable, object property or object indexer access is identified from an expression, the value of that item is

used as the value of the expression. In Visual APL, an expression can be placed anywhere that a value or

object is required as long as the expression ultimately evaluates to the required type when strong typing is

chosen.

Some expressions evaluate to a namespace, a type, a method group, or an event access. These

special-purpose expressions are only valid at certain times, usually as part of a larger expression, and will

result in a compiler error when used improperly.

Page 218

Visual APL Programming Guide

Expressions (Visual APL Programming Guide)
An expression is a fragment of code that can be evaluated to a single value, object, method, or namespace.

 Expressions can contain a literal value, a method invocation, an operator and its operands, or a simple name

. Simple names can be the name of a variable, type member, method parameter, namespace or type.

Expressions can use operators that in turn use other expressions as parameters, or method calls whose

parameters are in turn other method calls, so expressions can range from simple to very complex.

Literals and Simple Names

The two simplest types of expressions are literals and simple names. A literal is a constant value that has no

name. For example, in the following code example, both 5 and "Hello World" are literal values:

Visual APL

i = 5

s = "Hello World"

For more information on literals, see Types (Visual APL Reference).

In the example above, both i and s are simple names identifying local variables. When those variables are

used in an expression, the value of the variable is retrieved and used for the expression. For example, in the

following code example, when DoWork is called, the method receives the value 5 by default and is not able to

access the variable var:

Visual APL

var = 5

DoWork(var)

Invocation Expressions

In the following code example, the call to DoWork is another kind of expression, called an invocation

expression.

Visual APL

DoWork(var)

Specifically, calling a method is a method invocation expression. A method invocation requires the name of

the method, either as a name as in the previous example, or as the result of another expression, followed by

parenthesis and any method parameters. For more information, see Methods (Visual APL Programming
Guide). A delegate invocation uses the name of a delegate and method parameters in parenthesis. For more

information, see Delegates (Visual APL Programming Guide). Method invocations and delegate invocations

evaluate to the return value of the method, if the method returns a value. Methods that return void will still

return a null if the result of the method iis to be used in place of a value in an expression.

Remarks

Whenever a variable, object property, or object indexer access is identified from an expression, the value of

that item is used as the value of the expression. An expression can be placed anywhere in Visual APL where a

value or object is required, as long as the expression ultimately evaluates to the required type if strong

typing is chosen, in the case of dynamic typing, the type is ambivalent.

Page 219

http://msdn2.microsoft.com/en-us/library/ms173144.aspx
http://msdn2.microsoft.com/en-us/library/ms173144.aspx
http://msdn2.microsoft.com/en-us/library/ms173144.aspx

Visual APL Programming Guide

Operators (Visual APL Programming Guide)
In Visual APL, an operator is a term or a symbol that takes one or more expressions, called operands, as

input and returns a value. Operators that take one operand, such as the increment operator (++) or new,

are called monadic operators. Operators that take two operands, such as arithmetic operators (+,-,*,/) are

called dyadic operators. One operator, the conditional operator (then else), takes three operands and is the

sole tertiary operator in Visual APL.

The following Visual APL statement contains a single monadic operator, and a single operand. The increment

operator, ++, modifies the value of the operand y.:

Visual APL

y++;

The following Visual APL statement contains two dyadic operators, each with two operands. The assignment

operator, =, has the integer y, and the expression 2 + 3 as operands. The expression 2 + 3 itself contains

the addition operator, and uses the integer values 2 and 3 as operands:

Visual APL

y = 2 + 3;

An operand can be a valid expression of any size, composed of any number of other operations.

Operators in an expression are evaluated in a specific order, that is right to left. The following table divides

the operators into categories based on the type of operation they perform.

Primary x.y, f(x), a[x], x++, x--, new, typeof
Monadic (scalar and array) +, -, !, ~, (T)x, ⍴, ×, ÷, ⍳, ∊, ⌊, ⌈, ↑, ↓
Dyadic (scalar and array) (,ravel) , !, ?, ⍋, ⍒, ⍎, ⍕, ⊂, ⊃, ⌽, ⍉, ⊖
Arithmetic ---
Multiplicative (scalar and
array)

×, ÷, |, ⍟ , *, ○

Arithmetic ---
Multiplicative (scalar)

%

Arithmetic --- Additive
(scalar and array)

+, -

Shift (scalar) <<, >>
Relational (scalar and
array)

<, >, <=, >=, ≤ ≥

Type testing (scalar) is, as
Equality (scalar and
array)

==, ≈ ≡ ≠ ≊, ≣

Equality (scalar) !=
Logical (scalar and array) ∧, ∨, ⍱, ⍲, ∼
Logical (scalar) &, ^, |
Data Analysis (scalar and
array)

⍳, ∊, ⌈, ⌊, ⊥, ⊤, !, ?, ⍋, ⍒, ⍷, ⍎, ⍕

Data Manipulation (scalar
and array)

⍴, ↑ ↓ (,catenate), ⍪, ⊂, ⊃, ⊖, ⌽, ⍉

Operator Functions (scalar
and array)

/, \, [], (. dot), ¨, ⌿, ⍀, ∘̂̃

Conditional (Boolean) &&, ||, then/else
Assignment =, ← +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, …

Page 220

Dyadic Operators are evaluated from right to left, Monadic (unary) operators are evaluated from left to right.

Visual APL

num1 = 5;

num1++;

print num1

However, the output of the following example code is undefined:

Visual APL

num2 = 5;

num2 = num2++; //not recommended

print num2

Therefore, the latter example is not recommended. Parentheses can be used to surround an expression and

force that expression to be evaluated before any others. For example, 2 × 3 + 4 would normally become 14.

This is because dyadic operators evaluate from right to left . Writing the expression as (2 × 3) + 4 results in

10, because it indicates to the Visual APL compiler that the multiplication operator (×) must be evaluated

before the addition operator (+).

Page 221

Visual APL Programming Guide

How to: Declare and Use Read/Write Properties (Visual APL
Programming Guide)
Properties provide the convenience of public data members without the risks that come with unprotected,

uncontrolled, and unverified access to an object's data. This is accomplished through accessors: special

methods that assign and retrieve values from the underlying data member. The set accessor enables data

members to be assigned, and the get accessor retrieves data member values.

This sample shows a Person class that has two properties: Name (string) and Age (int). Both properties

provide get and set accessors, so they are considered read/write properties.

Example

Visual APL

class Person

{

 private m_name = "N/A";

 private m_Age = 0;

 // Declare a Name property of type string:

 public property Name {

 get {

 return m_name;

 }

 set {

 m_name = value;

 }

 }

 // Declare an Age property of type int:

 public property Age {

 get {

 return m_Age;

 }

 set {

 m_Age = value;

 }

 public override string ToString()

 {

 return "Name = " + this.Name + ", Age = " + this.Age;

 }

}

 public static function fn()

 {

 using System

 // Create a new Person object:

 person = new Person();

 // Print out the name and the age associated with the person:

 print String.Format("Person details - {0}", person);

Page 222

 // Set some values on the person object:

 person.Name = "Joe";

 person.Age = 99;

 print String.Format("Person details - {0}", person);

 // Increment the Age property:

 person.Age += 1;

 print String.Format("Person details - {0}", person);

 }

Output

Person details - Name = N/A, Age = 0

Person details - Name = Joe, Age = 99

Person details - Name = Joe, Age = 100

Robust Programming

In the previous example, the Name and Age properties are public and include both a get and a set accessor.

This allows any object to read and write these properties. It is sometimes desirable, however, to exclude one

of the accessors. Omitting the set accessor, for example, makes the property read-only:

Visual APL

public string Name

{

 get

 {

 return m_name;

 }

}

Once the properties are declared, they can be used as if they were fields of the class. This allows for a very

natural syntax when both getting and setting the value of a property, as in the following statements:

Visual APL

person.Name = "Joe";

person.Age = 99;

Note that in a property set method a special value variable is available. This variable contains the value

that the user specified, for example:

Visual APL

m_name = value;

Notice the clean syntax for incrementing the Age property on a Person object:

Visual APL

person.Age += 1;

If separate set and get methods were used to model properties, the equivalent code might look like this:

C ielo

person.SetAge(person.GetAge() + 1);

The ToString method is overridden in this example:

Visual APL

public override string ToString()

{

 return "Name = " + this.Name + ", Age = " + this.Age;

}

Notice that ToString is not explicitly used in the program. It is invoked by default by the WriteLine calls.

Page 223

Page 224

Visual APL Programming Guide

Exceptions and Exception Handling (Visual APL Programming
Guide)
The Visual APL language's exception handling features provide a way to deal with any unexpected or

exceptional situations that arise while a program is running. Exception handling uses the try, catch, and

finally keywords to attempt actions that may not succeed, to handle failures, and to clean up resources

afterwards. Exceptions can be generated by the common language runtime (CLR), by third-party libraries, or

by the application code using the throw keyword.

In this example, a method tests for a division by zero, and catches the error. Without the exception handling,

this program would terminate with a DivideByZeroException was unhandled error.

Visual APL

function SafeDivision(x, y)

{

 try

 {

 return (x ÷ y);

 }

 catch (DivideByZeroException dbz)

 {

 print "Division by zero attempted!";

 return 0;

 }

}

Exceptions Overview

Exceptions have the following properties:

 When your application encounters an exceptional circumstance, such as a division by zero or low

memory warning, an exception is generated.

 Use a try block around the statements that might throw exceptions.

 Once an exception occurs within the try block, the flow of control immediately jumps to an associated

exception handler, if one is present.

 If no exception handler for a given exception is present, the program stops executing with an error

message.

 If a catch block defines an exception variable, you can use it to get more information on the type of

exception that occurred.

 Actions that may result in an exception are executed with the try keyword.

 An exception handler is a block of code that is executed when an exception occurs. In Visual APL, the

catch keyword is used to define an exception handler.

 Exceptions can be explicitly generated by a program using the throw keyword.

 Exception objects contain detailed information about the error, including the state of the call stack and a

text description of the error.

 Code in a finally block is executed even if an exception is thrown, thus allowing a program to release

resources.

Page 225

http://msdn2.microsoft.com/en-us/library/ms173160.aspx

Visual APL Programming Guide

Exception Handling (Visual APL Programming Guide)
A try block is used by Visual APL programmers to partition code that may be affected by an exception, and

catch blocks are used to handle any resulting exceptions. A finally block can be used to execute code

regardless of whether an exception is thrown -- which is sometimes necessary, as code following a try/catch

construct will not be executed if an exception is thrown. A try block must be used with either a catch or a

finally block, and can include multiple catch blocks. For example:

Visual APL

try

{

 // Code to try here.

}

catch (Exception ex)

{

 // Code to handle exception here.

}

Visual APL

try

{

 // Code to try here.

}

finally

{

 // Code to execute after try here.

}

Visual APL

try

{

 // Code to try here.

}

catch (Exception ex)

{

 // Code to handle exception here.

}

finally

{

 // Code to execute after try (and possibly catch) here.

}

A try statement without a catch or finally block will result in a compiler error.

Catch Blocks

A catch block can specify an exception type to catch. This type is called an exception filter, and must either

be the Exception type, or derived from this type. Application-defined exceptions should derive from

ApplicationException.

Multiple catch blocks with different exception filters can be chained together. Multiple catch blocks are

evaluated from top to bottom, but only one catch block is executed for each exception thrown. The first

catch block that species the exact type or a base class of the thrown exception will be executed. If no catch

block specifies a matching exception filter, then a catch block with no filter (if any) will be executed. It is

Page 226

important to place catch blocks with the most specific -- most derived -- exception classes first.

You should catch exceptions when:

 You have a specific understanding of why the exception was thrown, and can implement a specific

recovery, such as catching a FileNotFoundException object and prompting the user to enter a new file

name.

 You can create and throw a new, more specific exception. For example:

Visual APL

function GetInt(array, index)

{

 try

 {

 return array[index];

 }

 catch(IndexOutOfRangeException e)

 {

 throw ArgumentOutOfRangeException("Parameter index is out of

range.");

 }

}

 To partially handle an exception. For example, a catch block could be used to add an entry to an error

log, but then re-throw the exception to allow subsequent handling to the exception. For example:

Visual APL

try

{

 // try to access a resource

}

catch (UnauthorizedAccessException e)

{

 LogError(e); // call a custom error logging procedure

 throw e; // re-throw the error

}

Finally Blocks

A finally block allows clean-up of actions performed in a try block. If present, the finally block executes

after the try and catch blocks execute. A finally block is always executed, regardless of whether an

exception is thrown or whether a catch block matching the exception type is found.

The finally block can be used to release resources such as file streams, database connections, and graphics

handles without waiting for the garbage collector in the runtime to finalize the objects. See using Statement
(Visual APL Reference) for more information.

In this example, the finally block is used to close a file opened in the try block. Notice that the state of the

file handle is checked before it is closed. If the try block failed to open the file, the file handle will still be set

to null. Alternatively, if the file is opened successfully and no exception is thrown, the finally block will still

be executed and will close the open file.

Visual APL

fileinfo = new System.IO.FileInfo("C:\\file.txt");
try
{
 file = fileinfo.OpenWrite();

Page 227

 file.WriteByte(0xF);
}
finally
{
 // check for null because OpenWrite
 // might have failed

 if (file != null)
 {
 file.Close();
 }
}

Page 228

Visual APL Programming Guide

Using Exceptions (Visual APL Programming Guide)
In Visual APL, errors in the program at run time are propagated through the program using a mechanism

called exceptions. Exceptions are thrown by code that encounters an error and caught by code that can

correct the error. Exceptions can be thrown by the .NET Framework common language runtime (CLR) or by

code in a program. Once an exception is thrown, it propagates up the call stack until a catch statement for

the exception is found. Uncaught exceptions are handled by a generic exception handler provided by the

system that displays a dialog box.

Exceptions are represented by classes derived from Exception. This class identifies the type of exception and

contains properties with details about the exception. Throwing an exception involves creating an instance of

an exception-derived class, optionally configuring properties of the exception, and then throwing the object

with the throw keyword. For example:

Visual APL

function TestThrow()

{

 ex = ApplicationException("Demonstration exception in TestThrow()");

 throw ex;

}

After an exception is thrown, the runtime checks the current statement to see if it is within a try block. If so,

any catch blocks associated with the try block are checked to see if they can catch the exception. Catch

blocks normally specify exception types; if the type of the catch block is the same type as the exception, or

a base class of the exception, the catch block can handle the method. For example:

Visual APL

function TestCatch()

{

 try

 {

 TestThrow();

 }

 catch (ApplicationException ex)

 {

 print ex.Message;

 }

}

If the statement that throws an exception is not within a try block or if the try block enclosing it has no

matching catch block, the runtime checks the calling method for a try statement and catch blocks. The

runtime continues up the calling stack, searching for a compatible catch block. After the catch block is found

and executed, control is passed to the first statement after the catch block.

A try statement can contain more than one catch block. The first catch statement that can handle the

exception is executed; any following catch statements, even if they are compatible, are ignored. It is also

possible to also a part of the error message as a string as the catch condition. For example:

Visual APL

function TestCatch2()

{

 try

 {

 TestThrow();

 }

 catch (ApplicationException ex)

 {

Page 229

 print ex.Message; // this block will be executed

 }

 catch (Exception ex)

 {

 print ex.Message; // this block will NOT be executed

 }

 print "Done"; // this statement is executed after the catch block

}

function TestCatch3() {

 try {

 ex = ApplicationException("my error")

 throw ex

 } catch ("my error") {

 print "my personal error"

 }

}

Before the catch block is executed, the try blocks that have been evaluated by the runtime, including the

try block containing the compatible catch block, are checked for finally blocks. Finally blocks allow the

programmer to clean up any ambiguous state that could be left over from an aborted try block, or to release

any external resources (such as graphics handles, database connections or file streams) without waiting for

the garbage collector in the runtime to finalize the objects. For example:

Visual APL

function TestFinally()

{

 try

 {

 a = ⍳3

 b = a[5]

 } catch (IndexOutOfRangeException ex) {

 print "Index Error"

 } finally {

 // reassign a to something bigger when exiting, even with index error

 print "resizing array in finally"

 a = ⍳10

 }

 try

 {

 b = a[5]

 print b

 }

 catch

 {

 print "error"

 }

}

In the first try block and index error is created, the catch display the Index Error message, then the finally

runs, displaying the message and resizing the variable a. Then the second try block runs and the index is

successful resulting in the value 5 being printed. The final catch is never run. The finally in the first try block

is always run.

If no compatible catch block is found on the call stack after an exception is thrown, one of three things

Page 230

happens:

 If the exception is within a destructor, the destructor is aborted and the base destructor, if any, is called.

 If the call stack contains a static constructor, or a static field initializer, a TypeInitializationException is

thrown, with the original exception assigned to the InnerException property of the new exception.

 If the beginning of the thread is reached, the thread is terminated.

Page 231

Visual APL Programming Guide

Creating and Throwing Exceptions (Visual APL Programming
Guide)

Exceptions are used to indicate that an error has occurred while running the program. Exception objects that

describe an error are created and then thrown with the throw keyword. The runtime then searches for the

most compatible exception handler.

Programmers should throw exceptions when:

 The method cannot complete its defined functionality. For example, if a parameter to a method has an

invalid value:

Visual APL

static void CopyObject(original)

{

 if (original == null)

 {

 throw new ArgumentException("Parameter cannot be null", "original");

 }

}

 An inappropriate call to an object is made, based on the object state. For example, trying to write to a

read-only file. In cases where an object state does not allow an operation, throw an instance of

InvalidOperationException or an object based on a derivation of this class. This is an example of a method

that throws an InvalidOperationException object:

Visual APL

class ProgramLog

{

 logFile = null;

 public void OpenLog(System.IO.FileInfo fileName, System.IO.FileMode mode)

{}

 public void WriteLog()

 {

 if (!this.logFile.CanWrite)

 {

 throw new InvalidOperationException("Logfile cannot be

read-only");

 }

 // Else write data to the log and return.

 }

}

 When an argument to a method causes an exception. In this case, the original exception should be

caught and an ArgumentException instance should be created. The original exception should be passed to

the constructor of the ArgumentException as the InnerException parameter:

Visual APL

public static int GetValueFromArray(array, index)

{

 try

 {

 return array[index];

 }

 catch (IndexOutOfRangeException ex)

Page 232

 {

 argEx = new ArgumentException("Index is out of range", "index", ex);

 throw argEx;

 }

}

Exceptions contain a property called StackTrace -- this string contains the name of the methods on the

current call stack, along with the file name and line number where the exception was thrown for each method.

A StackTrace object is created automatically by the CLR from the point of the throw statement, so

exceptions must be thrown from the point where the stack trace should begin.

All exceptions contain a property called Message -- this string should be set to explain the reason for the

exception. Note that security sensitive information should not be put in the message text. In addition to

Message, ArgumentException contains a property called ParamName that should be set to the name of

the argument that caused the exception to be thrown. In the case of a property setter, ParamName should

be set to value.

Public and protected methods should throw exceptions whenever they cannot complete their intended

function. The exception class thrown should be the most specific exception available that fits the error

conditions. These exceptions should be documented as part of the class functionality, and derived classes or

updates to the original class should retain the same behavior for backwards compatibility.

Exceptions should not be used to alter the flow of a program as part of normal execution--they should only be

used to report and handle error conditions. Exceptions should not be returned as a return value or parameter

instead of being thrown. Programmers should not throw System.Exception, System.SystemException,

NullReferenceException or IndexOutOfRangeException intentionally.

Defining Exception Classes

Programs can throw any of the predefined exception classes in the System namespace (except where

previously noted), or create their own exception classes by deriving from ApplicationException. The derived

classes should define at least four constructors -- one default constructor, one that sets the message

property, and one that sets both the Message and InnerException properties. The fourth constructor is

used to serialize the exception -- new exception classes should be serializable. For example:

Visual APL

public class InvalidDepartmentException : System.ApplicationException
{
 public InvalidDepartmentException() {}
 public InvalidDepartmentException(string message) {}
 public InvalidDepartmentException(string message, System.Exception inner) {}

 // Constructor needed for serialization
 // when exception propagates from a remoting server to the client.
 protected InvalidDepartmentException(System.Runtime.Serialization.SerializationInfo info,
 System.Runtime.Serialization.StreamingContext context) {}
}
New properties should only be added to the exception class when the data they provide is useful to resolving

the exception. If new properties are added to the derived exception class, ToString() should be

overridden to return the added information.

Page 233

http://msdn2.microsoft.com/en-us/library/ms173163.aspx

Page 234

Visual APL Programming Guide

Creating Custom Attributes (Visual APL Programming Guide)
You can create your own custom attributes by defining an attribute class, a class that derives directly or

indirectly from Attribute, which makes identifying attribute definitions in metadata fast and easy. Suppose you

want to tag classes and structs with the name of the programmer who wrote the class or struct. You might

define a custom Author attribute class:

Visual APL

[AttributeUsage(System.AttributeTargets.Class)]

public class Author : System.Attribute

{

 private name;

 public double version;

 public Author(string name)

 {

 this.name = name;

 this.version = 1.0;

 }

}

The class name is the attribute's name, Author. It is derived from System.Attribute, so it is a custom

attribute class. The constructor's parameters are the custom attribute's positional parameters, in this case,

name, and any public read-write fields or properties are named parameters, in this case, version is the

only named parameter. Note the use of the AttributeUsage attribute to make the Author attribute valid

only on class and struct declarations.

You could use this new attribute as follows:

Visual APL

[Author("H. Ackerman", version = 1.1)]

class SampleClass

{

 // H. Ackerman's code goes here...

}

AttributeUsage has a named parameter, AllowMultiple, with which you can make a custom attribute

single-use or multiuse.

Visual APL

[AttributeUsage(System.AttributeTargets.Class | AllowMultiple = true) //

multiuse attribute

]

public class Author : System.Attribute

Visual APL

[Author("H. Ackerman", version = 1.1)]

[Author("M. Knott", version = 1.2)]

class SampleClass

{

 // H. Ackerman's code goes here...

 // M. Knott's code goes here...

}

Page 235

Page 236

Visual APL Programming Guide

Compiler-Generated Exceptions (Visual APL Programming Guide)

Some exceptions are thrown automatically by the .NET Framework's common language runtime (CLR) as a

result of basic operations that fail. These exceptions and their error conditions are listed below.

Exception Description

ArithmeticException A base class for exceptions that occur during arithmetic operations, such
as DivideByZeroException and OverflowException.

ArrayTypeMismatchException Thrown when an array cannot store a given element because the actual
type of the element is incompatible with the actual type of the array.

DivideByZeroException Thrown when an attempt is made to divide an integral value by zero.
IndexOutOfRangeException Thrown when an attempt is made to index an array when the index is

less than zero or outside the bounds of the array.
InvalidCastException Thrown when an explicit conversion from a base type to an interface or

to a derived type fails at runtime.
NullReferenceException Thrown when you attempt to reference an object whose value is null.
OutOfMemoryException Thrown when an attempt to allocate memory using the new operator

fails. This indicates that the memory available to the Common Language
Runtime has been exhausted.

OverflowException Thrown when an arithmetic operation in a checked context overflows.
StackOverflowException Thrown when the execution stack is exhausted by having too many

pending method calls; usually indicates a very deep or infinite recursion.
TypeInitializationException Thrown when a static constructor throws an exception and no

compatible catch clause exists to catch it.

Page 237

Visual APL Programming Guide

How to: Handle an Exception Using try/catch (Visual APL
Programming Guide)
The purpose of a try-catch block is to catch and handle an exception generated by working code. Some

exceptions can be handled in a catch block and the problem solved without the exception being re-thrown;

however, more often the only thing you can do is make sure the appropriate exception is thrown.

In this example, IndexOutOfRangeException is not the most appropriate exception:

ArgumentOutOfRangeException makes more sense for the method because the error is caused by the index
 argument passed in by the caller.

Visual APL

function GetInt(array, index)

 {

 try

 {

 return array[index];

 }

 catch (IndexOutOfRangeException e) // CS0168

 {

 print e.Message;

 //set IndexOutOfRangeException to the new exception's

InnerException

 throw new ArgumentOutOfRangeException("index parameter is out of

range.", e);

 }

 }

Comments

The code that results in an exception is enclosed in the try block. A catch statement is added immediately

after to handle IndexOutOfRangeException, if it occurs. The catch block handles the

IndexOutOfRangeException and throws the more appropriate ArgumentOutOfRangeException
exception instead. In order to provide the caller with as much information as possible, consider specifying the

original exception as the InnerException of the new exception. Because the InnerException property is

readonly, you must assign it in the constructor of the new exception.

Page 238

Visual APL Programming Guide

Using Strings (Visual APL Programming Guide)
A Visual APL string is an array of characters declared using the string keyword, and is the native .Net string

object. A string literal is declared using quotation marks, as shown in the following example:

Visual APL

s = "Hello, World!"

You can extract substrings, and concatenate strings, like this:

Visual APL

s1 = "orange";

s2 = "red";

s1 += s2;

print s1 // outputs "orangered"

s1 = s1.Substring(2, 5);

print s1 // outputs "anger"

String objects are immutable, meaning that they cannot be changed once they have been created. Methods

that act on strings actually return new string objects. In the previous example, when the contents of s1 and

s2 are concatenated to form a single string, the two strings containing "orange" and "red" are both

unmodified. The += operator creates a new string that contains the combined contents. The result is that s1
now refers to a different string altogether. A string containing just "orange" still exists, but is no longer

referenced when s1 is concatenated.

Note

Use caution when creating references to strings. If you create a reference to a string, and then "modify" the string, the
reference will continue to point to the original object, not the new object that was created when the string was
modified. The following code illustrates the danger:
Visual APL

s1 = "Hello";

s2 = s1;

s1 += " and goodbye.";

print s2 //outputs "Hello"

Because modifications to strings involve the creation of new string objects, for performance reasons, large

amounts of concatenation or other involved string manipulation should be performed with the StringBuilder

class, like this:

Visual APL

System.Text.StringBuilder sb = new System.Text.StringBuilder();

sb.Append("one ");

sb.Append("two ");

sb.Append("three");

str = sb.ToString();

The StringBuilder class is discussed further in the "Using Stringbuilder" section.

Working with Strings

Escape Characters

Escape characters such as "\n" (new line) and "\t" (tab) can be included in strings. The line:

Visual APL

hello = "Hello\nWorld!";

Page 239

is the same as:

Hello

World!

If you want to include a backward slash, it must be preceded with another backward slash. The following

string:

Visual APL

filePath = "\\\\My Documents\\";

is actually the same as:

\\My Documents\

The @ Symbol

The @ symbol tells the string constructor to ignore escape characters and line breaks. The following two

strings are therefore identical:

Visual APL

p1 = "\\\\My Documents\\My Files\\";

p2 = @"\\My Documents\My Files\";

ToString()

Like all objects derived from Object, strings provide the ToString method, which converts a value to a string.

This method can be used to convert numeric values into strings, like this:

Visual APL

year = 1999;

msg = "Eve was born in " + year.ToString();

print msg // outputs "Eve was born in 1999"

Accessing Individual Characters

Individual characters contained in a string can be accessed using methods such as SubString(), Replace(),

Split() and Trim().

Visual APL

s3 = "Visual Visual APL Is Cool";

print s3.Substring(7, 5)) // outputs "Visual APL"

print s3.Replace("Cool", "Marvelous")) // outputs "Visual Basic Express"

It is also possible to copy the characters into a character array, like this:

Visual APL

s4 = "Hello, World";

arr = s4.ToCharArray(0, s4.Length);

foreach (c in arr)

{

 print c // outputs "Hello, World"

}

Individual characters from a string can be accessed with an index, like this:

Visual APL

s5 = "Printing backwards";

for (i = 0; i < s5.Length; i++)

Page 240

{

 print s5[(s5.Length - i) - 1]; // outputs "sdrawkcab gnitnirP"

}

Changing Case

To change the letters in a string to upper or lower case, use ToUpper() or ToLower(), like this:

Visual APL

string s6 = "Battle of Hastings, 1066";

print s6.ToUpper() // outputs "BATTLE OF HASTINGS 1066"

print s6.ToLower() // outputs "battle of hastings 1066"

Comparisons

The simplest way to compare two strings is to use the == and != operators, which perform a case-sensitive

comparison.

Visual APL

color1 = "red";

color2 = "green";

color3 = "red";

if (color1 == color3)

{

 print "Equal";

}

if (color1 != color2)

{

 print "Not equal";

}

String objects also have a CompareTo() method that returns an integer value based on whether one string

is less-than (<)or greater-than (>) another. When comparing strings, the Unicode value is used, and lower

case has a smaller value than upper case.

Visual APL

s7 = "ABC";

s8 = "abc";

if (s7.CompareTo(s8) > 0)

{

 print "Greater-than";

}

else

{

 print "Less-than";

}

To search for a string inside another string, use IndexOf(). IndexOf() returns -1 if the search string is not

found; otherwise, it returns the zero-based index of the first location at which it occurs.

Visual APL

s9 = "Battle of Hastings, 1066";

print s9.IndexOf("Hastings"); // outputs 10

print s9.IndexOf("1967"); // outputs -1

Page 241

Splitting a String into Substrings

Splitting a string into substringsâ€”such as splitting a sentence into individual wordsâ€”is a common

programming task. The Split() method takes a char array of delimiters, for example, a space character, and

returns an array of substrings. You can access this array with foreach, like this:

Visual APL

delimit = ' ' ;

string s10 = "The cat sat on the mat.";

foreach (substr in s10.Split(delimit))

{

 print substr;

}

This code outputs each word on a separate line, like this:

The

cat

sat

on

the

mat.

Null Strings and Empty Strings

An empty string is an instance of a System.String object that contains zero characters. Empty strings are

used quite commonly in various programming scenarios to represent a blank text field. You can call methods

on empty strings because they are valid System.String objects. Empty strings are initialized like this:

string s = "";

By contrast, a null string does not refer to an instance of a System.String object and any attempt to call a

method on a null string results in a NullReferenceException. However, you can use null strings in

concatenation and comparison operations with other strings. The following examples illustrate some cases in

which a reference to a null string does and does not cause an exception to be thrown:

str = "hello";

nullStr = null;

emptyStr = "";

tempStr = str + nullStr; // tempStr = "hello"

b = (emptyStr == nullStr);// b = false;

emptyStr + nullStr = ""; // creates a new empty string

i = nullStr.Length; // throws NullReferenceException

Using StringBuilder

The StringBuilder class creates a string buffer that offers better performance if your program performs a lot

of string manipulation. The StringBuilder string also allows you to reassign individual characters, something

the built-in string data type does not support. This code, for example, changes the content of a string without

creating a new string:

Visual APL

sb = new System.Text.StringBuilder("Rat: the ideal pet");

sb[0] = 'C';

Page 242

print sb.ToString();

In this example, a StringBuilder object is used to create a string from a set of numeric types:

Visual APL

class TestStringBuilder

{

 public static void test()

 {

 using System

 sb = new System.Text.StringBuilder();

 // Create a string composed of numbers 0 - 9

 for (i = 0; i < 10; i++)

 {

 sb.Append(i.ToString());

 }

 print sb; // displays 0123456789

 // Copy one character of the string (not possible with a

System.String)

 sb[0] = sb[9];

 print sb; // displays 9123456789

 }

}

Page 243

Visual APL Programming Guide

How to: Parse Strings Using the Split Method (Visual APL
Programming Guide)
The following code example demonstrates how a string can be parsed using the System.String.Split method.

This method works by returning an array of strings, where each element is a word. As input, Split takes an

array of chars that indicate which characters are to be used as delimiters. In this example, spaces, commas,

periods, colons, and tabs are used. An array containing these delimiters is passed to Split, and each word in

the sentence is displayed separately using the resulting array of strings.

Example

Visual APL

function fn() {

 delimiterChars = ' ' ',' '.' ':' '\t'

 text = "one\ttwo three:four,five six seven"

 print String.Format("Original text: '{0}'", text)

 words = text.Split(delimiterChars, text.Length)

 print String.Format("{0} words in text:", words.Length)

 foreach (s in words) {

 print s

 }

}

Output

Visual APL

Original text: 'one two three:four,five six seven' 7 words in text: one two

three four five six seven

Page 244

Visual APL Programming Guide

How to: Join Multiple Strings (Visual APL Programming Guide)
There are two ways to join multiple strings: using the + operator that the String class overloads, and using

the StringBuilder class. The + operator is easy to use and makes for intuitive code, but it works in series; a

new string is created for each use of the operator, so chaining multiple operators together is inefficient. For

example:

Visual APL

two = "two";

str = "one " + two + " three";

Although four strings appear in the code, the three strings being joined and the final string containing all

three, five strings are created in total because the first two strings are joined first, creating a string containing

"one two." The third is appended separately, forming the final string stored in str.

Alternatively, the StringBuilder class can be used to add each string to an object that then creates the final

string in one step. This strategy is demonstrated in the following example.

Example

The following code uses the Append method of the StringBuilder class to join three strings without the

chaining effect of the + operator.

Visual APL

 function fn()

 {

 two = "two";

 sb = new System.Text.StringBuilder();

 sb.Append("one ");

 sb.Append(two);

 sb.Append(" three");

 print sb.ToString();

 str = sb.ToString();

 print str;

 }

Page 245

Visual APL Programming Guide

How to: Search Strings Using Regular Expressions (Visual APL
Programming Guide)
The System.Text.RegularExpressions.Regex class can be used to search strings. These searches can range in

complexity from very simple to making full use of regular expressions. The following are two examples of

string searching using the Regex class. For more information, see .NET Framework Regular Expressions.

Example

The following code is a console application that performs a simple case insensitive search of the strings in an

array. The static method

System.Text.RegularExpressions.Regex.IsMatch(System.String,System.String,System.Text.RegularExpressio

ns.RegexOptions) performs the search given the string to search and a string containing the search pattern.

In this case, a third argument is used to indicate that case should be ignored. For more information, see

System.Text.RegularExpressions.RegexOptions.

Visual APL

 function fn()

 {

 sentences = (

 "cow over the moon"

 "Betsy the Cow"

 "cowering in the corner"

 "no match here"

);

 sPattern = "cow";

 foreach (s in sentences)

 {

 print String.Format("{0,24}", s);

 if (System.Text.RegularExpressions.Regex.IsMatch(s, sPattern,

System.Text.RegularExpressions.RegexOptions.IgnoreCase))

 {

 print String.Format(" (match for '{0}' found)", sPattern);

 }

 else

 {

 print String.Format();

 }

 }

 }

Output

 cow over the moon (match for 'cow' found)

 Betsy the Cow (match for 'cow' found)

 Betsy the Cow (match for 'cow' found)

 cowering in the corner (match for 'cow' found)

 no match here

The following code is a console application that uses regular expressions to validate the format of each string

in an array. The validation requires that each string take the form of a telephone number in which three

Page 246

http://msdn2.microsoft.com/en-us/library/ktzf2d23.aspx
http://msdn2.microsoft.com/en-us/library/ktzf2d23.aspx
http://msdn2.microsoft.com/en-us/library/system.text.regularexpressions.regexoptions.aspx

groups of digits are separated by dashes, the first two groups contain three digits, and the third group

contains four digits. This is accomplished with the regular expression ^\\d{3}-\\d{3}-\\d{4}$. For more

information, see Regular Expression Language Elements.

Visual APL

 function fn()

 {

 numbers = (

 "123-456-7890"

 "444-234-22450"

 "690-203-6578"

 "146-893-232"

 "146-839-2322"

 "4007-295-1111"

 "407-295-1111"

 "407-2-5555"

);

 string sPattern = "^\\d{3}-\\d{3}-\\d{4}$";

 foreach (s in numbers)

 {

 res = String.Format("{0,14}", s);

 if (System.Text.RegularExpressions.Regex.IsMatch(s, sPattern))

 {

 print res+String.Format(" - valid");

 }

 else

 {

 print res+String.Format(" - invalid");

 }

 }

 }

Output

 123-456-7890 - valid

 444-234-22450 - invalid

 690-203-6578 - valid

 146-893-232 - invalid

 146-839-2322 - valid

 4007-295-1111 - invalid

 407-295-1111 - valid

 407-2-5555 - invalid

Page 247

http://msdn2.microsoft.com/en-us/library/az24scfc.aspx

Visual APL Programming Guide

How to: Search Strings Using String Methods (Visual APL
Programming Guide)
The string type, which is an alias for the System.String class, provides a number of useful methods for

searching the contents of a string. The following example uses the IndexOf, LastIndexOf, StartsWith, and

EndsWith methods.

Example

Visual APL

 function fn()

 {

 str = "A silly sentence used for silly purposes.";

 print String.Format("'{0}'",str);

 test1 = str.StartsWith("a silly");

 print String.Format("starts with 'a silly'? {0}", test1);

 test2 = str.StartsWith("a silly",

System.StringComparison.OrdinalIgnoreCase);

 print String.Format("starts with 'a silly'? {0} (ignoring case)",

test2);

 test3 = str.EndsWith(".");

 print String.Format("ends with '.'? {0}", test3);

 first = str.IndexOf("silly");

 last = str.LastIndexOf("silly");

 str2 = str.Substring(first, last - first);

 print String.Format("between two 'silly' words: '{0}'", str2);

 }

Output

'A silly sentence used for silly purposes.'

starts with 'a silly'? False

starts with 'a silly'? True (ignore case)

ends with '.'? True

between two 'silly' words: 'silly sentence used for '

Page 248

Visual APL Programming Guide

Collection Classes (Visual APL Programming Guide)

The .NET Framework provides specialized classes for data storage and retrieval. These classes provide

support for stacks, queues, lists, and hash tables. Most collection classes implement the same interfaces, and

these interfaces may be inherited to create new collection classes that fit more specialized data storage

needs.

Visual APL

list = ArrayList();

list.Add(10);

list.Add(20);

Collection Classes Overview

Collection C lasses have the following properties

 Collection classes are defined as part of the System.Collections or System.Collections.Generic

namespace.

 Most collection classes derive from the interfaces ICollection, IComparer, IEnumerable, IList,

IDictionary, and IDictionaryEnumerator and their generic equivalents.

Page 249

Native File Access

Native file access is provided through a set of system functions. These provide the ability to create, open,

close, remove, resize, and add and retrieve serializable data to/from native files on the machines hard disk.

The File, Path, Directory, etc classes available in the System.IO assembly provides similar functionality, but

with far greater detailed control.

To use the Native File System in your application, you will need to add a reference to the Visual APL

Share/Native File System assembly. Here is an example of "referencing" and "using" the assembly by its

strong name:

refbyname APLNext.APL.LegacyOps

using APLNext.Legacy.NativeFileSystem

Page 250

⎕ nappend

Appends data to a native file which is associated with the tie number. Any serializable object can be

appended to a file using this system function.

 "how are you" ⎕ nappend ¯1

Page 251

⎕ ncreate

Creates a native file in the specified directory or in the current directory, if no directory is given. Tie

numbers for referencing native files are negative to avoid a conflict with the positive tie numbers used by the

component file system.

 "c:\\mytest\\test.nf" ⎕ ncreate ¯1
¯1
 "test1.nf" ⎕ ncreate ¯2
¯2
 ⎕ nnums
¯1 ¯2
 ⎕ nnames
"c:\\mytest\\test.nf" "c:\\mydefault\\test1.nf"

Note

The double \ as the \ is used as a delimiter in strings. To avoid having to double the \ you can use @ at
the beginning of a string.

a = @"c:\mytest\test.nf"
Which will place the raw string in the variable "a".

You can also create a file and let the system assign the tie number.

For instance:

 ⎕ ncreate "c:\\mytest\\test2.nf"
¯3

The system will also assign the next available tie number if you specify a tie number of 0.

For instance:

 "c:\\mytest\\test.nf" ⎕ ncreate 0
¯3

Page 252

⎕ nerase

This will delete the specified native file permanently.

 "c:\\mytest\\test2.nf" ⎕ nerase ¯3

 ⎕ nerase "c:\\mytest\\test2.nf"

Page 253

⎕ nnames

Returns a string array of native file names which are currently tied.

Page 254

⎕ nnums

Returns an integer array of tie numbers associated with native files which are tied.

Page 255

⎕nread

Reads data from a native file which is tied and associated with a given tie number.

 a = ⎕ nread tn, convert, numberOfBytes, beginOffSet

The standard conversion values are:

Code Description

11: boolean (true/false, not bit)

81: bytes

82: chars (compatible with 82 in existing system)

83: string (compatible with 82 in existing system)

163: short (Int16, 16 bit integer)

164: ushort (UInt16, unsigned short)

323: int (Int32, 32 bit integer, default)

324: uint (UInt32, unsigned int)

325: float (Single, 32 bit real)

643: long (Int64, 64 bit integer)

644: ulong (UInt64, unsigned long)

645: double (Double, 64 bit real, default)

1285: Decimal (128 bit real)

807: object (serialized object)

Example:

 a = ⎕ nread ¯2 82 10 0

Reads back 10 characters.

convert can also be a TypeCode:

 a = ⎕ nread ¯2 TypeCode.Char 10 0
convert can also be an intrinsic Type

 a = ⎕ nread ¯2 Char 10 0
For reading matrices and arrays of heterogeneous data or any serialized object, use 807:

 a = ⎕ nread ¯2 807 10 0

Note

Page 256

⎕ nsize tn returns a long, which may not be supported in your operator set. The default operator set does

not include the long type. This can cause an error when catenating. So use spaces instead of commas, or

cast the result to integer, as example:

 a = ⎕ nread ¯2 82 (⎕ nsize ¯2) 0
 or
 a = ⎕ nread ¯2,82,((int) ⎕ nsize ¯2), 0

Page 257

⎕ nrename

Rename a native file currently tied and associated with a tie number.

 new_filename ⎕ nrename tn

Where new_filename is the new filename and tn is the existing tie number.

Page 258

⎕ nreplace

Replace existing data in a native file, beginning at the location given and continuing until all of the provided

data is written.

 100.1 ⎕ nreplace ¯3,10
 10L 10 ⎕ nreplace ¯3,10
 10.1 "test" 10 ⎕ nreplace ¯3,10
 (3 3⍴ ⍳ 9) ⎕ nreplace ¯3,10

Note that a nested array or matrix is serialized and written to the file. To read serialized data back from the

file use the 807 code.

Page 259

⎕ nresize

Resizes the native file associated with the tie number to a new size in bytes. The new size can be 0, smaller,

larger or the same size as the existing size.

 0 ⎕ nresize ¯2
 10000 ⎕ nresize ¯2
The resize does not change the data, but making the file smaller will result in the loss of data that existed

beyond the new file size.

nulls are used to pad the file when a resize makes the file larger ⎕ av[⎕ io]

Page 260

⎕ nsize

Returns a long which represents the size of the file.

 A = ⎕ nsize ¯3

If you want the size to be an Int32 use:

 A = (int)⎕ nsize ¯3

Page 261

⎕ nuntie

Unties the native file associated with the tie number.

 ⎕ nuntie ¯3

Page 262

⎕ ntie

Ties a native file in the specified directory or in the current directory, if no directory is given. Tie numbers for

referencing native files are negative to avoid a conflict with the positive tie numbers used by the component

file system.

 "c:\\mytest\\test.nf" ⎕ ntie ¯1
¯1
 "test1.nf" ⎕ ntie ¯2
¯2
 ⎕ nnums
¯1 ¯2
 ⎕ nnames
"c:\\mytest\\test.nf" "c:\\mydefault\\test1.nf"

Note

The double \ as the \ is used as a delimiter in strings. To avoid having to double the \ you can use @ at
the beginning of a string.

a = @"c:\mytest\test.nf"
Which will place the raw string in the variable "a".

You can also tie a file and let the system assign the tie number.

For instance:

 ⎕ ntie "c:\\mytest\\test2.nf"
¯3

The system will also assign the next available tie number if you specify a tie number of 0.

For instance:

 "c:\\mytest\\test.nf" ⎕ ntie 0
¯3

Access Attributes

You can specify what permissions to tie the target file with by supplying a second element to the right

argument.

This second argument is the sum of the permissions to request and allow for the file tie operation.

If the access attributes element is not specified, then the default value is 2 (Read/Write access, Exclusive tie)

Here is the list of the valid tie permission request values. The sum of the requested access attributes number

can contain only one of these values:

Code Description

0: Request read access

1: Request write access

2: Request read and write access.

Page 263

Here is the list of values which control what permissions are granted to future tie requests for the file being

tied. The sum of the requested access attributes number can contain only one of these values:

Code Description

0: Compatibility Mode

16: Exclusive Tie, no other ties can be made to the file.

32: Read access is granted to future ties.

48: Write access is granted to future ties.

64: Read and Write access is granted to future ties.

Here is an example of tieing files with different Request and Granted permissions:

 // tie with read access, and compatibility mode
 "c:\\mytest\\test.nf" ⎕ ntie ¯1 0

 // tie with read/write access, and grant read/write
 "c:\\mytest\\test1.nf" ⎕ ntie ¯1 (2+64)

 // tie with read/write access, and grant no permissions
 "c:\\mytest\\test2.nf" ⎕ ntie ¯1 (2+16)

Page 264

⎕ ncopy

Copy the contents of the specified source file to the specified target path.

 ⎕ ncopy source_filepath target_filepath

Where source_filename is source file from which to copy data, and target_filename is the target path of the

copy operation.

Page 265

⎕ nexists

Returns a value of 1 or 0 indicating if the specified file name exists. Specifying a directory name without a

file returns 0 (false).

 A = @'c:\Windows\0.log'
 ⎕ nexists A
1
 B = @'c:\Windows\'
 ⎕ nexists B
0

Page 266

⎕ nstream

Returns the underlying .Net FileStream object for the associated tie number. This allows the use of all

features provided by the FileStream object, while still maintaining compatibility with the Native File system.

 fs = ⎕ nstream ¯3

 fs.CanRead
true
 fs.CanWrite
true

Page 267

Session Commands (Visual APL)

The C ielo Explorer includes a wide range of commands for managing the various aspects of the session.

These aspects include the listing of session contents, script management, and editing of variables.

Page 268

)cd

Changes the current context of the session into or out of the specified object.

Syntax:

)cd obj

obj: The name of a class, variable, or path control string.

Remarks:

This session command provides the ability to explore classes. It is possible to explore either an instance of a

class or the class itself.

When this session command is used without an argument it displays the current class being explored, for

instance when at the top level, in the session, this is displayed

)cd

session

The right argument to the)cd session command is either a classname, a variable or a relative path.

To navigate to a particular class:

)cd classname

To navigate to an instance of a class:

 a = classname()

)cd a

To navigate to a relative location:

)cd ../../a/b/c

Or to navigate up one level:

)cd ..

To return to the session or root:

Page 269

)cd /

Examples and narrative:

Once you have navigated into a class, you will see all of the methods, properties, events and fields in the

class, regardless of member attributes. This means you can review members which are public, internal,

private, etc.

As an example, consider an integer:

 a = 10
)cd a
Loaded instance of: System.Int32

Now if we look at the)fns in this instance of the ValueType Int32 we see:

)fns
_dataRepresentation CompareTo Equals Finalize
 GetHashCode
GetType GetTypeCode MemberwiseClone Parse
 ToString
TryParse

The)fns includes methods, functions and the methods associated with properties.

Now if we look at)vars we see:

)vars

m_value MaxValue MinValue

We can navigate back up to the session by entering)cd ..

)cd ..

Loaded instance of: APLNext.APL.Objects.module

If we try to navigate up again:

)cd ..

Current instance is session

We see that we are already at the session level, and cannot navigate further up.

While we are back at the session level, let’s consider what is visible on the Int32 we have placed in the

Page 270

variable a.

If we look at intellisense on an instance of an Int32, we see a small subset of those members we saw when

we navigated into the instance of Int32 on the variable a.

Specifically, if we navigate back into the a variable:

)cd a

Loaded instance of: System.Int32

If we then check the variable m_value, which is not normally available to investigate, we find:

 m_value

10

So we see that the Int32 is an object, a ValueType in particular, and that the integer value is stored on the

field m_value.

If we want to know where we are in our navigation, we can always do)cd without an argument:

)cd

session/a

No matter how deep we have navigated we can always move back to the session by entering:

)cd /

Current instance is session

To review, everything is an object, and we can navigate through those objects using)cd, in this example lets

look at an Int32 and navigate down and up through this object.

 a = 10

)cd a

Loaded instance of: System.Int32

)vars

m_value MaxValue MinValue

 m_value

10

)cd MaxValue

Loaded instance of: System.Int32

)vars

m_value MaxValue MinValue

 m_value

Page 271

2147483647

)cd

session/a/MaxValue

)cd ..

Loaded instance of: System.Int32

)cd

session/a

)cd ..

Loaded instance of: APLNext.APL.Objects.module

)cd

session

Page 272

)classes

Shows the current list of classes which have been defined in the session.

Syntax:

)classes

Remarks:

The)classes command shows the list of classes which have been created in the session.

C lasses are most commonly created in the session by running a script file.

Example:

Here is an example script which contains the definition of two classes:

// Script: sc1

public class math {
 function add(a, b) {
 return a + b
 }

 function subtract(a, b) {
 return a - b
 }
}

public class useMath {
 function fn(a, b) {
 m = math()
 return m.add(a, b)
 }
}

Now lets run the script to create the classes in the session:

// display the contents of the)classes list
)classes

// the list is empty

// load and run the script 'sc1'
)load sc1

// display)classes again
)classes

math usemath
// the two classes now exist in the session.

// run the useMath class:
um = useMath()
um.fn(10, 20)

30

Page 273

Page 274

)clear

Clears all variables, functions, etc, from the active C ielo Explorer.

Syntax:

)clear

Remarks:

When the clear session command is run in the C ielo Explorer, the .Net AppDomain which currently represents

the C ielo Explorer is shutdown, thus removing from memory any variables, functions, UDF's, file ties, etc,

from memory.

If an assembly is referenced into the session by the use of the refbyname or refbyfile directives, then the DLL

which that reference represents is tied in memory by the session. This behavior is required by the .Net

security model.

When the C ielo Explorer AppDomain is unloaded by the clear command, any assembly references are also

removed from memory, meaning that any tied assemblies can again be modified, recreated, and moved on

the disc.

Example:

a = 10 20 30
a

10 20 30

)clear

a

The variable 'a' does not exist

Page 275

)edit

Opens a script file for editing in the current Session Project of the active Solution.

Syntax:

)edit script

script: The name of the script file to create or open.

Remarks:

When the edit command is run in the C ielo Explorer session, a script file of the specified name is opened for

editing from the current Session Project in Visual Studio, and given the active window focus.

If the script file does not exist in the current Session Project, then a new script file is created in the Session

Project by the supplied name, and opened for editing.

If the script file does exist in the current Session Project, then it is opened and focused for editing.

If the script file is already open in Visual Studio, then that script file is brought to the forefront and receives

the window focus.

Saving a script

Once you have edited the contents of a script file, you can save and execute the script to the C ielo Explorer

session by pressing the key sequence Ctrl+E+E. Once the script is saved and executed to the C ielo

Explorer, a message is printed to the session stating that the script was modified and imported.

Example:

// make a variable in the session
a = 10 20 30
a

10 20 30

// edit a new script
)edit sc

// add this line to the script
a = a + 100

// save the script by pressing Ctrl+E+E.

// this line is printed to the session
Script 'sc' updated

// now again display the contents of 'a' in the session.
a

110 120 130

Page 276

Page 277

)fns

Shows the current list of functions which have been defined in the session.

Syntax:

)fns

Remarks:

The)fns command shows the list of functions which have been created in the session.

Here are a few examples of creating functions in the session:

 Entering its declaration directly in the session:

// display the contents of the)fns list
)fns

// the list is empty

// define a new function called 'add'
function add(a, b) { return a + b }

// display)fns again
)fns

add
// the function 'add' is now in the list.

 Using ⎕def to declare a function from a text string:

// display the contents of the)fns list
)fns

// the list is empty

// define a function from a string
⎕ def "function add(a, b) { return a + b }"

true

// display)fns again
)fns

add
// the function 'add' is now in the list.

 Execute a script which contains the definition of one or more functions. Here is an example script

which contains the definition of two functions:

// Script: sc1

function add(a, b) {
 return a + b
}

Page 278

function subtract(a, b) {
 return a - b
}

Now lets run the script to create the functions in the session:

// display the contents of the)fns list
)fns

// the list is empty

// load and run the script 'sc1'
)load sc1

// display)fns again
)fns

add subtract
// the functions are now in the list.

These are only a few simple examples of creating functions in the session. Any valid expression or statement

which creates a function can be run is the session, and once that command is run the resultant function will be

present in the)fns list.

Created Function Time Stamping

When functions are dynamically created in the session, they receive an associated DateTime object which

represents the moment that the function was created in the session. There are several system quad

functions which allow the retrieval and modification of this time stamp.

Example:

// check the contents of the)fns list
)fns

mult sub
// there are two functions currently defined

// define a new function called 'add'
function add(a, b) { return a + b }

// check the)fns list
)fns

add mult sub
// the function 'add' is now in the list.

// try running add:
10 add 20

30

Page 279

)load

Loads and executes a script from the current Session Project.

Syntax:

)load script

script: The name of the script file to load.

Remarks:

The)load command looks in the current Session Project for a script named the specified name. If the script

file exists, it is added to the)scripts list in the session, and then the contents of the script are executed in the

session.

This command has the same behavior as pressing Ctrl+E+E in an open script in Visual Studio.

Example:

// check if 'a' exists
a

name 'a' is not defined

// check the contents of the)script list
)scripts

// the)scripts list is empty

// load a script which defines 'a'
)load sc

// check if 'a' exists
a

10 20 30

// check the)scripts list
)scripts

sc
// the script 'sc' is now in the list.

Page 280

)off

Clears all variables, functions, etc, from the active C ielo Explorer. Also closes the current open Solution in

Visual Studio.

Syntax:

)off

Remarks:

The off command has the same effect as the clear command for the contents of the session, and also closes

the currently open Solution in Visual Studio, and all associated projects.

If any open files are currently marked as unsaved in Visual Studio, then the Save File dialog is opened

prompting for user action. This behavior is the built-in functionallity of Visual Studio, meaning that in relation

to the currently open Solution, the off command has the same effect as the "File > C lose Solution" menu

item.

Example:

a = 10 20 30
a

10 20 30

)off

a

The variable 'a' does not exist

Page 281

)run

Executes the contents of a script from the current Session Project.

Syntax:

)run script

script: The name of the script file to run.

Remarks:

The)run command looks in the)scripts list for a script named the specified name. If the script file exists in

the list, the contents of the script are executed in the session.

The)run command is similar to the)load command, except that the specified script must already be listed in

the)scripts list for the command to succeed.

Example:

// check if 'a' exists
a

name 'a' is not defined

// check the contents of the)script list
)scripts

sc
// the 'sc' script is present in the session

// run the script 'sc', which defines 'a'
)run sc

// check if 'a' exists
a

10 20 30

Page 282

)runf

Executes the contents of a script at the specified file path.

Syntax:

)runf scriptPath

scriptPath: The fully qualified file path of the script to run.

Remarks:

The)runf command takes a file path to a script file as its argument. When the)runf command is entered, the

contents of the specified script file are run in the session.

The)runf command is similar to the)run command, except that the argument script file does not need to

exist in the)scripts list.

Example:

// check if 'a' exists
a

name 'a' is not defined

// check the contents of the)script list
)scripts

// the list is empty

// runf the script 'sc', which defines 'a'
)runf c:\sc.apl

// check if 'a' exists
a

10 20 30

Page 283

)scripts

Shows a list of scripts which are currently loaded into the session.

Syntax:

)scripts

Remarks:

Script files can be loaded into the session by the)load,)xload, and)edit commands. Pressing Ctrl+E+E in

an open script file also adds that script to the)scripts list.

Example:

// check the contents of the)script list
)scripts

sc1 sc2 sc3
// there are three scripts currently loaded

// xload a script called 'math'
)xload math

// check the)scripts list
)scripts

sc1 sc2 sc3 math
// the script 'math' is now in the list.

Page 284

)vars

Shows the current list of variables which have been defined in the session.

Syntax:

)vars

Remarks:

The)vars command shows the list of variables which have been created in the session.

Example:

// check the contents of the)vars list
)vars

a b
// there are two variables currently defined

// define a new variable called 'c'
c = 100 200 300

// check the)vars list
)vars

a b c
// the variable 'c' now exists in the session.

Page 285

)xload

Loads a script from the current Session Project.

Syntax:

)xload script

script: The name of the script file to xload.

Remarks:

The)xload command looks in the current Session Project for a script named the specified name. If the script

file exists, it is added to the)scripts list in the session.

This command has a similar behavior to the)load command, except that the contents of the script are not

executed.

Example:

// check the contents of the)script list
)scripts

// the)scripts list is empty

// xload a script called 'sc'
)xload sc

// check the)scripts list
)scripts

sc
// the script 'sc' is now in the list.

Page 286

)xmlout

Exports a variable in XML format into the current Session Project in Visual Studio.

Syntax:

)xmlout var var var...

var: The name of a variable to export.

Remarks:

For each argument variable, the xmlout command creates an XML file in the current Session Project named "

var.xml", where var is the name of the variable being exported.

If an XML file by that name already exists in the current Session Project, then that file is overwritten with the

newly produced XML output.

Only objects which are serializable can be successfully exported to XML.

A variable is considered serializable if any of the following conditions are met:

 It is marked with the .Net Serializable attribute.

 Implements the .Net ISerializable interface.

 Implements the IXMLSerializable interface.

 Has a registered serializer in the C ielo Explorer.

If an object is encountered in a variable being exported with xmlout that does not meet any of the above

serializable criteria, then a comment is placed in the generated XML at the location where the object would

have appeared in the output XML, stating that the element could not be serialized. This behavior ensures that

if you have a variable in the C ielo Explorer which contains mostly serializable data and only a few elements

which cannot be serialized, the elements which are not serialzable will not prevent the serializable elements

from being exported to XML format. Keep in mind that if you save the generated XML back to the C ielo

Explorer by the use of Ctrl+E+E, that those elements which could not be serialized during the generation of

the XML file will contain empty objects in the newly imported variable.

Once the xmlout command has been executed, the active window in Visual Studio is shifted to the newly

created or updated XML file. If more than one variable was exported, the focus is placed on each XML file

view as it is created, ultimately being placed on the XML file of the last variable being exported.

Saving changes to XML variables

Once a variable has been exported as XML, the generated XML can be modified in any way desired, and those

changes can be saved back to the C ielo Explorer.

To save changes made to an XML file in the current Session Project, open that file and press the key

sequence Ctrl+E+E

Once the sequence is pressed, focus is returned to the C ielo Explorer, and a message is printed to the

session showing that an update was made to the variable.

When the changed XML is saved back to the session, the name of the variable into which the data is saved is

taken from the name of the XML file. This means that if an XML file named "a.xml" is saved to the session

using Ctrl+E+E, then the deserialized contents of that file will be saved as the variable "a" in the session.

 This means that you can not only save variables from the session in XML format, but you can also import

entirely new variables from XML format by simply adding them to the Session Project, opening them, and

Page 287

then pressing Ctrl+E+E

Additional Information

The xmlout command uses the XmlCvarSerialzier to perform the XML conversion to and from the current

Session Project.

Example:

a = 10 "test" (⍳5)

)xmlout a

// a file has been created in the current Session Project.

Page 288

Cielo Explorer Menu Reference

The C ielo Explorer includes a toolbar which allows various common session management activities to be

easily performed at the click of a button.

Following is a listing of each button in the C ielo Explorer and their uses:

Toolbar buttons in Cielo Explorer

New

Clears the present session. This unloads the present domain, removing all references to assemblies and

creates a new session domain.

Run Cielo Script

The user is prompted with the file selection dialog box. A script file is selected which is then defined and run

in the current session. Scripts can contain any statement or expression; this includes control structures,

function definitions, classes and simple statements. Scripts are dynamic, and functions, variables or classes

defined in a script replace any dynamic members that exist in the current session with the same names.

For instance, the following script defines the function fn and then calls that function:

// Script: sc

function fn(a) {

 return a

}

fn(“hello”)

When this script is run in the session, the word hello is displayed in the session and the function fn is added to

those available in the session.

Load Cielo File

This loads a Visual APL file which contains a formal assembly definition. The assembly is created and the

resulting dll or exe can be referenced in the session or in the case of an exe, run from the OS.

Import Assembly

This adds a reference to an existing assembly to the session. If there is a namespace in the assembly which

matches the name of the assembly, a using is also done.

Load Session Log

This prompts the user with a file selection dialog box. The user can choose any existing Visual APL log file,

which is then displayed in the session, thus providing the user with all of the commands, definitions, etc which

occurred in a previous session.

Page 289

Save Session Log

This action saves all of the display content in the existing session to the file selected by the user. The user is

prompted with the Save File dialog box.

Print

This prints the display contents of the existing session.

Cut

This removes the selected text from the session display and places it on the clipboard.

Copy

This copies the selected text which is placed on the clipboard.

Paste APL+Win

This pastes APL+Win code into the session explicitly converting from the legacy APL+Win text to APL Unicode.

Page 290

Control Structures (delimited) vtop

Page 291

:IF :ELSE

The tests for the :if and :elseif must evaluate to a single value which can be converted to a Boolean.

:if test
 if statement block
:elseif test1
 elseif statement block
:elseif test2
 elseif statement block
:else
 else statement block
:endif
The logical && and || are supported also.

In the example below the test2 is evaluated only if test returns a true

:if test && test2
 code block
:endif

In the example below the test2 is evaluated only if test returns a false

:if test || test2
 code block
:endif

Page 292

:select :case

The :select control structure provides a mechanism for switching between multiple cases based on Identity

comparison.

:select value
 :case value1
 code block
 :case value2
 code block
 :else
 else code block
:endselect

Page 293

:while

The :continue keyword passes control to the :while test statement.

The :leave keyword branches to the first statement after the :while structure.

The test must return a value which will convert to Boolean

:while test
 statements
:endwhile

The logical && and || also works with the :while structure

In the example below the test2 is evaluated only if test returns a true

:while test && test2
 code block
:endwhile

In the example below the test2 is evaluated only if test returns a false

:while test || test2
 code block
:endwhile

Page 294

:repeat :until

The :continue keyword passes control to the :until test statement.

The :leave keyword branches to the first statement after the :repeat structure.

The test must return a value which will convert to Boolean

The :repeat structure is repeated until the test evaluates to true.

:repeat
 code block
:until test

The logical && and || also works with the :repeat structure

In the example below the test2 is evaluated only if test returns a true

:repeat
 code block
:until test && test2

In the example below the test2 is evaluated only if test returns a false

:repeat
 code block
:until test || test2

Page 295

:for :in

The :for control structure iterates across an iterable expression, placing the iterated values in the control

variables.

:for i :in ⍳ 3
 print i
:endfor
0
1
2
The :continue keyword branches to the top of the for loop and the next value is assigned to the control

variables.

The :leave keyword branches to the first statement after the :for loop.

The assignment of values into the variables follows the rules of variable assignment.

:for a b c :in (1 2 3) (4 5 6)
 print a
 print b
 print b
:endfor

The first time through the :for loop a:1, b:2, c:3 the second time a:4,b:5,c:6

It is also possible to assign based on depth of nested array

function fnf() {
 v = (1 (2 (3 4)) 5) (6 (7 (8 9)) 0)
 :for (a (b (c)) d) :in v
 print c
 :endfor
}
fnf()
3 4
8 9

Page 296

: Label separator, switch case separator and legacy keyword
indicator

Creates a label to which control can branch when used as follows:

function fn(a) {
 → L1
 print a
 L1:
 print “branch”
}

Used to delimit legacy keywords

fuction fn(a) {
 :for i :in ⍳ 10
 print i
 :endfor
}

Used to delimit switch case statement

function fn(a) {
 switch (a) {
 case 10:
 print “something”
 break
 default:
 print “default”
 break
 }
}

Page 297

→ Branch

The example below shows an unconditional branch to a label.

Example:

function fn(a) {
 print "one"
 → L1
 print "two"
 L1:
 print "three"
}

Page 298

:goto :return

:goto provides an unconditional branch to a label

:goto label

:return returns from the function

It is also possible to return data with the :return keyword

:return expression

Using :return with an expression returns a value without having to set the default return variable specified in

the user defined function header.

Page 299

: Label separator, switch case separator and legacy keyword
indicator

Creates a label to which control can branch when used as follows:

function fn(a) {
 → L1
 print a
 L1:
 print “branch”
}

Used to delimit legacy keywords

fuction fn(a) {
 :for i :in ⍳ 10
 print i
 :endfor
}

Used to delimit switch case statement

function fn(a) {
 switch (a) {
 case 10:
 print “something”
 break
 default:
 print “default”
 break
 }
}

Page 300

Number sign

Delimits directives, such as region.

#region code
 function fn(a) {
 print a
 }
#endregion

This creates a collapsible region in Visual Studio.

Page 301

: Label separator, switch case separator and legacy keyword
indicator

Creates a label to which control can branch when used as follows:

function fn(a) {
 → L1
 print a
 L1:
 print “branch”
}

Used to delimit legacy keywords

fuction fn(a) {
 :for i :in ⍳ 10
 print i
 :endfor
}

Used to delimit switch case statement

function fn(a) {
 switch (a) {
 case 10:
 print “something”
 break
 default:
 print “default”
 break
 }
}

Page 302

; Axis Separator

When used inside of an indexer bracket block [] the axis separator identifies the values for each axis.

 a = 1 2 3
 a[1]
2
 a = 3 3⍴ ⍳ 9
 a[1 2;1 2]
4 5
 7 8

It is not required to use the axis separator to index an array, for instance:

 b = (1 2) (1 2)
 a[b]
 4 5
 7 8
 b = 1 2
 a[b]
5

Providing a single value will index the array as though it were a vector.

 a[1]
1

You can select all values in an axis by using null:

 b = (1 2) (1 2) null
 a[b]
 12 13 14
 15 16 17

 21 22 23
 24 25 26
This makes it possible to index an array without having to be concerned about the syntax of the number of

semi colons.

Page 303

; Statement Separator

Separates code expressions or statements on a line.

Example:

 code1 ; code2
The diamond may also be used to delimit statements.

Page 304

_ Underscore

A valid symbol to be used in a variable, method, function, property or other object name. It is also valid as

the first character of a name.

In the session the _ contains the last information that was displayed to the screen or would have displayed

to the screen if in a function.

Example:

 ⍳ 3
1 2 3
 _
1 2 3
This is very useful when reusing information in the session. Instead of having to copy and implement a long

line of code, you can simply include _ on the next line.

Example:

 100+⍳ 10-3+5
100 101
 14+_
114 115

Page 305

¯ High Minus

The high minus can be used to identify negative numbers in a vector or numbers being input.

For instance:

 10 - 5
5

However:

 10 ¯5
10 ¯5
This simplifies numeric input and reduces the need for parenthesis.

Page 306

⍝ Comment

The ⍝ is the single line comment symbol. It can be used in conjunction with / to create a multi line

comment.

Example:

 ƒ fn(a) {
 b = a+1
 /⍝ this is a line
 another comment line
 yet another
 ⍝ /
 print b
 }
 fn(10)
11
The double // also indicates a single comment line.

Page 307

∇ Del

Delimiter used to identify the beginning of a user defined function.

Example:
∇ r← x add y {
 r← x+y
}

Notice that the beginning of the function block is started with a { and the end of the function block is

terminated with a }.

Page 308

∆ Delta

A valid symbol to be used in a variable, method, function, property or other object name. It is also valid as

the first character of a name.

Note that objects that include the ∆ will be difficult if not impossible to be consumed by other languages. This

is included for legacy purposes.

Page 309

⍙ Delta underscore

A valid symbol to be used in a variable, method, function, property or other object name. It is also valid as

the first character of a name.

Note that objects that include the ⍙ will be difficult if not impossible to be consumed by other languages. This

is included for legacy purposes.

Page 310

⋄ Statement Separator

Separates code expressions or statements on a line.

Example:

 code1 ⋄ code2

Page 311

System Function Reference

This page contains a complete listing of all system quad functions currently available in Visual APL from

APLNext.

Basic System Functions, Variables, etc.

System Function Description

⎕DR Data type and conversion

⎕ENLIST Array to vector

⎕EXPAND Array fill

⎕FI Numeric format

⎕FIRST First of an array

⎕FMT Legacy Format

⎕FORMAT New Array Formatter using .Net formatting specifiers

⎕MIX Reduce nesting

⎕PENCLOSE Array to nested vector

⎕REPL Replicate array

⎕SPLIT Increase nesting

⎕SS String search

⎕TYPE Numeric / character

⎕VI Verify numeric

⎕FAVAIL Returns a 1 if the share file system is available

⎕DM Diagnostic message

⎕ERROR Throw error

⎕dmx Extended Diagnostic message

⎕DEF Define function

⎕ERASE Erase functions or variables

⎕EX Erase functions or variables

⎕FX Define function from ⎕CR representation

⎕IDLIST List objects in WS

⎕NC List object types

⎕NL List object names

Page 312

⎕SIZE Get size of object

⎕AT Object attributes

⎕DL Delay execution

⎕AI Accounting information

⎕CT Comparison tolerance

⎕IO Index origin

⎕LIB File directory

⎕LIBD Set library to directory

⎕LIBS List libraries and directories

⎕PP Print precision

⎕RL Random number seed

⎕TS Timestamp

⎕reference Adds a reference to an assembly

⎕using Makes the namespace in a referenced assembly available

⎕AV Atomic vector (character set)

⎕UCS Returns index or Unicode character from index

⎕SYSID APL system ID

⎕SYSVER APL system version

⎕USERID Workstation ID

⎕TCxx Terminal control characters

⎕TC contains a three-element vector of terminal control characters.

⎕TC[1]= ⎕TCBS (backspace)

⎕TC[2]= ⎕TCNL (newline)

⎕TC[3]= ⎕TCLF (linefeed).

Other Terminal Control Constants:

⎕TCBEL Bell character

⎕TCBS Backspace character

⎕TCDEL Delete character

⎕TCESC Escape character

Page 313

⎕TCFF Formfeed character

⎕TCHT Horizontal Tab character

⎕TCLF Linefeed character

⎕TCNL Newline character

⎕TCNUL Null character

State Functions

⎕ea Executes either left or right arguments

⎕monadic Indicates if an APL function was called monadically

⎕dyadic Indicates if an APL function was called dyadically

⎕dbz Divide By Zero

⎕dbzv Divide By Zero Value

⎕nfi NumberFormatInfo used by pattern format and when

displaying to session

Argument Attributes

⎕arglist Indicates argument is to used as list or arguments to

the method

⎕argnames Indicates argument is a matrix of named arguments

and values

Application Shared DataStore (manages datastore created with svglobal keyword)

⎕svd Remove a shared variable from the datastore

⎕svc Check to see if a variable has been assigned since

last assigned or referenced

⎕svs Check to see if a variable is in the datastore

⎕svget Sets an event method on a shared variable which

runs when variable is referenced

⎕svset Sets an event method on a shared variable which

runs when variable is assigned

Windows Interface (legacy) loaded with Windows Interface Assembly

These quads have been deprecated in favor of the Windows Designer in Visual Studio and the new .Net

System.Windows.Forms and related classes.

Page 314

⎕wi Windows Interface Legacy

⎕wself The current or last reference wi object

⎕wres Legacy wi wres

⎕warg Legacy wi warg

⎕wsender The actual object that created an event

⎕wievent The actual event which was raised

⎕wevent The legacy wi event

Loaded with the NativeFileSystem assembly

⎕NAPPEND Add data to file

⎕NCREATE Create file

⎕NERASE Erase file

⎕NNAMES Names of open files

⎕NNUMS Numbers of open files

⎕NREAD Read data

⎕NRENAME Rename file

⎕NREPLACE Replace data in file

⎕NRESIZE Resize file

⎕NSIZE Get file size

⎕NTIE Tie (open) file

⎕NUNTIE Untie file

⎕nexists Deterimines if a file or directory exists

⎕ncopy Copies a file to a new file

⎕nmove Moves the file

⎕nstream Returns he filestream associated with the tie number

Loaded with ShareFileSystem assembly

⎕FAPPEND Append components

⎕FCREATE Create file

⎕FDROP Drops components from the beginning or end of a

Page 315

share file and renumbers the components

⎕FDUP Duplicates a share file

⎕FERASE Erase a share file

⎕FLIB File directory

⎕FNAMES Tied share file names

⎕FNUMS Tied share file numbers

⎕FREAD Read component

⎕FREPLACE Replace component

⎕FSIZE Get file size

⎕FSTIE Tie share file

⎕FTIE Tie share file

⎕FUNTIE Untie share file

⎕fcatenate Catenate a valuetype to a valuetype array stored in a

component

⎕libdrw Determines access to virtual share file directory

⎕libdcws Changes access to virtual share file directory

⎕firead Reads a specified range of valuetypes from a

valuetype array in a component

⎕fireplace Replaces a specified range of valuetypes in a

valuetype array in a component

⎕falloc Allocates contiguous space to a share file component

⎕fcnloc Returns the physical location of a component in a

share file

⎕fstream Returns the filestream associated with the file tie

number or virtual directory

⎕fremove Removes a component from a share file and

renumbers components

Loaded with either the Native File System or Share File System

⎕XLIB Returns the directory or files in a directory

⎕CHDIR Change current directory

⎕MKDIR Create directory

⎕RMDIR Delete directory

Page 316

System Function Reference

This page contains a complete listing of all system quad functions currently available in Visual APL from

APLNext.

Basic System Functions, Variables, etc.

System Function Description

⎕DR Data type and conversion

⎕ENLIST Array to vector

⎕EXPAND Array fill

⎕FI Numeric format

⎕FIRST First of an array

⎕FMT Legacy Format

⎕FORMAT New Array Formatter using .Net formatting specifiers

⎕MIX Reduce nesting

⎕PENCLOSE Array to nested vector

⎕REPL Replicate array

⎕SPLIT Increase nesting

⎕SS String search

⎕TYPE Numeric / character

⎕VI Verify numeric

⎕FAVAIL Returns a 1 if the share file system is available

⎕DM Diagnostic message

⎕ERROR Throw error

⎕dmx Extended Diagnostic message

⎕DEF Define function

⎕ERASE Erase functions or variables

⎕EX Erase functions or variables

⎕FX Define function from ⎕CR representation

⎕IDLIST List objects in WS

⎕NC List object types

⎕NL List object names

Page 317

⎕SIZE Get size of object

⎕AT Object attributes

⎕DL Delay execution

⎕AI Accounting information

⎕CT Comparison tolerance

⎕IO Index origin

⎕LIB File directory

⎕LIBD Set library to directory

⎕LIBS List libraries and directories

⎕PP Print precision

⎕RL Random number seed

⎕TS Timestamp

⎕reference Adds a reference to an assembly

⎕using Makes the namespace in a referenced assembly available

⎕AV Atomic vector (character set)

⎕UCS Returns index or Unicode character from index

⎕SYSID APL system ID

⎕SYSVER APL system version

⎕USERID Workstation ID

⎕TCxx Terminal control characters

⎕TC contains a three-element vector of terminal control characters.

⎕TC[1]= ⎕TCBS (backspace)

⎕TC[2]= ⎕TCNL (newline)

⎕TC[3]= ⎕TCLF (linefeed).

Other Terminal Control Constants:

⎕TCBEL Bell character

⎕TCBS Backspace character

⎕TCDEL Delete character

⎕TCESC Escape character

Page 318

⎕TCFF Formfeed character

⎕TCHT Horizontal Tab character

⎕TCLF Linefeed character

⎕TCNL Newline character

⎕TCNUL Null character

State Functions

⎕ea Executes either left or right arguments

⎕monadic Indicates if an APL function was called monadically

⎕dyadic Indicates if an APL function was called dyadically

⎕dbz Divide By Zero

⎕dbzv Divide By Zero Value

⎕nfi NumberFormatInfo used by pattern format and when

displaying to session

Argument Attributes

⎕arglist Indicates argument is to used as list or arguments to

the method

⎕argnames Indicates argument is a matrix of named arguments

and values

Application Shared DataStore (manages datastore created with svglobal keyword)

⎕svd Remove a shared variable from the datastore

⎕svc Check to see if a variable has been assigned since

last assigned or referenced

⎕svs Check to see if a variable is in the datastore

⎕svget Sets an event method on a shared variable which

runs when variable is referenced

⎕svset Sets an event method on a shared variable which

runs when variable is assigned

Windows Interface (legacy) loaded with Windows Interface Assembly

These quads have been deprecated in favor of the Windows Designer in Visual Studio and the new .Net

System.Windows.Forms and related classes.

Page 319

⎕wi Windows Interface Legacy

⎕wself The current or last reference wi object

⎕wres Legacy wi wres

⎕warg Legacy wi warg

⎕wsender The actual object that created an event

⎕wievent The actual event which was raised

⎕wevent The legacy wi event

Loaded with the NativeFileSystem assembly

⎕NAPPEND Add data to file

⎕NCREATE Create file

⎕NERASE Erase file

⎕NNAMES Names of open files

⎕NNUMS Numbers of open files

⎕NREAD Read data

⎕NRENAME Rename file

⎕NREPLACE Replace data in file

⎕NRESIZE Resize file

⎕NSIZE Get file size

⎕NTIE Tie (open) file

⎕NUNTIE Untie file

⎕nexists Deterimines if a file or directory exists

⎕ncopy Copies a file to a new file

⎕nmove Moves the file

⎕nstream Returns he filestream associated with the tie number

Loaded with ShareFileSystem assembly

⎕FAPPEND Append components

⎕FCREATE Create file

⎕FDROP Drops components from the beginning or end of a

Page 320

share file and renumbers the components

⎕FDUP Duplicates a share file

⎕FERASE Erase a share file

⎕FLIB File directory

⎕FNAMES Tied share file names

⎕FNUMS Tied share file numbers

⎕FREAD Read component

⎕FREPLACE Replace component

⎕FSIZE Get file size

⎕FSTIE Tie share file

⎕FTIE Tie share file

⎕FUNTIE Untie share file

⎕fcatenate Catenate a valuetype to a valuetype array stored in a

component

⎕libdrw Determines access to virtual share file directory

⎕libdcws Changes access to virtual share file directory

⎕firead Reads a specified range of valuetypes from a

valuetype array in a component

⎕fireplace Replaces a specified range of valuetypes in a

valuetype array in a component

⎕falloc Allocates contiguous space to a share file component

⎕fcnloc Returns the physical location of a component in a

share file

⎕fstream Returns the filestream associated with the file tie

number or virtual directory

⎕fremove Removes a component from a share file and

renumbers components

Loaded with either the Native File System or Share File System

⎕XLIB Returns the directory or files in a directory

⎕CHDIR Change current directory

⎕MKDIR Create directory

⎕RMDIR Delete directory

Page 321

⎕ ai Account Information

Legacy account information. Returns a four element vector, the second element of which is the time in

milliseconds since the first time that ⎕ ai was referenced.

This is particularly useful when doing simple timing tests:

⎕ io=1
ts = ⎕ ai[1]
for (I = 0;i<10000;i++) {
 b = 10×i
}
print ⎕ ai[1]-ts
This will display the time taken by the statements interposing the two references to ⎕ ai

The first element is always 1 and the last two elements are reserved.

Page 322

⎕ av Atomic Vector

This is provided for legacy reasons only.
Contains 256 characters and is a simple character vector. Visual APL is based on Unicode characters. ⎕ av
is a selection of commonly used Unicode characters.

Page 323

⎕ cmd Command Window

This has been deprecated in favor of the System.Diagnostics.Process class.

Here is a simple example of how to use this:

 using System.Diagnostics
 a = Process()
 a.StartInfo.FileName= "cmd.exe"
 a.StartInfo.UseShellExecute = false
 a.StartInfo.Arguments = "/k dir *.*"
 a.Start()
This will open a cmd window and display the directory.

There are a wealth of options for this type and extensive documentation can be found for this .Net framework

type at Microsoft.com, as well as the over 4,000 other .Net framework types.

Page 324

⎕ ct Comparison Tolerance

The comparison tolerance is the difference or fuzz allowed between two values when comparing them for

equality. The default setting for ⎕ ct is double.Epsilon which is the chip dependent comparison

tolerance.

Example:

 using System
 double.Epsilon
4.94065645841247E-324
 ⎕ ct
4.94065645841247E-324

The value of ⎕ct can be set to alter the operation of the following operators.

⌊ floor
⍳ index of
⌈ ceiling
> ≥ ≈ ≤ < numeric relation
| residue
⍷ find
≡ match
~ without
⍳ membership

Note

the ≈, or approximately equal symbol is obtained by pressing the alt-5 key. This is not to be confused with

the = symbol which is used for reference assignment.

To perform an exact equal use ==

a == b

Page 325

⎕dr

The data representation of intrinsic objects in .Net can be determined and manipulated using ⎕ dr.

⎕ dr can be used either monadically or dyadically.

Monadic:

When used monadically ⎕ dr reports the type of an object based on legacy codes. These codes are:

Code Description

11: boolean (true/false, not bit)

81: bytes

82: chars (compatible with 82 in existing system)

83: reserved.

162: chars (compatible with 82 in existing system)

163: short (Int16, 16 bit integer)

164: ushort (UInt16, unsigned short)

323: int (Int32, 32 bit integer, default)

324: uint (UInt32, unsigned int)

325: float (Single, 32 bit real)

643: long (Int64, 64 bit integer)

644: ulong (UInt64, unsigned long)

645: double (Double, 64 bit real, default)

1285: Decimal (128 bit real)

807: object (serialized object)

99999: no code available for data type

Example:

 ⎕ dr 10
323
 ⎕ dr 10L
643
 ⎕ dr 20.1
645
 ⎕ dr 10f
325

Dyadic:

Page 326

The left argument to ⎕ dr can be a legacy code listed above. When this is the case the data on the right is

coerced to the new data type based on the bit representation of the data.

Example:

Converts a short to a Boolean representation:

 11 ⎕ dr (short)32
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

 323 ⎕ dr 10.1
858993459 1076114227

 645 ⎕ dr 323 ⎕ dr 10.1
10.1

 645 ⎕ dr (bool) 11 ⎕ dr 10.1
10.1

Note

Requirement for casting to Boolean as the result of 11 ⎕ dr 10.1 is an integer array of 1 and 0.

Often what is desired is to cast an int to a double, a double to an int, a short to and int, etc.

Using a type as the left argument to ⎕ dr accomplishes this.

Example:

 int ⎕ dr 10.1
10
 int ⎕ dr 10.1 10.6
10 11
 ⎕ dr double ⎕ dr 10
645

It is also possible to serialize data using ⎕dr. This is accomplished using the text string "wrapl" as the left

argument. To deserialize the data, use "unwrapl"

 a = "wrapl" ⎕ dr 10 "test" 20
 b = "wrapl" ⎕ dr 10 "test" 20

The result of the serialization is a string and the result is always identical for identical data. This means that

the results can be compared for the purposes of checking equivalence.

Any object that supports serialization can be serialized either individually or as part of a nested structure.

If you understand the serialization of the object, you can even modify the string which will impact the object

that you return.

This is useful for sending objects either over the internet or writing and object to file and then retrieving and

reinstantiating the object at a later time.

Page 327

⎕ dbz Divide By Zero

This system function provides control over the way in which the system addresses divide by zero.

The default value is 0 to match .Net languages, however, you can set this to the following:

⎕ dbz:
 0 : 1÷0 = 0
 0÷0 = 0
 1 : 1÷0 = DOMAIN ERROR
 0÷0 = 1
 2 : 1÷0 = DOMAIN ERROR
 0÷0 = DOMAIN ERROR
 3 : 1÷0 = NaN or ⎕ dbzv
 0÷0 = NaN or ⎕ dbzv
 4 : 1÷0 = +-Infinity
 0÷0 = NaN
You can set ⎕ dbzv to any object, and that will be returned when ⎕ dbz is set to 3

There are several new Double types which are valid doubles and therefore do not promote a double array to

a heterogeneous array.

 double.NaN
NaN
 double.NegativeInfinity
-Infinity
 double.PositiveInfinity
Infinity

 ⎕ dbzv← "byzero"
 ⎕ dbz← 3
 a← 2 3⍴ ⍳ 6
 a÷2 3⍴ 10 0
 0 byzero 0.2
 byzero 0.4 byzero

 ⎕ dbzv← double.NaN
 a÷2 3⍴ 10 0
 0 NaN 0.2
 NaN 0.4 NaN
 b = a÷2 3⍴ 10 0
 ⎕ dr b
645

Page 328

⎕ dyadic

Indicates if a user defined function was called with both a left and right argument. ⎕ dyadic is false if the

function was called with only the right argument.

∇ r← a add b {
 if (⎕ dyadic) {
 r← a+b
 } else {
 r← b
 }
}

Page 329

Dynamically Referencing Assemblies

The refbyfile, refbyname, and using keywords are directives and are only referenced during creation of

the dll or exe assembly.

For late binding to an assembly, Visual APL supplies two quad system functions:

⎕ reference

⎕using

⎕reference adds a late bound reference to the specified assembly, whether it is given as a file or as a name,

and does this during execution. Arguments to ⎕reference can be any valid APL expression which produces a

string. For instance:

 a = @"c:\myprojects\myutils.dll"

 ⎕ reference a

Or to reference by name:

 ⎕ reference "System.Windows.Forms"

Both will return true if successful and false if it fails to load the assembly.

Once an assembly has been loaded, you can then use the namespaces in that assembly, for example:

 ⎕ using "myutils"

 ⎕ using "System.Windows.Forms"

You can also specify an alias for a using like this:

 ⎕ using win = "System.Windows.Forms"

The variable win will now contain the System.Windows.Forms assembly information.

Aliases are used to avoid name conflicts between assemblies.

As these are evaluated during execution, any valid APL expression can create the input to these system quad

functions.

However, if you are using an alias it must be the first assignment in the expression before the ⎕using.

Page 330

⎕ ex Expunge

Erases a global object or sets a local object to it’s default value. Returns a 1 if successful, or a 0 if the object

could not be erased or set to its default value.

Local variables that are dynamic are set to the default value for the data type which they contain when ⎕ ex
is run on them. If they contain a ValueType they are set to the default for the particular value type,

otherwise they are set to null.

Local variables that are strong typed are set to the default value for the data type which they must always

contain. If a local variable is typed to int, then the erase will always set the value to 0, a Boolean type is set

to false, etc. If a local typed variable is typed to a non ValueType then the value is set to null.

Setting a local variable to null will cause the garbage collector to remove the object to which the variable

referred.

Erasing a global object removes the pointer to the object from the global dictionary and the object referenced

is removed at the next garbage collection.

 a = 10
 b = 10 20 30
 ⎕ ex “"a" "b"”
1 1
The .Net framework documentation has a large section on garbage collection and the garbage collection class

is available on System.GC

You should read the documentation and examples available from Microsoft very carefully before using GC.

Page 331

⎕ io Index Origin

This is the index origin that the operators will use for indexing and numbering.

For instance, setting ⎕ io to 0:

 ⍳ 10
0 1 2 3 4 5 6 7 8 9
 ⎕ io← 1
 ⍳ 10
1 2 3 4 5 6 7 8 9 10

Conversely, indexing with ⎕io set to 0, which is the default for .Net languages results as follows:

 a = 1 2 3 4 5
 a[1]
2
 ⎕ io← 1
 a[1]
1

Note that when a type has an indexer you must honor the ⎕io of that type. Setting ⎕io will always affect the

operators and indexing of arrays, however, specific types with indexers will still have their own internal origin

which must be honored.

⎕io is local to the class. There is a ⎕io for each instance of a class and also the static version.

Page 332

⎕ monadic

Indicates whether the user defined function was called with a left argument or not. ⎕ monadic is true if the

function was called without a left argument.

∇ r← a add b {
 if (monadic) {
 r← b
 } else {
 r← a+b
 }
}

 add 10
10
 10 add 20
20

Page 333

⎕ nc Name Class

Monadic:
Returns a vector of integers indicating the type of object identified within a string as the right argument.

The valid identifiers are:

Identifier Meaning

 0: Does not exist in present scope

 2: Variable, Field or property

 3: Function or method

 4: Other, most likely a class

Example:

 ⎕ nc “a b c”
2 3 0
This would indicate that a is a variable, b is a function and c does not exist.

One of the most common uses for ⎕ nc is to identify if a left argument has been passed to a user defined

function. See ⎕ monadic to simplify and speed up this test.

∇ r← a add b {
 if (0 == ⎕ nc “a”) {
 r← b
 } else {
 r← a+b
 }
}

∇ r← a add b {
 if (⎕ monadic) {
 r← b
 } else {
 r← a+b
 }
}

Page 334

⎕ nl Name List

Returns a string array of objects that match the following numeric identifiers:

identifier object type

 2: variable, property or field

 3: function or method

Example:

 ⎕ nl 2
“a” “b”
 ⎕ nl 3
 “fn”
 ⎕ nl 2 3
“a” “b” “fn”

Page 335

⎕nfi

⎕ nfi provides the instance of the NumberFormatInfo class which is used by ⎕ fmt and pattern format (⍕)

Changes the properties of this object are reflected in the subsequent formatting output.

 nfi = ⎕ nfi
 nfi.NegativeSign = "-"
 "N2" ⎕ fmt ¯10
"-10.00"
 "N2" ⎕ fmt ¯10 ¯20.5
"-10.00" "-20.50"
This description by Microsoft of the way the NumberFormatInfo class is defined provides a rather complete

layout of the different properties which can be set.

The values available on the NumberFormatInfo class are determined by the regional and culture settings of

the computer.

There are additional members of the NumberFormatInfo class which are revealed either on the intellisense or

in the detailed .Net framework information from Microsoft.

NumberFormatInfo Class
Defines how numeric values are formatted and displayed, depending on the culture.

Namespace: System.Globalization

Assembly: mscorlib (in mscorlib.dll)

This class contains information, such as currency, decimal separators, and other numeric symbols.

To create a NumberFormatInfo for a specific culture, create a CultureInfo for that culture and retrieve the

CultureInfo.NumberFormat property. To create a NumberFormatInfo for the culture of the current thread,

use the CurrentInfo property. To create a NumberFormatInfo for the invariant culture, use the

InvariantInfo property for a read-only version, or use the NumberFormatInfo constructor for a writable

version. It is not possible to create a NumberFormatInfo for a neutral culture.

The user might choose to override some of the values associated with the current culture of Windows through

Regional and Language Options (or Regional Options or Regional Settings) in Control Panel. For example, the

user might choose to display the date in a different format or to use a currency other than the default for the

culture. If the CultureInfo.UseUserOverride property is set to true, the properties of the

CultureInfo.DateTimeFormat instance, the CultureInfo.NumberFormat instance, and the

CultureInfo.TextInfo instance are also retrieved from the user settings. If the user settings are incompatible

with the culture associated with the CultureInfo (for example, if the selected calendar is not one of the

OptionalCalendars), the results of the methods and the values of the properties are undefined.

Before .NET Framework version 2.0, if the CultureInfo.UseUserOverride property is set to true, then the

object reads each user-overridable property only when it is accessed for the first time. Because

NumberFormatInfo has more than one user-overridable property, that "lazy initialization" can lead to an

inconsistency between such properties when the following occurs: the application accesses one property; then

the user changes to another culture or overrides properties of the current user culture through Regional and

Language Options in OS Control Panel; then the application accesses a different property. For example, in a

sequence like this, CurrencyGroupSeparator could be accessed; then the user could change patterns in OS

control panel, and CurrencyDecimalSeparator, when accessed, would follow the new settings. Similar

inconsistency will happen when user change user culture in OS control panel.

In .NET Framework version 2.0 and later, NumberFormatInfo does not use this "lazy initialization". Instead,

it reads all user-overridable properties when it is created. There is still a tiny window of vulnerability (neither

Page 336

http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.numberformat.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currentinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.invariantinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.useuseroverride.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.datetimeformat.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.textinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.optionalcalendars.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencygroupseparator.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencydecimalseparator.aspx

object creation nor the user override process is atomic, so the relevant values could change in the midst of

object creation), but this should be extremely rare.

Numeric values are formatted using standard or custom patterns stored in the properties of a

NumberFormatInfo. To modify how a value is displayed, the NumberFormatInfo must be writable so

custom patterns can be saved in its properties.

The following table lists the standard format characters for each standard pattern and the associated

NumberFormatInfo property that can be set to modify the standard pattern.

Format Character Description and Associated Properties
c, C Currency format. CurrencyNegativePattern,

CurrencyPositivePattern, CurrencySymbol,
CurrencyGroupSizes, CurrencyGroupSeparator,
CurrencyDecimalDigits,
CurrencyDecimalSeparator.

d, D Decimal format.
e, E Scientific (exponential) format.
f, F Fixed-point format.
g, G General format.
n, N Number format. NumberNegativePattern,

NumberGroupSizes, NumberGroupSeparator,
NumberDecimalDigits, NumberDecimalSeparator.

r, R Roundtrip format, which ensures that floating point
numbers converted to strings will have the same
value when they are converted back to numbers.

x, X Hexadecimal format.
For details about these patterns, see Standard Numeric Format Strings and Custom Numeric Format Strings.

A DateTimeFormatInfo or a NumberFormatInfo can be created only for the invariant culture or for specific

cultures, not for neutral cultures. For more information about the invariant culture, specific cultures, and

neutral cultures, see the CultureInfo class.

This class implements the IC loneable interface to enable duplication of NumberFormatInfo objects. It also

implements IFormatProvider to supply formatting information to applications.

Page 337

http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencynegativepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencypositivepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencysymbol.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencygroupsizes.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.currencydecimaldigits.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbernegativepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbergroupsizes.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numbergroupseparator.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numberdecimaldigits.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.numberdecimalseparator.aspx
http://msdn2.microsoft.com/en-us/library/dwhawy9k.aspx
http://msdn2.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.icloneable.aspx
http://msdn2.microsoft.com/en-us/library/system.iformatprovider.aspx

⎕ print string representation

The ⎕ does not take input from the keyboard. This is handled with streams in .Net. However, the ⎕ is used

to print data to the session. In particular, evaluated expressions do not produce output to the screen inside

of a function. Using ⎕ explicitly prints output to the session using the string representation of the object.

 function fn(a) {
 ⎕ ← a+10
 a+10
 }
 fn(10)
20

The print keyword performs the same action:

 function fn(a) {
 print a+10
 a+10
 }
 fn(10)
20

Page 338

⎕ rl Random Link

The .Net framework provides a random number generator and the details of the generator can be found in

the .Net framework documentation from Microsoft.

The roll and deal operations rely on ⎕ rl, which is the random link.

The default value for ⎕ rl is 16807. However, the sequence of random numbers generated will be based

on the random algorithm in the .Net framework.

Example:

 ⎕ rl
16807
 ⎕ rl← 1230303
 ⎕ rl
1230303
 ?10
2
 ?10
9
 ?10
10
 ⎕ rl← 1230303
 ?10
2
 ?10
9
 ?10
10
 ⎕ rl
872203611

Page 339

⎕ sysid System Identification

Returns a string with the name of the language.

 ⎕ sysid
Visual APL for Windows

 or
 ⎕ sysid
Visual APL for Linux

 or
 ⎕ sysid
Visual APL for Macintosh

Page 340

⎕ sysver System Version

Returns a string containing the information about the current build of the language.

 ⎕ sysver
1.0.2400 on .Net 2.0.50727.42

Page 341

⎕fi

Converts a string or character array to numeric data. Blanks are considered as delimiters and 0 is used to

replace ill formed numbers.

 ⎕ fi '3.6 2E2 ,1 THREE 0'
3.6 200 0 0 0

 ⎕ fi '6.25 -6.25'
6.25 -6.25
Notice that the negative is shown as a middle minus. This is because the result of ⎕ fi in this case is a native

double vector.

If you use ravel you will see:

 ,⎕ fi '6.25 -6.25'
6.25 ¯6.25

Which is the display for a Visual APL data type, which is created when the data is raveled. This can be cast

back to native double by simply:

 (double) ,⎕ fi '6.25 -6.25'
6.25 -6.25
In which case the data is now a native double again.

It is not required to use only a string with ⎕ fi. You can use several strings or numbers.

 ⎕ fi 10
10
 ⎕ fi 10 "10 10 10" "100"
10 10 10 10 100
This reduces the cost of catenation and concern about data types as the input to ⎕ fi.

Page 342

⎕ ts TimeStamp

Returns the current time stamp in a seven-element integer vector consisting of the year, month, day, hour,

minute, second, and millisecond.

 ⎕ ts
2006 7 28 18 42 2 304

This has been largely deprecated with the DateTime object in .Net

 using System
 DateTime.Now
7/28/2006 6:43:18 PM
 a = DateTime.Now

There are innumerable properties and methods on both the DateTime class and the instance of the

DateTime.Now reference. In addition there are a wide range of formatters available for the DateTime class.

See ⎕fmt for use of the DateTime format information.

It is also simple to do comparisons of time:

 DateTime.Subtract(DateTime.Now,a)
00:50:04.2198560

The DateTime.Subtract method returns a TimeSpan object which has numerous methods and properties

which makes the analysis of the time difference very simple.

Page 343

⎕ ucs Universal Character Set

Translates between integers and Unicode characters.

Example:

 ⎕ ucs "a← ⍳ 10"
97 8592 9075 49 48
 ⎕ ucs ⎕ ucs "a← ⍳ 10"
a ← ⍳ 1 0

If the right argument is a string or characters integers are returned

Page 344

⎕ userid User ID

Returns the name of the machine on which the system is running.

 ⎕ userid
workstation12

This has been deprecated in favor of the System.Environment object.

Page 345

⎕vi

Returns an array of 1's and 0's which represent if the data, delimited by blanks, is a well formed number

representation or not.

 ⎕ vi '3.6 2E2 ,1 THREE 0'
1 1 0 0 1

⎕vi also takes multiple strings or numeric data as an argument.

 ⎕ vi 10 "10 10 10" "100"
1 1 1 1 1

Page 346

⎕format

⎕ format uses all of the intrinsic .Net formatting and also includes control of widths, for all array sizes, for

instance:

 10 "N2" ⎕ Format 23.34
 23.34

⎕format makes it possible to apply a format specifier across an array or singleton. It also adds the ability

to specify width of format, as shown above.

For Example:

 10 "N2" ⎕ format 2 2⍴ 10 11
 10.00 11.00
 10.00 11.00

Without width specified:

 "N2" ⎕ format 2 2⍴ 10 11111.1 30.4
10.00 11,111.10
30.40 10.00
Notice that there are no pre set widths for the columns. This has the advantage of not losing data when

formatting, but the disadvantage of not being able to control column widths.

For example:

 7 "N2" ⎕ format 2 2⍴ 10 12345.2 30.5
 10.00*******
 30.50 10.00

 "N2" ⎕ format 2 2⍴ 10 12345.2 30.5
10.00 12,345.20
30.50 10.00

Format can be applied by column:

 "N2" "C2" ⎕ format 2 2⍴ 10 20 30 40
10.00 $20.00
30.00 $40.00

If there are more columns than format strings, then the string are reapplied in column order:

 "N2" "C2" ⎕ format 2 4⍴ 10 20 30 40
10.00 $20.00 30.00 $40.00
10.00 $20.00 30.00 $40.00

The same applies for column widths and formats:

 7 "N2" 10 "C2" ⎕ format 2 4⍴ 10 20 30 40
 10.00 $20.00 30.00 $40.00
 10.00 $20.00 30.00 $40.00
If column widths are specified, they must be specified for all columns.

The formats can also be specified for each element in the array:

 a = (2 4⍴ "N2" "C2" "C3" "N3" "C4" "N3" "N5" "C6")

Page 347

 a ⎕ format 2 4⍴ 10 20 30 40
10.00 $20.00 $30.000 40.000
$10.0000 20.000 30.00000 $40.000000

The formats for each element in the array can also contain width settings:

 a = (2 4⍴ (7 "N2") (8 "C2") (7 "C3"))
 a ⎕ format 2 4⍴ 10 20 30 40
 10.00 $20.00$30.000 40.00
 10.00 $20.00$30.000 40.00

In .Net an object can contain its own format information. The DateTime object contains its own format

information. With ⎕format you can apply the formatting to an object in an array, DateTime.Now returns an

object with the current time information. We can format it like this:

 "d" ⎕ format DateTime.Now
 7/27/2006

 "F" ⎕ format DateTime.Now
 Thursday, July 27, 2006 12:33:47 PM

These can be applied using ⎕format to an array:

 "d" "N2" "F" ⎕ format 2 3⍴ DateTime.Now 100 DateTime.Now
 7/27/2006 100.00 Thursday, July 27, 2006 12:34:54 PM
 7/27/2006 100.00 Thursday, July 27, 2006 12:34:54 PM

These formatting concepts apply to all objects in the .Net framework or objects created which contain their

own formatting information.

One of the difficult problems with formatting is addressing comma delimiter by region, the high minus and

other issues. These can be set using ⎕ nfi.

For instance:

 nfi = ⎕ nfi
 nfi.NegativeSign = "-"
 "N2" ⎕ format ¯10
"-10.00"
 "N2" ⎕ format ¯10 ¯20.5
"-10.00" "-20.50"
This shows changing the high minus to a middle minus. There are many regional and culture specific

formatting options which are available to be set, which are shown in the documentation or with intellisense.

Setting regional setting will also affect the formatting. This means that when your formatting is performed on

a machine with a different culture set, the correct currency, command and period delimiters will be used. Of

course as we have shown these can be specifically overridden using ⎕ nfi.

The following outlines how to use each of the formatting specifiers. These can be used with ⎕ format or

uniquely on a single scalar as shown below.

For additional information on the .Net formatting structure as provided by Microsoft see the related sections in

this help or the Microsoft online help.

Page 348

Composite Formatting

The .NET Framework composite formatting feature takes a list of objects and a composite format string as

input. A composite format string consists of fixed text intermixed with indexed placeholders, called format

items, that correspond to the objects in the list. The formatting operation yields a result string that consists of

the original fixed text intermixed with the string representation of the objects in the list.

The composite formatting feature is supported by methods such as Format, AppendFormat, and some

overloads of WriteLine and TextWriter.WriteLine. The String.Format method yields a formatted result string,

the AppendFormat method appends a formatted result string to a StringBuilder object, the

Console.WriteLine methods display the formatted result string to the console, and the TextWriter.WriteLine

method writes the formatted result string to a stream or file.

Composite Format String
A composite format string and object list are used as arguments of methods that support the composite

formatting feature. A composite format string consists of zero or more runs of fixed text intermixed with one

or more format items. The fixed text is any string that you choose, and each format item corresponds to an

object or boxed structure in the list. The composite formatting feature returns a new result string where each

format item is replaced by the string representation of the corresponding object in the list.

Consider the following Format code fragment.

Visual APL
myName = "Davin";
String.Format("Name = {0}, hours = {1:hh}", myName, DateTime.Now);
The fixed text is "Name = " and ", hours = ". The format items are "{0}", whose index is 0, which

corresponds to the object myName, and "{1:hh}", whose index is 1, which corresponds to the object

DateTime.Now.

Format Item Syntax
Each format item takes the following form and consists of the following components:

{index[,alignment][:formatString]}

The matching braces ("{" and "}") are required.

Index Component
The mandatory index component, also called a parameter specifier, is a number starting from 0 that identifies

a corresponding item in the list of objects. That is, the format item whose parameter specifier is 0 formats the

first object in the list, the format item whose parameter specifier is 1 formats the second object in the list,

and so on.

Multiple format items can refer to the same element in the list of objects by specifying the same parameter

specifier. For example, you can format the same numeric value in hexadecimal, scientific, and number format

by specifying a composite format string like this: "{0:X} {0:E} {0:N}".

Each format item can refer to any object in the list. For example, if there are three objects, you can format

the second, first, and third object by specifying a composite format string like this: "{1} {0} {2}". An object

that is not referenced by a format item is ignored. A runtime exception results if a parameter specifier

designates an item outside the bounds of the list of objects.

Alignment Component
The optional alignment component is a signed integer indicating the preferred formatted field width. If the

value of alignment is less than the length of the formatted string, alignment is ignored and the length of the

formatted string is used as the field width. The formatted data in the field is right-aligned if alignment is

Page 349

http://msdn2.microsoft.com/en-us/library/system.string.format.aspx
http://msdn2.microsoft.com/en-us/library/system.text.stringbuilder.appendformat.aspx
http://msdn2.microsoft.com/en-us/library/system.console.writeline.aspx
http://msdn2.microsoft.com/en-us/library/system.io.textwriter.writeline.aspx
http://msdn2.microsoft.com/en-us/library/system.string.format.aspx
http://msdn2.microsoft.com/en-us/library/system.text.stringbuilder.aspx
http://msdn2.microsoft.com/en-us/library/system.console.writeline.aspx
http://msdn2.microsoft.com/en-us/library/system.io.textwriter.writeline.aspx

positive and left-aligned if alignment is negative. If padding is necessary, white space is used. The comma is

required if alignment is specified.

Format String Component
The optional formatString component is a format string that is appropriate for the type of object being

formatted. Specify a numeric format string if the corresponding object is a numeric value, a date and time

format string if the corresponding object is a DateTime object, or an enumeration format string if the

corrersponding object is an enumeration value. If formatString is not specified, the general ("G") format

specifier for a numeric, date and time, or enumeration type is used. The colon is required if formatString is

specified.

Escaping Braces
Opening and closing braces are interpreted as starting and ending a format item. Consequently, you must use

an escape sequence to display a literal opening brace or closing brace. Specify two opening braces ("{{") in

the fixed text to display one opening brace ("{"), or two closing braces ("}}") to display one closing brace

("}"). Braces in a format item are interpreted sequentially in the order they are encountered. Interpreting

nested braces is not supported.

The way escaped braces are interpreted can lead to unexpected results. For example, consider the format

item "{{{0:D}}}", which is intended to display an opening brace, a numeric value formatted as a decimal

number, and a closing brace. However, the format item is actually interpreted in the following manner:

1. The first two opening braces ("{{") are escaped and yield one opening brace.

2. The next three characters ("{0:") are interpreted as the start of a format item.

3. The next character ("D") would be interpreted as the Decimal standard numeric format specifier, but

the next two escaped braces ("}}") yield a single brace. Because the resulting string ("D}") is not a

standard numeric format specifier, the resulting string is interpreted as a custom format string that

means display the literal string "D}".

4. The last brace ("}") is interpreted as the end of the format item.

5. The final result that is displayed is the literal string, "{D}". The numeric value that was to be

formatted is not displayed.

One way to write your code to avoid misinterpreting escaped braces and format items is to format the braces

and format item separately. That is, in the first format operation display a literal opening brace, in the next

operation display the result of the format item, then in the final operation display a literal closing brace.

Processing Order
If the value to be formatted is null (Nothing in Visual Basic), an empty string ("") is returned.

If the type to be formatted implements the ICustomFormatter interface, the ICustomFormatter.Format

method is called.

If the preceding step does not format the type, and the type implements the IFormattable interface, the

IFormattable.ToString method is called.

If the preceding step does not format the type, the type's ToString method, which is inherited from the

Object class, is called.

Alignment is applied after the preceding steps have been performed.

Code Examples
The following example shows one string created using composite formatting and another created using an

object's ToString method. Both types of formatting produce equivalent results.

Visual APL
FormatString1 = String.Format("{0:dddd MMMM}", DateTime.Now);
FormatString2 = DateTime.Now.ToString("dddd MMMM");
Assuming that the current day is a Thursday in May, the value of both strings in the preceding example is

Thursday May in the U.S. English culture.

Page 350

http://msdn2.microsoft.com/en-us/library/427bttx3.aspx
http://msdn2.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn2.microsoft.com/en-us/library/97x6twsz.aspx
http://msdn2.microsoft.com/en-us/library/system.datetime.aspx
http://msdn2.microsoft.com/en-us/library/c3s1ez6e.aspx
http://msdn2.microsoft.com/en-us/library/system.icustomformatter.aspx
http://msdn2.microsoft.com/en-us/library/system.icustomformatter.format.aspx
http://msdn2.microsoft.com/en-us/library/system.iformattable.aspx
http://msdn2.microsoft.com/en-us/library/system.iformattable.tostring.aspx
http://msdn2.microsoft.com/en-us/library/system.object.aspx

The following example demonstrates formatting multiple objects, including formatting one object two different

ways.

Visual APL
myName = "Davin"; String.Format("Name = {0}, hours = {1:hh}, minutes =
{1:mm}", myName, DateTime.Now);
The output from the preceding string is "Name = Fred, hours = 07, minutes = 23", where the current time

reflects these numbers.

The following examples demonstrate the use of alignment in formatting. The arguments that are formatted

are placed between vertical bar characters (|) to highlight the resulting alignment.

Visual APL
myFName = "Davin"; string myLName = "Opals"; int myInt = 100;
FormatFName = String.Format("First Name = |{0,10}|", myFName);
FormatLName = String.Format("Last Name = |{0,10}|", myLName);
FormatPrice = String.Format("Price = |{0,10:C}|", myInt);
print String.Format(FormatFName);
print String.Format (FormatLName); Console.WriteLine(FormatPrice); FormatFName
= String.Format("First Name = |{0,-10}|", myFName);
FormatLName = String.Format("Last Name = |{0,-10}|", myLName); FormatPrice =
String.Format("Price = |{0,-10:C}|", myInt);
print String.Format(FormatFName);
print String.Format(FormatLName);
print String.Format(FormatPrice);
The preceding code displays the following to the console in the U.S. English culture. Different cultures display

different currency symbols and separators.

First Name = | Davin|
Last Name = | Opals|
Price = | $100.00|
First Name = |Davin |
Last Name = |Opals |
Price = |$100.00 |
There is a great section on .Net formatting at:

http://msdn2.microsoft.com/en-us/library/dwhawy9k(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/241ad66z(VS.80).aspx

Make sure to checkout the NumberFormatInfo object, which we reveal through ⎕ nfi

For instance, if you do:

a = ⎕ nfi
a.NegativeSign = "-"
Then formatting will use the middle minus for formatting instead of the high minus.

We also support the date and time formatting strings for a date/time object, which you can create with:

a = DateTime.Now
 You can find this at:

http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.80).aspx

http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.80).aspx

You can place the DateTime object in a matrix and then when you format it will use the correct format, as:

 a = DateTime.Now 10.2
 'd' 'N2' ⎕ format a
 6/15/2006 10.20

Page 351

http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/dwhawy9k(VS.80).aspx
http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/241ad66z(VS.80).aspx
http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.80).aspx
http://oh4.hq.apl2000.com/exchweb/bin/redir.asp?URL=http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/dwhawy9k(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/241ad66z(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/az4se3k1(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/hc4ky857(VS.80).aspx

Standard DateTime Format Strings

A standard DateTime format string consists of a single standard DateTime format specifier character that

represents a custom DateTime format stringCustom DateTime Format Strings

The format string ultimately defines the text representation of a DateTime object that is produced by a
formatting operation. Note that any DateTime format string that contains more than one alphabetic
character, including white space, is interpreted as a custom DateTime format string.
Standard DateTime Format Specifiers
The following table describes the standard DateTime format specifiers. For examples of the output produced

by each format specifier, see Standard DateTime Format Strings Output Examples.

Format

specifier Name Description

d Short date
pattern

Represents a custom DateTime format string defined by the current
ShortDatePattern property.
For example, the custom format string for the invariant culture is
"MM/dd/yyyy".

D Long date
pattern

Represents a custom DateTime format string defined by the current
LongDatePattern property.
For example, the custom format string for the invariant culture is "dddd,
dd MMMM yyyy".

f Full date/time
pattern (short
time)

Represents a combination of the long date (D) and short time (t) patterns,
separated by a space.

F Full date/time
pattern (long
time)

Represents a custom DateTime format string defined by the current
FullDateTimePattern property.
For example, the custom format string for the invariant culture is "dddd,
dd MMMM yyyy HH:mm:ss".

g General
date/time pattern
(short time)

Represents a combination of the short date (d) and short time (t) patterns,
separated by a space.

G General
date/time pattern
(long time)

Represents a combination of the short date (d) and long time (T) patterns,
separated by a space.

M or m Month day
pattern

Represents a custom DateTime format string defined by the current
MonthDayPattern property.
For example, the custom format string for the invariant culture is
"MMMM dd".

o Round-trip
date/time pattern

Represents a custom DateTime format string using a pattern that
preserves time zone information. The pattern is designed to round-trip
DateTime formats, including the Kind property, in text. Then the
formatted string can be parsed back using Parse or ParseExact with the
correct Kind property value.
The custom format string is "yyyy'-'MM'-'dd'T'HH':'mm':'ss.fffffffK".
The pattern for this specifier is a defined standard. Therefore, it is always
the same, regardless of the culture used or the format provider supplied.

R or r RFC1123
pattern

Represents a custom DateTime format string defined by the current
RFC1123Pattern property. The pattern is a defined standard and the
property is read-only. Therefore, it is always the same regardless of the

Page 352

http://msdn2.microsoft.com/en-us/library/8kb3ddd4.aspx
http://msdn2.microsoft.com/en-us/library/system.datetime.aspx
http://msdn2.microsoft.com/en-us/library/hc4ky857.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.shortdatepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.longdatepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.fulldatetimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.monthdaypattern.aspx
http://msdn2.microsoft.com/en-us/library/1k1skd40.aspx
http://msdn2.microsoft.com/en-us/library/w2sa9yss.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.rfc1123pattern.aspx

culture used or the format provider supplied.
The custom format string is "ddd, dd MMM yyyy HH':'mm':'ss 'GMT'".
Formatting does not modify the value of the DateTime object that is
being formatted. Therefore, the application must convert the value to
Coordinated Universal Time (UTC) before using this format specifier.

s Sortable
date/time
pattern;
conforms to ISO
8601

Represents a custom DateTime format string defined by the current
SortableDateTimePattern property. This pattern is a defined standard and
the property is read-only. Therefore, it is always the same regardless of
the culture used or the format provider supplied.
The custom format string is "yyyy'-'MM'-'dd'T'HH':'mm':'ss".

t Short time
pattern

Represents a custom DateTime format string defined by the current
ShortTimePattern property.
For example, the custom format string for the invariant culture is
"HH:mm".

T Long time
pattern

Represents a custom DateTime format string defined by the current
LongTimePattern property.
For example, the custom format string for the invariant culture is
"HH:mm:ss".

u Universal
sortable
date/time pattern

Represents a custom DateTime format string defined by the current
UniversalSortableDateTimePattern property. This pattern is a defined
standard and the property is read-only. Therefore, it is always the same
regardless of the culture used or the format provider supplied.
The custom format string is "yyyy'-'MM'-'dd HH':'mm':'ss'Z'".
No time zone conversion is done when the date and time is formatted.
Therefore, the application must convert a local date and time to
Coordinated Universal Time (UTC) before using this format specifier.

U Universal
sortable
date/time pattern

Represents a custom DateTime format string defined by the current
FullDateTimePattern property.
This pattern is the same as the full date/long time (F) pattern. However,
formatting operates on the Coordinated Universal Time (UTC) that is
equivalent to the DateTime object being formatted.

Y or y Year month
pattern

Represents a custom DateTime format string defined by the current
YearMonthPattern property.
For example, the custom format string for the invariant culture is "yyyy
MMMM".

Any other
single
character

(Unknown
specifier)

An unknown specifier throws a runtime format exception.

Control Panel Settings
The settings in the Regional and Language Options item in Control Panel influence the result string

produced by a formatting operation. Those settings are used to initialize the DateTimeFormatInfo object

associated with the current thread culture, which provides values used to govern formatting. Computers using

different settings will generate different result strings.

DateTimeFormatInfo Properties
Formatting is influenced by properties of the current DateTimeFormatInfo object, which is provided

implicitly by the current thread culture or explicitly by the IFormatProvider parameter of the method that

invokes formatting. Specify for the IFormatProvider parameter a CultureInfo object, which represents a

culture, or a DateTimeFormatInfo object.

Page 353

http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.sortabledatetimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.shorttimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.longtimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.universalsortabledatetimepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.yearmonthpattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.iformatprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx

Many of the standard DateTime format specifiers are aliases for formatting patterns defined by properties of

the current DateTimeFormatInfo object. Therefore, your application can change the result produced by

some standard DateTime format specifiers by changing the corresponding DateTimeFormatInfo

property.

Using Standard Format Strings
The following code fragment illustrates how to use the standard format strings with DateTime objects.

// This code example demonstrates the ToString(String) and
// ToString(String, IFormatProvider) methods for the DateTime
// type in conjunction with the standard date and time
// format specifiers.

using System;
using System.Globalization;
using System.Threading;

 function fn()
 {
 msgShortDate = "(d) Short date: ";
 msgLongDate = "(D) Long date:. ";
 msgShortTime = "(t) Short time: ";
 msgLongTime = "(T) Long time:. ";
 msgFullDateShortTime =
 "(f) Full date/short time: . . ";
 msgFullDateLongTime =
 "(F) Full date/long time:. . . ";
 msgGeneralDateShortTime =
 "(g) General date/short time:. ";
 msgGeneralDateLongTime =
 "(G) General date/long time (default):\n" +
 " ";
 msgMonth = "(M) Month:. ";
 msgRFC1123 = "(R) RFC1123:. ";
 msgSortable = "(s) Sortable: ";
 msgUniSortInvariant =
 "(u) Universal sortable (invariant):\n" +
 " ";
 msgUniSort = "(U) Universal sortable: . . . ";
 msgYear = "(Y) Year: ";

 msg1 = "Use ToString(String) and the current thread culture.\n";
 msg2 = "Use ToString(String, IFormatProvider) and a specified culture.\n";
 msgCulture = "Culture:";
 msgThisDate = "This date and time: {0}\n";

 thisDate = DateTime.Now;
 utcDate = thisDate.ToUniversalTime();

// Format the current date and time in various ways.
 print String.Format("Standard DateTime Format Specifiers:\n");
 print String.Format(msgThisDate, thisDate);
 print String.Format(msg1);

// Display the thread current culture, which is used to format the values.
 ci = Thread.CurrentThread.CurrentCulture;
 print String.Format("{0,-30}{1}\n", msgCulture, ci.DisplayName);

 print String.Format(msgShortDate + thisDate.ToString("d"));
 print String.Format(msgLongDate + thisDate.ToString("D"));
 print String.Format(msgShortTime + thisDate.ToString("t"));
 print String.Format(msgLongTime + thisDate.ToString("T"));

Page 354

 print String.Format(msgFullDateShortTime + thisDate.ToString("f"));
 print String.Format(msgFullDateLongTime + thisDate.ToString("F"));
 print String.Format(msgGeneralDateShortTime + thisDate.ToString("g"));
 print String.Format(msgGeneralDateLongTime + thisDate.ToString("G"));
 print String.Format(msgMonth + thisDate.ToString("M"));
 print String.Format(msgRFC1123 + utcDate.ToString("R"));
 print String.Format(msgSortable + thisDate.ToString("s"));
 print String.Format(msgUniSortInvariant + utcDate.ToString("u"));
 print String.Format(msgUniSort + thisDate.ToString("U"));
 print String.Format(msgYear + thisDate.ToString("Y"));
 print String.Format();

// Display the same values using a CultureInfo object. The CultureInfo class
// implements IFormatProvider.
 print String.Format(msg2);

// Display the culture used to format the values.
 ci = new CultureInfo("de-DE");
 print String.Format("{0,-30}{1}\n", msgCulture, ci.DisplayName);

 print String.Format(msgShortDate + thisDate.ToString("d", ci));
 print String.Format(msgLongDate + thisDate.ToString("D", ci));
 print String.Format(msgShortTime + thisDate.ToString("t", ci));
 print String.Format(msgLongTime + thisDate.ToString("T", ci));
 print String.Format(msgFullDateShortTime + thisDate.ToString("f", ci));
 print String.Format(msgFullDateLongTime + thisDate.ToString("F", ci));
 print String.Format(msgGeneralDateShortTime + thisDate.ToString("g", ci));
 print String.Format(msgGeneralDateLongTime + thisDate.ToString("G", ci));
 print String.Format(msgMonth + thisDate.ToString("M", ci));
 print String.Format(msgRFC1123 + utcDate.ToString("R", ci));
 print String.Format(msgSortable + thisDate.ToString("s", ci));
 print String.Format(msgUniSortInvariant + utcDate.ToString("u", ci));
 print String.Format(msgUniSort + thisDate.ToString("U", ci));
 print String.Format(msgYear + thisDate.ToString("Y", ci));
 print String.Format();
 }
}
/⍝

This code example produces the following results:

Standard DateTime Format Specifiers:

This date and time: 1/9/2006 4:20:35 PM

Use ToString(String) and the current thread culture.

Culture: English (United States)

(d) Short date: 4/17/2006
(D) Long date:. Monday, April 17, 2006
(t) Short time: 2:38 PM
(T) Long time:. 2:38:09 PM
(f) Full date/short time: . . Monday, April 17, 2006 2:38 PM
(F) Full date/long time:. . . Monday, April 17, 2006 2:38:09 PM
(g) General date/short time:. 4/17/2006 2:38 PM
(G) General date/long time (default):. . 4/17/2006 2:38:09 PM
(M) Month:. April 17
(R) RFC1123:. Mon, 17 Apr 2006 21:38:09 GMT
(s) Sortable: 2006-04-17T14:38:09
(u) Universal sortable (invariant):. . . 2006-04-17 21:38:09Z
(U) Universal sortable: . . . Monday, April 17, 2006 9:38:09 PM
(Y) Year: April, 2006
(o) Roundtrip (local):. . . . 2006-04-17T14:38:09.9417500-07:00

Page 355

(o) Roundtrip (UTC):. 2006-04-17T21:38:09.9417500Z
(o) Roundtrip (Unspecified):. 2000-03-20T13:02:03.0000000

Use ToString(String, IFormatProvider) and a specified culture.

Culture: German (Germany)

(d) Short date: 17.04.2006
(D) Long date:. Montag, 17. April 2006
(t) Short time: 14:38
(T) Long time:. 14:38:09
(f) Full date/short time: . . Montag, 17. April 2006 14:38
(F) Full date/long time:. . . Montag, 17. April 2006 14:38:09
(g) General date/short time:. 17.04.2006 14:38
(G) General date/long time (default): 17.04.2006 14:38:09
(M) Month:. 17 April
(R) RFC1123:. Mon, 17 Apr 2006 21:38:09 GMT
(s) Sortable: 2006-04-17T14:38:09
(u) Universal sortable (invariant): . . 2006-04-17 21:38:09Z
(U) Universal sortable: . . . Montag, 17. April 2006 21:38:09
(Y) Year: April 2006
(o) Roundtrip (local):. . . . 2006-04-17T14:38:09.9417500-07:00
(o) Roundtrip (UTC):. 2006-04-17T21:38:09.9417500Z
(o) Roundtrip (Unspecified):. 2000-03-20T13:02:03.0000000

⍝ /

Page 356

Standard DateTime Format Strings Output Examples

The following table illustrates the output created by applying some standard DateTime format strings to a

particular date and time. Output was produced using the ToString method.

The Format string column indicates the format specifier, the Culture column indicates the culture associated

with the current thread, and the Output column indicates the result of formatting.

The different culture values demonstrate the impact of changing the current culture. The culture can be

changed by the settings in the Regional and Language Options item in Control Panel, or by passing your

own DateTimeFormatInfo or CultureInfo class as the format provider. Note that changing the culture does not

influence the output produced by the 'r' and 's' formats.

Short Date Pattern
Format string Current culture Output

d en-US 4/10/2001
d en-NZ 10/04/2001
d de-DE 10.04.2001
Long Date Pattern
Format string Current culture Output

D en-US Tuesday, April 10, 2001
Long Time Pattern
Format string Current culture Output

T en-US 3:51:24 PM
T es-ES 15:51:24
Full Date/Time Pattern (Short Time)
Format string Current culture Output

f en-US Tuesday, April 10, 2001 3:51 PM
f fr-FR mardi 10 avril 2001 15:51
RFC1123 Pattern
Format string Current culture Output

r en-US Tue, 10 Apr 2001 15:51:24 GMT
r zh-SG Tue, 10 Apr 2001 15:51:24 GMT
Sortable Date/Time Pattern (ISO 8601)
Format string Current culture Output

s en-US 2001-04-10T15:51:24
s pt-BR 2001-04-10T15:51:24
Universal Sortable Date/Time Pattern
Format string Current culture Output

u en-US 2001-04-10 15:51:24Z
u sv-FI 2001-04-10 15:51:24Z
Month Day Pattern
Format string Current culture Output

Page 357

http://msdn2.microsoft.com/en-us/library/system.globalization.datetimeformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx

m en-US April 10
m ms-MY 10 April
Year Month Pattern
Format string Current culture Output

y en-US April, 2001
y af-ZA April 2001
An Invalid Pattern
Format string Current culture Output

L en-UZ Unrecognized format specifier; a
format exception is thrown.

This is a more detailed description of the DateTime formatter.

Page 358

Standard Numeric Format Strings

Standard numeric format strings are used to format common numeric types. A standard numeric format

string takes the form Axx, where A is an alphabetic character called the format specifier, and xx is an

optional integer called the precision specifier. The precision specifier ranges from 0 to 99 and affects the

number of digits in the result. Any numeric format string that contains more than one alphabetic character,

including white space, is interpreted as a custom numeric format string.

The following table describes the standard numeric format specifiers. For examples of the output produced by

each format specifier, see Standard Numeric Format Strings Output Examples. For more information, see the

notes that follow the table.

Format

specifier Name Description

C or c Currency The number is converted to a string that represents a currency amount. The
conversion is controlled by the currency format information of the current
NumberFormatInfo (⎕ nfi)object.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default currency precision given by the
current NumberFormatInfo (⎕ nfi) object.

D or d Decimal This format is supported only for integral types. The number is converted to
a string of decimal digits (0-9), prefixed by a minus sign if the number is
negative.
The precision specifier indicates the minimum number of digits desired in
the resulting string. If required, the number is padded with zeros to its left to
produce the number of digits given by the precision specifier.

E or e Scientific
(exponential)

The number is converted to a string of the form "-d.ddd…E+ddd" or
"-d.ddd…e+ddd", where each 'd' indicates a digit (0-9). The string starts
with a minus sign if the number is negative. One digit always precedes the
decimal point.
The precision specifier indicates the desired number of digits after the
decimal point. If the precision specifier is omitted, a default of six digits
after the decimal point is used.
The case of the format specifier indicates whether to prefix the exponent
with an 'E' or an 'e'. The exponent always consists of a plus or minus sign
and a minimum of three digits. The exponent is padded with zeros to meet
this minimum, if required.

F or f Fixed-point The number is converted to a string of the form "-ddd.ddd…" where each
'd' indicates a digit (0-9). The string starts with a minus sign if the number is
negative.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default numeric precision given by the
current NumberFormatInfo (⎕ nfi)object.

G or g General The number is converted to the most compact of either fixed-point or
scientific notation, depending on the type of the number and whether a
precision specifier is present. If the precision specifier is omitted or zero,
the type of the number determines the default precision, as indicated by the
following list.
 Byte or SByte: 3
 Int16 or UInt16: 5

Page 359

http://msdn2.microsoft.com/en-us/library/0c899ak8.aspx
http://msdn2.microsoft.com/en-us/library/241ad66z.aspx
http://msdn2.microsoft.com/en-us/library/dwhawy9k.aspx#NotesStandardFormatting#NotesStandardFormatting
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx

 Int32 or UInt32: 10
 Int64 or UInt64: 19
 Single: 7
 Double: 15
 Decimal: 29
Fixed-point notation is used if the exponent that would result from
expressing the number in scientific notation is greater than -5 and less than
the precision specifier; otherwise, scientific notation is used. The result
contains a decimal point if required and trailing zeroes are omitted. If the
precision specifier is present and the number of significant digits in the result
exceeds the specified precision, then the excess trailing digits are removed
by rounding.
The exception to the preceding rule is if the number is a Decimal and the
precision specifier is omitted. In that case, fixed-point notation is always
used and trailing zeroes are preserved.
If scientific notation is used, the exponent in the result is prefixed with 'E' if
the format specifier is 'G', or 'e' if the format specifier is 'g'.

N or n Number The number is converted to a string of the form "-d,ddd,ddd.ddd…",
where '-' indicates a negative number symbol if required, 'd' indicates a digit
(0-9), ',' indicates a thousand separator between number groups, and '.'
indicates a decimal point symbol. The actual negative number pattern,
number group size, thousand separator, and decimal separator are
specified by the current NumberFormatInfo object.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default numeric precision given by the
current NumberFormatInfo object.

P or p Percent The number is converted to a string that represents a percent as defined by
the NumberFormatInfo.PercentNegativePattern property if the number is
negative, or the NumberFormatInfo.PercentPositivePattern property if the
number is positive. The converted number is multiplied by 100 in order to
be presented as a percentage.
The precision specifier indicates the desired number of decimal places. If
the precision specifier is omitted, the default numeric precision given by the
current NumberFormatInfo object.

R or r Round-trip This format is supported only for the Single and Double types. The
round-trip specifier guarantees that a numeric value converted to a string
will be parsed back into the same numeric value. When a numeric value is
formatted using this specifier, it is first tested using the general format, with
15 spaces of precision for a Double and 7 spaces of precision for a Single.
If the value is successfully parsed back to the same numeric value, it is
formatted using the general format specifier. However, if the value is not
successfully parsed back to the same numeric value, then the value is
formatted using 17 digits of precision for a Double and 9 digits of precision
for a Single.
Although a precision specifier can present, it is ignored. Round trips are
given precedence over precision when using this specifier.

X or x Hexadecimal This format is supported only for integral types. The number is converted to
a string of hexadecimal digits. The case of the format specifier indicates
whether to use uppercase or lowercase characters for the hexadecimal
digits greater than 9. For example, use 'X' to produce "ABCDEF", and 'x'

Page 360

http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.percentnegativepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.percentpositivepattern.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.single.aspx
http://msdn2.microsoft.com/en-us/library/system.double.aspx

to produce "abcdef".
The precision specifier indicates the minimum number of digits desired in
the resulting string. If required, the number is padded with zeros to its left to
produce the number of digits given by the precision specifier.

Any other
single
character

(Unknown
specifier)

(An unknown specifier throws a runtime format exception.)

Notes
Control Panel Settings
The settings in the Regional and Language Options item in Control Panel influence the result string

produced by a formatting operation. Those settings are used to initialize the NumberFormatInfo object

associated with the current thread culture, and the current thread culture provides values used to govern

formatting. Computers using different settings will generate different result strings.

NumberFormatInfo Properties
Formatting is influenced by properties of the current NumberFormatInfo object, which is provided implicitly

by the current thread culture or explicitly by the IFormatProvider parameter of the method that invokes

formatting. Specify a NumberFormatInfo or CultureInfo object for that parameter.

Integral and Floating-Point Numeric Types
Some descriptions of standard numeric format specifiers refer to integral or floating-point numeric types. The

integral numeric types are Byte, SByte, Int16, Int32, Int64, UInt16, UInt32, and UInt64. The floating-point

numeric types are Decimal, Single, and Double.

Floating-Point Infinities and NaN
Note that regardless of the format string, if the value of a Single or Double floating-point type is positive

infinity, negative infinity, or Not a Number (NaN), the formatted string is the value of the respective

PositiveInfinitySymbol, NegativeInfinitySymbol, or NaNSymbol property specified by the currently applicable

NumberFormatInfo object.

Example
The following code example formats an integral and a floating-point numeric value using the thread current

culture, a specified culture, and all the standard numeric format specifiers. This code example uses two

particular numeric types, but would yield similar results for any of the numeric base types (Byte, SByte,

Int16, Int32, Int64, UInt16, UInt32, UInt64, Decimal, Single, and Double).

This example provides an excellent example of discreetly formatting an individual scalar and accessing

resource information about the formatting object. ⎕ fmt applies these formatting techniques to arrays as

well as scalars.

// This code example demonstrates the ToString(String) and
// ToString(String, IFormatProvider) methods for integral and
// floating-point numbers, in conjunction with the standard
// numeric format specifiers.
// This code example uses the System.Int32 integral type and
// the System.Double floating-point type, but would yield
// similar results for any of the numeric types. The integral
// numeric types are System.Byte, SByte, Int16, Int32, Int64,
// UInt16, UInt32, and UInt64. The floating-point numeric types
// are Decimal, Single, and Double.

using System;
using System.Globalization;
using System.Threading;

 function fn()

Page 361

http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.iformatprovider.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx
http://msdn2.microsoft.com/en-us/library/system.byte.aspx
http://msdn2.microsoft.com/en-us/library/system.sbyte.aspx
http://msdn2.microsoft.com/en-us/library/system.int16.aspx
http://msdn2.microsoft.com/en-us/library/system.int32.aspx
http://msdn2.microsoft.com/en-us/library/system.int64.aspx
http://msdn2.microsoft.com/en-us/library/system.uint16.aspx
http://msdn2.microsoft.com/en-us/library/system.uint32.aspx
http://msdn2.microsoft.com/en-us/library/system.uint64.aspx
http://msdn2.microsoft.com/en-us/library/system.decimal.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.positiveinfinitysymbol.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.negativeinfinitysymbol.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.nansymbol.aspx

 {
// Format a negative integer or floating-point number in various ways.
 integralVal = -12345;
 floatingVal = -1234.567d;

 msgCurrency = "(C) Currency: ";
 msgDecimal = "(D) Decimal:. ";
 msgScientific = "(E) Scientific: ";
 msgFixedPoint = "(F) Fixed point:. ";
 msgGeneral = "(G) General (default):. . ";
 msgNumber = "(N) Number: ";
 msgPercent = "(P) Percent:. ";
 msgRoundTrip = "(R) Round-trip: ";
 msgHexadecimal = "(X) Hexadecimal:. ";

 msg1 = "Use ToString(String) and the current thread culture.\n";
 msg2 = "Use ToString(String, IFormatProvider) and a specified culture.\n";
 msgCulture = "Culture:";
 msgIntegralVal = "Integral value:";
 msgFloatingVal = "Floating-point value:";

 CultureInfo ci;
 print "Standard Numeric Format Specifiers:\n";
// Display the values.
 print msg1;

// Display the thread current culture, which is used to format the //values.
 ci = Thread.CurrentThread.CurrentCulture;
 print String.Format("{0,-26}{1}", msgCulture, ci.DisplayName);

// Display the integral and floating-point values.
 print String.Format("{0,-26}{1}", msgIntegralVal, integralVal);
 print String.Format("{0,-26}{1}", msgFloatingVal, floatingVal);
 print ""
// Use the format specifiers that are only for integral types.
 print ("Format specifiers only for integral types:");
 print String.Format(msgDecimal + integralVal.ToString("D"));
 print String.Format(msgHexadecimal + integralVal.ToString("X"));
 print "";

// Use the format specifier that is only for the Single and Double
// floating-point types.
 print ("Format specifier only for the Single and Double types:");
 print String.Format(msgRoundTrip + floatingVal.ToString("R"));
 print "";

// Use the format specifiers that are for integral or floating-point //types.
 print String.Format("Format specifiers for integral or floating-point
types:");
 print String.Format(msgCurrency + floatingVal.ToString("C"));
 print String.Format(msgScientific + floatingVal.ToString("E"));
 print String.Format(msgFixedPoint + floatingVal.ToString("F"));
 print String.Format(msgGeneral + floatingVal.ToString("G"));
 print String.Format(msgNumber + floatingVal.ToString("N"));
 print String.Format(msgPercent + floatingVal.ToString("P"));
 print "";

// Display the same values using a CultureInfo object. The //CultureInfo
class
// implements IFormatProvider.
 print (msg2);

// Display the culture used to format the values.
// Create a European culture and change its currency symbol to "euro" //

Page 362

because this particular code example uses a thread current UI // // culture
that cannot display the euro symbol (€).
 ci = new CultureInfo("de-DE");
 ci.NumberFormat.CurrencySymbol = "euro";
 print String.Format("{0,-26}{1}", msgCulture, ci.DisplayName);

// Display the integral and floating-point values.
 print String.Format("{0,-26}{1}", msgIntegralVal, integralVal);
 print String.Format("{0,-26}{1}", msgFloatingVal, floatingVal);
 print "";

// Use the format specifiers that are only for integral types.
 print ("Format specifiers only for integral types:");
 print String.Format(msgDecimal+ integralVal.ToString("D", ci));
 print String.Format(msgHexadecimal+integralVal.ToString("X", ci));
 print "";

// Use the format specifier that is only for the Single and Double
// floating-point types.
 print String.Format("Format specifier only for the Single and Double
types:");
 print String.Format(msgRoundTrip+floatingVal.ToString("R", ci));
 print "";

// Use the format specifiers that are for integral or floating-point types.
 print String.Format("Format specifiers for integral or floating-point
types:");
 print String.Format(msgCurrency+floatingVal.ToString("C", ci));
 print String.Format(msgScientific+floatingVal.ToString("E", ci));
 print String.Format(msgFixedPoint+floatingVal.ToString("F", ci));
 print String.Format(msgGeneral + floatingVal.ToString("G", ci));
 print String.Format(msgNumber + floatingVal.ToString("N", ci));
 print String.Format(msgPercent + floatingVal.ToString("P", ci));
 print "";
 }

/⍝

This code example produces the following results:

Standard Numeric Format Specifiers:

Use ToString(String) and the current thread culture.

Culture: English (United States)
Integral value: -12345
Floating-point value: -1234.567

Format specifiers only for integral types:
(D) Decimal:. -12345
(X) Hexadecimal:. FFFFCFC7

Format specifier only for the Single and Double types:
(R) Round-trip: -1234.567

Format specifiers for integral or floating-point types:
(C) Currency: ($1,234.57)
(E) Scientific: -1.234567E+003
(F) Fixed point:. -1234.57
(G) General (default):. . -1234.567
(N) Number: -1,234.57

Page 363

(P) Percent:. -123,456.70 %

Use ToString(String, IFormatProvider) and a specified culture.

Culture: German (Germany)
Integral value: -12345
Floating-point value: -1234.567

Format specifiers only for integral types:
(D) Decimal:. -12345
(X) Hexadecimal:. FFFFCFC7

Format specifier only for the Single and Double types:
(R) Round-trip: -1234,567

Format specifiers for integral or floating-point types:
(C) Currency: -1.234,57 euro
(E) Scientific: -1,234567E+003
(F) Fixed point:. -1234,57
(G) General (default):. . -1234,567
(N) Number: -1.234,57
(P) Percent:. -123.456,70%

⍝ /

This shows the formatting specifiers for the DateTime object.

Page 364

⎕fmt

This documentation describes the supported feature set of the legacy ⎕fmt system function.

⎕format in Visual APL provides support for all of the .Net formatting modifiers across arrays.

⎕ fmt feature set:

⎕fmt - legacy formatter which returns character matrices with fixed width columns

The following elements of the legacy ⎕fmt have been implemented for compatibility purposes.

Syntax:

res = 'fstring' ⎕ fmt data

'fstring' : character vector containing one or more editing phrases.

data : an array

Editing phrases:

rmAw Character

rmEw.s Exponential

rmFw.d Fixed point

rmG<pattern> Pattern

rmIw Integer

d = Decimal positions

s = Significant digits

w = Field width

<pattern> = Example

Positioning and text phrases:

r = Repetition (optional)

m = Modifiers (optional)

Modifiers:

B Blank if zero (F,I)

C Comma insertion (F,I)

L Left justify (F,I)

M<text> Negative left decoration (F,G,I)

N<text> Negative right decoration (F,G,I)

Page 365

P<text> Non-negative left decoration (F,G,I)

Q<text> Non-negative right decoration (F,G,I)

Z Zero fill (F,I)

Valid delimiters for text in decorations are:

<text> ⊂text⊃ ¨text¨

⎕text⎕ ⍞text⍞ /text/

Page 366

[] Index

Many classes have indexers.

Array indexer:
When used inside of an indexer bracket block [] the ; axis separator identifies the values for each axis.

 a = 1 2 3
 a[1]
2
 a = 3 3⍴ ⍳ 9
 a[1 2;1 2]
 4 5
 7 8

It is not required to use the axis separator to index an array, for instance:

 b = (1 2) (1 2)
 a[b]
 4 5
 7 8
 b = 1 2
 a[b]
5

Providing a single value will index the array as though it were a vector.

 a[1]
1
You can select all values in an axis by using null:

 b = (1 2) (1 2) null
 a[b]
 12 13 14
 15 16 17

 21 22 23
 24 25 26
This makes it possible to index an array without having to be concerned about the syntax of the number of

semi colons.

Generic Type Indexer

Indexers also occur on Generic Types. To create a Generic Type you need to first use:

 using System.Collections.Generic
 a = Dictionary[string, int]()

This will create an instance of the generic Dictionary type which accepts only string as the key, and int as the

value.

 a.Add(“test”, 10)
 a.Add(100, 20)
bad args for method
 a.Count
1

Page 367

It is not possible to use a key other than string with this Dictionary.

Method Selection Indexer

The signature of a method includes not only the name of the method, but also the types and number of

arguments of the method.

To pre-select a particular method, indexing is available. As an example, an instance of string has a method

named IndexOf which has 9 overloads. To select a specific overload:

 a = "test"
 a.IndexOf[string, int]("es",1)
1
 a.IndexOf(“es”,1)
1

In the vast majority of cases using the method indexer is not needed, but in some cases it can be quite

beneficial. However, if the goal is to let the system select the best method for the dynamic values being used

as arguments, then do not use the indexer.

Page 368

← Assignment By Value and = Assign By Reference

The left assign arrow assigns data by value. This means that a copy of the data is made if possible. If it is

not possible to make a copy of the data, a reference assignment is made.

Because this provides control over when assignment by value and assignment by reference will be made,

discretion should be used when choosing to do assignment by value as copying all the data is considerably

more expensive than assignment by reference. In general, there are relatively few occasions when

assignment by value is required, which is one of the reasons it does not exist in other .Net languages.

For objects that are composed of ValueTypes, the copy is always made. However, for example, if an array

contains an instance of a Form, then the Form is assigned by reference as creating another copy of the Form

could have unintended consequences.

The = symbol is used for assign by reference, which matches the assignment behavior of other .Net

languages. The ≈ symbol is used for comparison, or the double == symbol.

Example:

 a = ⍳ 10
 b← a
 a[3] = 100
 a
0 1 2 100 4 5 6 7 8 9
 b
0 1 2 3 4 5 6 7 8 9
 a = ⍳ 10
 b = a
 a[3] = 100
 a
0 1 2 100 4 5 6 7 8 9
 b
0 1 2 100 4 5 6 7 8 9

Simple assignment:

 a ← 10
 a b c ← 10 20 30

Assigns one value to each variable

 a b c ← ⊂ 10 20 30

Assigns the nested array 10 20 30 into each variable.

It is also possible to assign nested arrays by nesting shape.

 a (b c) d = 10 20 30
This makes a:10, b:20, c:20 and d:30

 a (b c) d = 10 (20 30) 40
In this case a:10, b:20, c:30, d:40
 x = 10 (20 (30 40)) 50
 a (b c) d = x
a:10, b:20, c:30 40, d:50

Page 369

These assignment rules also apply when using for loops.

Matrix assignment:

 a← 3 3⍴ ⍳ 9
 a
 0 1 2
 3 4 5
 6 7 8
 a[1 2;1 2]← 2 2⍴ 10
 a
 0 1 2
 3 10 10
 6 10 10

Inline assignment works as follows:

 a ← 1+b ← 10+4
 a
15
 b
14

Selective assignment is also supported and is based on the original definition of selective assignment created

by Jim Brown in his paper "Understanding Selective Assignment", 1989

“The notion of selective assignment is simple. If you can write an expression which selects some items at

any depth in an array, then writing that same expression on the left of an assignment arrow requests

replacement of the selected items.”

This makes it possible to include user defined functions, the each operator, assign to more than one variable,

etc.

For example:

 a = 1 2 3 4 5
 (1⊃ a) = 10
 a = (1 2 3) (4 5 6)
 (1⊃ ¨a)=10
 (test a)=10
 (1 test a)=10
 a = 1 2 3 4
 b = 10 20 30 40
 ((1⊃ a) (1⊃ b)) = 100
 a
1 100 3 4
 b
10 100 30 40
 etc.

Page 370

⍎ Execute

Compiles and runs a string which can be an expression or statement.

 ⍎ ”"1+1"”
2
 ⍎ ”"a = 10+3"”
13
 a
13

It is also possible to manage the executes use of local and global variables. Execute can only create global

variables, local variables can not be created with execute.

function fn(a) {
 b = 10
 c = 20
 ⍎ "c = a+b"
 print a
}
 fn(10)
30

When it is desired to pass only a subset of local variables to the execute domain:

function fn(a) {
 b = 10
 c = 10
 d = 20
 // only local variables a and b passed to the execute
 ⍎ "c = a+b" in (a,b)
 print c
 // the value of c is not changed
 // a b and c are passed
 ⍎ "c = a+b" in (a,b,c)
 print c
}

It is also possible to manage the global variables passed and have new variables created added to the

provided Dictionary. In this example we are not passing any local variables to execute, but we could include

those as well. Functions can also be localized to the excute by placing them in the dictionary. In the case the

function associated with fn in the dictionary does not exist in the class or session, but only in the dictionary.

 d = Dictionary[object, object]()
 d.Add("var1", 20)
 d.Add("var2", 30)
 d.Add("x", 40)
 ⍎ "q = var1+var2+x" in (),d
false
 d.Count
5
 d["q"]
90
 ⍎ "q = var1+var2+x" in (),d
false
 d["var1"] = 200
 ⍎ "q = var1+var2+x" in (),d
false

Page 371

 d["q"]
270
 d.Add("fn", ƒ r← (a,b){r← a+b})
 ⍎ "q=fn(var1,var2)" in (),d
false
 d["q"]
50

All of the variables used and created by the execute come from the Dictionary object. The Dictionary object

inherits from IDictionary and you can create a class which inherits from IDictionary which can respond

in any desired way to the execution of the code and the creation and modification of variables. For instance,

you could have an event fire when a new variable is created or a value is changed, or any other action you

might find useful.

This provides detailed control of the execute, and provides the ability to scope function and variables to a

particular execute.

Page 372

⍬ Zilde

Empty numeric constant object.

This is displayed when the result of an expression evaluated in the session contains empty numeric data

Page 373

⍕ Pattern format, Format

Simple formatter that provides simple width control and converts objects to their string representation. Relies

on ⎕ nfi

 ⍕ 2 3⍴ ⍳ 6
 0 1 2
 3 4 5
 (2 3⍴ ⍳ 6).ToString()
 0 1 2
 3 4 5

The ToString method in most cases is equivalent.

 1 0 4 1 6 2 ⍕ 2 3⍴ ⍳ 6
0 1.0 2.00
3 4.0 5.00
Notice that the width of each column was controlled by the left argument. The left argument is composed of

value pairs, width and number of decimals.

Using a negative value for number of decimals formats objects in Exponential.

 10 ¯5 ⍕ 10 20 30 999.4
 1.0000E1 2.0000E1 3.0000E1 9.9940E2

Page 374

The Share File System

The ShareFileSystem in Visual APL is a next generation component file system.

Not only does the ShareFileSystem support the legacy syntax common to share file systems, but it extends

share file systems with virtual directories. This means you can place more than one share file in a single

physical file.

To use the Share File System in your application, you will need to add a reference to the Visual APL

Share/Native File System assembly. Here is an example of "referencing" and "using" the assembly by its

strong name:

refbyname APLNext.APL.LegacyOps

using APLNext.Legacy.ShareFileSystem

The more Share Files that are placed in a virtual directory the better the space management becomes.

Additionally, because the ShareFileSystem uses the ISerializer .Net methodology for the IO of nested or

object data types, shared and native files can read and write not only simple APL variables, but nested APL

variables which even include Hashtables, Dictionaries, etc.

You can also write out the Hashtables or Dictionaries without including them in an APL variable.

Any class that inherits from ISerializable can be written to the share or native files and retrieved with the

instance being automatically recreated.

Page 375

⎕ falloc

Pre-allocates a specific contiguous block in a component file as a single component.

 ⎕ falloc 12,1000
7
 ⍴⎕ fread 12,7
1000

Using this in conjunction with the index read (⎕firead) and index replace (⎕fireplace) you can easily

manipulate text documents in a component.

It is also possible to retrieve the location of a component. This permits using other tools, such as ⎕ nread to

access the data in a component. For instance, you could store a document in a component file, use ⎕

fcnloc to retrieve the starting point and then read the data using other tools:

 ⎕ fcnloc 12,7
54288

This is particularly useful to include images, documents and other data in a component file in a single virtual

directory which needs to be accessed by other programs and tools.

Page 376

⎕ fappend

Appends a serializable object to a component file tied to the associated tie number. The append returns the

component number into which the data was placed.

cn = "hello how are you" ⎕ fappend 10
cn = (3 3⍴ ⍳ 10) ⎕ fappend 10

Page 377

⎕ fcatenate

One of the new features of these component files is the ability to manipulate component data in place. This

means that it is not necessary to read in a component and catenate data, then write the component back

out. Since catenate is one of the most expensive operations, this can be very useful. Only homogenous

intrinsic data types can be manipulated in place. For instance a vector of integers, doubles, chars, etc. can be

modified. However, nested arrays can not.

 Example:

 (⍳5) ⎕ fappend 12
4
 ⎕ fread 12,4
0 1 2 3 4
 10 11 12 ⎕ fcatenate 12,4
 ⎕ fread 12,4
0 1 2 3 4 10 11 12

Page 378

⎕fdrop

⎕ fdrop removes components from the beginning or end of a Share File.

Syntax:

 ⎕ fdrop tn dropCount

tn: The tie number of the file to drop components from.

dropCount: An integer specifying the number of components to drop from the file.

Remarks:

⎕ fdrop will remove the specified number of components from either the beginning or end of the specified

share file.

If the dropCount is a positive number, that number of components will be removed from the beginning of the

Share File. If the dropCount is a negative integer, then that number of components will be removed from the

end of the Share File.

Legacy Considerations

⎕ fdrop duplicates the syntax of the legacy ⎕ fdrop, but has one difference, when you drop components from

the front of a file, the components that remain are renumbered from 1 instead of retaining their original

numbers. Since the Share File System is structured to give data back to the virtual pool, artificially

numbering component offsets after a drop would have introduced many unwanted exceptions to the Share

File System.

Example:

 // drop 5 components from the beginning of the share
 // file at tie number 1.
 ⎕ fdrop 1 5

Page 379

⎕ ferase

Removes a specified component file from a virtual directory. This does not delete a physical file. The tie

number must be the number associated with the file name to be erased.

 "filename" ⎕ ferase 10

Page 380

⎕ fcreate

Has two primary uses:

1. Create a component file and associated virtual directory of the same name.

For instance:

"some file name.extension" ⎕ fcreate 10

Or

tn = ⎕ fcreate "some file name.extension"

Which returns the next available tie number.

Both of these create a file in the current directory. You could also specify the entire path:

tn = ⎕ fcreate @"c:\mydir\subdir\some file name.extension"

This use primarily exists for legacy system support. All of the above examples create a vitual

directory with the same name as the fileid specified. This example further illustrates the point:

 @"c:\test\myfile" ⎕ fcreate 1

In the above example, a virtual directory is created with the same name as the fileid, "myfile", in the

"c:\test" directory, and then creates a share file in that virtual directory with the same name.

Advantages over legacy file systems

One of the primary advantages of the Share File System is that not only can you place more than one

share file in the virtual directories, but the share file system recovers data as it becomes available,

thus avoiding the explosion of size common in some legacy share file systems.

Note

The use of the @ symbol to indicate a raw string, this obviates the need to use the \ as
an escape character, as "c:\\mydir\\subdir\\some file name.extension"

2. When used with a library number, it creates a component file in the virtual directory associated with
the library number.

"100 some file name.extension" ⎕ fcreate 10

Or

tn = ⎕ fcreate "10 some file name.extension"
// the system chose the tie number, as none was specified

Or

tn = "100 some file name.extension" ⎕ fcreate 0
// the system chose the tie number, as a 0 was specified.

Page 381

Page 382

⎕ firead

This provides the ability to read a subset of an intrinsic array using index read. This reduces the need to read

large amounts of data into memory for the purpose of indexing only a subset. Used in conjunction with ⎕

fireplace and ⎕ fcatenate it makes the management of discrete data within a component file very

simple.

 (⍳20) ⎕ fappend 12
6

 ⎕ firead 12,6,10,3
10 11 12

 "how are you today" ⎕ fappend 12
7
 ⎕ firead 12,7,4,3
are

Page 383

⎕ fireplace

The data in a component file can also be replaced in place using index replace: This obviates the need to

read the data into memory, make the change, and then rewrite the data to disk. In this case the data is

replaced on disk explicitly without reading the entire component into memory.

 (⍳ 20) ⎕ fappend 12
6
 100 200 300 ⎕ fireplace 12,6,10,3
 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 100 200 300 13 14 15 16 17 18 19

Catenating and modifying integers in place is extremely useful when updating pointers, such as are used as

references. This significantly reduces the time and space required to maintain systems which require reading

and modifying large arrays of integers, doubles, characters, etc.

In the event more data is provided than allocated for by the arguments, then only the first n elements of the

data is used in the replacement:

 85 86 87 88 ⎕ fireplace 12,6,10,3

 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 85 86 87 13 14 15 16 17 18 19

Page 384

⎕ fnames

Returns a string array of strings. This is useful for manipulation with .Net classes such as generic List.

 a = ⎕ fnames
 a.GetType()
System.String[]

Page 385

⎕ fnums

Returns an integer array of tie numbers indicating all of the files currently associated with a tie number.

Page 386

⎕ fread

Reads a component from a component file. The syntax for this is:

 a = ⎕ fread tn cn

Any arbitrary serializable data can be returned from a component. The data will be deserialized and the

original object will be returned.

Page 387

⎕ freplace

Replaces the data in an existing component with an arbitrary serializable object.

 a = 1 20 30 40.5
 a ⎕ freplace tn cn

Page 388

⎕ fsize

Returns a five element integer vector.

 ⎕ fsize
1 10 0 0 0

The first element is the starting component, the second element is the next component which will be used.

The last component in use is this element less one.

Page 389

⎕libdup

⎕ libdup duplicates an entire virtual directory based on the associated library number, releasing any unused

space from the virtual pool of the library.

Syntax:

 "newLibNo dupPath" ⎕ libdup libNo

newLibNo: The library number to which dupPath will be associated.

dupPath: The file path at which to create the newly duplicated library.

tn: The library number for the Share File library to duplicate.

Remarks:

The ⎕libdup system function creates a copy of the specified library.

This newly created copy of the file library contains all components and data which were present in the source

library.

The only difference between the source and newly created libraries, is that the newly created library has had

all unused space released from the virtual pool of the Share File.

This process decreases the physical file size of the library, since all unused space in the library has been

released back to the operating system.

The inclusion of the ⎕libdup system function is primarily for completeness in the Share File System, as the

Share File System by design reclaims space as necessary from the virtual pool.

Example:

 @"2 c:\test\testnew"”⎕ libdup 101

Where 101 is the library number for the existing virtual directory. This
will duplicate all of the files in the 101 virtual directory and place
them in c:\test\testnew which is associated with the library number 2.

Page 390

⎕fdup

Visual APL includes ⎕ fdup for legacy support.

Syntax:

 filePath ⎕ fstream tn

filePath: The full file path of the tied share file.

tn: The tie number of the file to dup.

Remarks:

⎕ fdup duplicates a single file. This will only duplicate share files whose name matches the virtual directory in

which they reside, and the virtual directory contains only the file being duplicated.

Example:

 "c:\myfiles\filename" ⎕ fdup 3

Page 391

⎕fremove

⎕ fremove removes the specified component from a Share File, and renumbers the remaining components.

Syntax:

 ⎕ fremove tn compNumber

tn: The tie number of the file to drop the component from.

compNumber: An integer specifying the component number to remove from the file.

Remarks:

⎕ fremove removes a single component from a Share File, returning the space used by the removed

component to the virtual pool.

Example:

 // drop component 10 from the share
 // file at tie number 2.
 ⎕ fremove 2 10

Page 392

⎕fstream

Returns the underlying .Net FileStream object for the associated tie number. This allows the use of all

features provided by the FileStream object, while still maintaining compatibility with the Share File system.

 fs = ⎕ fstream 3

 fs.CanRead
true
 fs.CanWrite
true

Page 393

⎕ fstie

Ties an existing file and associates the file with either a given tie number or the next available tie number.

 "c:\myfiles\filename" ⎕ fstie 10
 or
 tn = ⎕ fstie "c:\myfiles\filename"
 or
 // if a tie number of 0 is specified, the system assigns the next
available tie number.
 "c:\myfiles\filename" ⎕ fstie 0

It is also possible to access component files within a virtual directory created either with ⎕ libd or ⎕ fcreate

by using the associated library number for a virtual directory.

 "101 filename" ⎕ fstie 10

 tn = ⎕ fstie "10 filename"

 "101 filename" ⎕ fstie 0

In this way many component files can reside in a virtual directory, or single physical file.

Page 394

⎕ funtie

Removes the tie number associated with the existing component file.

Page 395

⎕ lib

To manage your files in their virtual directory, you have ⎕ fnums and ⎕ fnames as well as ⎕ lib and ⎕

libs:

 ⎕ lib 10

'my2file' 'myfile' 'another'
Which returns an array of file names found in the virtual directory.

To remove a file from a virtual directory, use:

 "another" ⎕ ferase 12

 ⎕ lib 10
'my2file' 'myfile'

To untie a file use ⎕funtie.

Page 396

⎕ libd

Since component files reside in a single physical file, to create the physical file or virtual directory you use ⎕

libd, for instance:

 ⎕ libd "10 c:\\tmysf"
true

Notice that the directory path has two backslashes, as the \ is the escape character. You could have also

placed an @ symbol at the beginning for raw text, for instance:

 ⎕ libd @"10 c:\tmysf"
true
Which obviates the need for the double backslash.

Once the virtual directory has been created, you can use it just like you normally use a library.

For instance:

 ⎕ fcreate "10 myfile"
1
 ⎕ fsize 1
1 1 0 0 0

 10 ⎕ fappend 1
1

The component file can also be tied or created by specifying the tie number:

 "10 another" ⎕ fcreate 12
12
 ⎕ fsize 12
1 1 0 0 0

The tie number can be changed at any time by simply retieing:

 "10 another" ⎕ ftie 10
10

As with all component files, you can store disparate data types in the components and retrieve them, as well

as replace component data:

 "test" ⎕ fappend 12
1

 10 11 12 ⎕ fappend 12
2

 ⎕ fread 12,2
10 11 12

 "test" (10 11 12) "morestuff" ⎕ fappend 12
3

 ⎕ fread 12,3
 test 10 11 12 morestuff

Page 397

 (3 3 9) ⎕ freplace 12,2
 ⎕ fread 12,2
 0 1 2
 3 4 5
 6 7 8
One of the new features of these component files is the ability to manipulate component data in place. This

means that it is not necessary to read in a component and catenate data, then write the component back

out. Since catenate is one of the most expensive operations, this can be very useful. Only homogenous

intrinsic data types can be manipulated in place. For instance a vector integers, doubles, chars, etc. can be

modified. However, nested arrays can not.

Example:

 (5) ⎕ fappend 12
4
 ⎕ fread 12,4
0 1 2 3 4
 10 11 12 ⎕ fcatenate 12,4
 ⎕ fread 12,4
0 1 2 3 4 10 11 12
This file system also uses blocks to minimize file size explosion as component sizes grow.

It is also possible to manage character data:

 "hello how are " ⎕ fappend 12
5
 "you?" ⎕ fcatenate 12,5

 ⎕ fread 12,5
hello how are you?

It is also possible to read a subset of an intrinsic array using index read:

 (20) ⎕ fappend 12
6

 ⎕ firead 12,6,10,3
10 11 12

The data can also be replaced in place using index replace:

 100 200 300 ⎕ fireplace 12,6,10,3
 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 100 200 300 13 14 15 16 17 18 19
Catenating and modifying integers in place is extremely useful when updating pointers, such as are used as

references. This significantly reduces the time and space required to maintain systems which require reading

and modifying large arrays of integers, double, characters, etc.

In the event more data is provided than allocated for by the arguments, then only the first n elements of the

data is used in the replacement:

 85 86 87 88 ⎕ fireplace 12,6,10,3

 ⎕ fread 12,6
0 1 2 3 4 5 6 7 8 9 85 86 87 13 14 15 16 17 18 19

It is also possible to allocate a contiguous block of space as a single component:

 ⎕ falloc 12,1000
7

Page 398

 ⎕ fread 12,7
1000
Using this in conjunction with the index read and replace you can easily manipulate text documents in a

component.

It is also possible to retrieve the location of a component. This permits using other tools, such as ⎕nread to

access the data in a component. For instance, you could store a document in a component file, use ⎕

fcnloc to retrieve the starting point and then read the data using other tools:

 ⎕ fcnloc 12,7
54288

This is particularly useful to include images, documents and other data in a component file in a single virtual

directory which needs to be accessed by other programs and tools.

Page 399

⎕ libdcws

It is also possible to control access to the virtual directory, this is done with ⎕ libdrw for setting read only

or read/write access, and ⎕ libdcws for checking write status. Use 0 to set read only and 1 for read/write.

 ⎕ libdcws 10
1

 ⎕ libdrw 10,0
0

 ⎕ libdcws 10
0

 ⎕ libdrw 10,1
1

 ⎕ libdcws 10
1

Page 400

⎕ libdrw

It is also possible to control access to the virtual directory, this is done with ⎕ libdrw for setting read only

or read/write access, and ⎕ libdcws for checking write status. Use 0 to set read only and 1 for read/write.

 ⎕ libdcws 10
1

 ⎕ libdrw 10,0
0

 ⎕ libdcws 10
0

 ⎕ libdrw 10,1
1

 ⎕ libdcws 10
1

Page 401

⎕ libs

This displays a matrix of all virtual directories and their associated library numbers.

 ⎕ libs
 2 C:\mydir\test.mf
 3 C:\mydir\test

Page 402

Visual APL Programmer's Reference
 Operators and Functions

Visual APL provides a large set of primitives which include both functions and operators. These are

represented by symbols that specify which operations to perform in an expression. Visual APL predefines the

usual arithmetic, data manipulation and logical functions and operators, as well as a variety of others as

shown in the following table. In addition, many operators can be overloaded by the user, thus changing their

meaning when applied to a user-defined type. There are two facilities provided to achieve this overloading,

one is the using of a class with the appropriate attributes in place and the second is the overloading of .Net

common operators, which can be overloaded in C# using the operator keyword. With the using keyword it is

also possible to add functions and operators.

The primitive functions and operators provide support for all of the intrinsic .Net datatypes. As such, long,

short, float, double, etc will be referred to as numeric. As there are a large number of intrinsic datatypes as

well as Complex, IntN, BitArray, etc. not all types are included in the default array operator set. The default

types are Int32, Double, and Char. However, scalar operations on all datatypes will work for the .Net base

operator set.

In Visual APL, a function or operator is a term or a symbol that takes one or more expressions, called

operands, as input and returns a value. Operators that take one operand, such as the increment operator

(++), are called monadic or unary operators. Operators that take two operands, such as arithmetic operators

(+,-,*,/) are called dyadic or binary operators. One operator.

The following Visual APL statement contains a single monadic operator, and a single operand. The increment

operator, ++, modifies the value of the operand y.:

Visual APL

y++;

The following Visual APL statement contains two dyadic operators, each with two operands. The assignment

operator, =, has the integer y, and the expression 2 + 3 as operands. The expression 2 + 3 itself contains

the addition operator, and uses the integer values 2 and 3 as operands:

Visual APL

y = 2 + 3;

An operand can be a valid expression of any size, composed of any number of other operations.

Operators in an expression are evaluated in a specific order, that is right to left. The following table divides

the operators into categories based on the type of operation they perform.

Primary x.y, f(x), a[x], x++, x--, new, typeof

Monadic (scalar and array) +, -, !, ~, (T)x, ⍴, ×, ÷, ⍳, ∊, ⌊, ⌈, ↑, ↓

Dyadic (scalar and array) (,ravel) , !, ?, ⍋, ⍒, ⍎, ⍕, ⊂, ⊃, ⌽, ⍉, ⊖

Arithmetic ---
Multiplicative (scalar and
array)

×, ÷, |, ⍟ , *, ○

Page 403

Arithmetic ---
Multiplicative (scalar)

%

Arithmetic --- Additive
(scalar and array)

+, -

Shift (scalar) <<, >>

Relational (scalar and
array)

<, >, <=, >=, ≤ ≥

Type testing (scalar) is, as

Equality (scalar and
array)

==, ≈ ≡ ≠ ≊, ≣

Equality (scalar) !=

Logical (scalar and array) ∧, ∨, ⍱, ⍲, ∼

Logical (scalar) &, ^, |

Data Analysis (scalar and
array)

⍳, ∊, ⌈, ⌊, ⊥, ⊤, !, ?, ⍋, ⍒, ⍷, ⍎, ⍕

Data Manipulation (scalar
and array)

⍴, ↑ ↓ (,catenate), ⍪, ⊂, ⊃, ⊖, ⌽, ⍉

Operator Functions (scalar
and array)

/, \, [], (. dot), ¨, ⌿ , ⍀ , ∘̂˜

Conditional (Boolean) &&, ||, then/else

Assignment =, ← +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, …

Dyadic Operators are evaluated from right to left, Monadic (unary) operators are evaluated from left to right.

Visual APL

num1 = 5;

num1++;

print num1

However, the output of the following example code is undefined:

Visual APL

num2 = 5;

num2 = num2++; //not recommended

print num2

Page 404

Therefore, the latter example is not recommended. Parentheses can be used to surround an expression and

force that expression to be evaluated before any others. For example, 2 × 3 + 4 would normally become

14. This is because dyadic operators evaluate from right to left . Writing the expression as (2 × 3) + 4
results in 10, because it indicates to the Visual APL compiler that the multiplication operator (×) must be

evaluated before the addition operator (+).

Page 405

Visual APL Programmer's Reference
+ Add

The Add function can act as either a monadic or dyadic primitive.
result ← expr1 + expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The dyadic + functions are predefined for numeric and string types. For numeric types, + computes the sum
of its two operands. When one or both operands are of type string, + concatenates the string representations
of the operands.

User-defined types can overload the dyadic + functions.

Exam ple

function fn() {
 ⎕ ← 10 + 10
 ⎕ ← 10.5 + 10.5
 ⎕ ← "hello " + "world"
 ⎕ ← 2j + 4j
 ⎕ ← 2.0 + " 2"
}

 fn()
20
21
hello world
 6j
2 2

(only scalar Complex numbers are supported in this version)

Page 406

Visual APL Programmer's Reference
∧ And

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical AND of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ∧ 1 0 1 0
 ⎕ ← 0 1 0 1 ∧ 0 0 0 0
 ⎕ ← 1 ∧ 1
 ⎕ ← 1 ∧ 0
 ⎕ ← 0 ∧ 0
 ⎕ ← 1 2 3 4 ∧ 4 3 2 1
}

 fn()
1 0 1 0
0 0 0 0
1
0
0
1 1 1 1

Page 407

Visual APL Programmer's Reference
[] Axis

Specifies that operatorexpr1 should apply its functionality across the dimension(s) specified in axisexpr
result ← expr1 operatorexpr1[axisexpr] expr2
result ← operatorexpr1[axisexpr] expr2

Where:
result

An expression.
expr1

An expression.
operatorexpr1

An operator expression.
axisexpr

An axis expression.
expr2

An expression.

Rem arks

The Axis operator provides a mechanism for applying the functionality of operatorexpr1 to expr1 and expr2
across the dimension or dimensions specified by axisexpr.

axisexpr is a numeric vector.

Example

function fn() {
 ⎕ ← "apply a function across first axis"
 ⎕ ← ⌽ [0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function across second axis"
 ⎕ ← ⌽ [1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with reduction across first axis"
 ⎕ ← +/[0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with reduction across second axis"
 ⎕ ← +/[1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with scan across first axis"
 ⎕ ← +\[0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a function with scan across second axis"
 ⎕ ← +\[1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a dyadic function across first axis"
 ⎕ ← 1 ⌽ [0]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a dyadic function across second axis"
 ⎕ ← 1 ⌽ [1]3 3 ⍴ ⍳ 9
 ⎕ ← "apply a dyadic function with reduction across first axis"
 ⎕ ← 2+/[0]4 4 ⍴ ⍳ 16
 ⎕ ← "apply a dyadic function with reduction across second axis"
 ⎕ ← 2+/[1]4 3 ⍴ ⍳ 16
 ⎕ ← "apply a dyadic function with scan across first axis"
 ⎕ ← 2+\[0]4 4 ⍴ ⍳ 16
 ⎕ ← "apply a dyadic function with scan across second axis"
 ⎕ ← 2+\[1]4 4 ⍴ ⍳ 16
}

 fn()
apply a function across first axis
 6 7 8
 3 4 5
 0 1 2
apply a function across second axis
 2 1 0
 5 4 3
 8 7 6
apply a function with reduction across first axis
9 12 15
apply a function with reduction across second axis
3 12 21
apply a function with scan across first axis
 0 1 2
 3 5 7
 9 12 15
apply a function with scan across second axis
 0 1 3
 3 7 12
 6 13 21

Page 408

apply a dyadic function across first axis
 3 4 5
 6 7 8
 0 1 2
apply a dyadic function across second axis
 1 2 0
 4 5 3
 7 8 6
apply a dyadic function with reduction across first axis
 4 6 8 10
 12 14 16 18
 20 22 24 26
apply a dyadic function with reduction across second axis
 1 3
 7 9
 13 15
 19 21
apply a dyadic function with scan across first axis
 4 6 8 10
 12 14 16 18
 20 22 24 26
apply a dyadic function with scan across second axis
 1 3 5
 9 11 13
 17 19 21
 25 27 29

Page 409

Visual APL Programmer's Reference
! Binomial

Determines the number of groups of objects in the population represented by expr2 based on group size
defined by expr1.
result ← expr1 ! expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

The Binomial function supports positive arrays of numbers, and negative arrays of numbers.

Example

function fn() {
 ⎕ ← 2 ! 10
 ⎕ ← 2 3 4 ! 10 11 12
 ⎕ ← 2 ! ¯10
 ⎕ ← 2 3 4 ! ¯10 20 ¯30
}

 fn()
45
45 165 495
55
55 1140 40920

Page 410

Visual APL Programmer's Reference
[] Operator

Square brackets ([]) are used for arrays, indexers, attributes, and dynamic generic selection.
type[]
array[indexexpr]
generictype[typeexpr]

Where:

type
A type.

array
An array.

indexexpr
An index expression.

generictype
A generic type.

typeexpr
A type expression.

Rem arks

An array type is defined as a type followed by brackets:

int[] a = new int[10]
or dynamic
a = 0 0 0 0 0 0 0 0 0 0

To access an element of an array, the indices of the desired elements are enclosed in brackets after the
expression:

Dependent state: ⎕IO

a = 10 20 30
a[0]

10
a[0 1]

10 20

The array indexing operator cannot be overloaded; however, types can define indexers, properties that take
one or more parameters. Indexer parameters are enclosed in square brackets, just like array indices, but
indexer parameters can be declared to be of any type (unlike array indices, which must be integral).

Example

function fn() {
 a = 1 2 3 4 5
 ⎕ ← a[0 1 2]
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← a[0 1; 0 1]
 ⎕ ← a[(0 1) (0 2)]
 a = Hashtable()
 a["test"] = ⍳ 10
 ⎕ ← a["test"]
 a = Dictionary[string, int]()
 a.Add("one", 10)
 ⎕ ← a["one"]
}

 fn()
1
 0 1
 3 4
1 2
0 1 2 3 4 5 6 7 8 9
10

Page 411

Page 412

Visual APL Programmer's Reference
, Catenate

The Catenate function can act as either a monadic or dyadic primitive.
result ← expr1 , expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Catenates expr1 with expr2 along the last axis, unless another axis is provided.

Scalar expressions are expanded to conform with the non scalar expression.

Array expressions which differ by a rank of 1 are expanded to be conformable with the higher rank
expression. Arrays must match in primary dimensions.

Example

function fn() {
 a = 1 2 3
 b = 4 5 6
 ⎕ ← a, b
 a = "test"
 b = "more"
 ⎕ ← a, b
 a = 3 3 ⍴ ⍳ 9
 b = 3 4 ⍴ ⍳ 12
 ⎕ ← a, b
 a = 10.4
 ⎕ ← a, b
 a = "test" 10
 b = "more" 20
 ⎕ ← a, b
}
 fn()
1 2 3 4 5 6
testmore
 0 1 2 0 1 2 3
 3 4 5 4 5 6 7
 6 7 8 8 9 10 11
 10.4 0 1 2 3
 10.4 4 5 6 7
 10.4 8 9 10 11
 test 10 more 20

Page 413

Visual APL Programmer's Reference
⌈ Ceiling

Returns the smallest whole number greater than or equal to the specified number.
return ← ⌈ expr1

Where:

result
An expression.

expr1
An expression.

Rem arks

Dependent state: ⎕ CT

The Floor function returns the smallest whole number greater than or equal to a. If a is equal to NaN,
NegativeInfinity, or PositiveInfinity, that value is returned.

The behavior of this function follows IEEE Standard 754, section 4. This kind of rounding is sometimes called
rounding toward positive infinity.

Example

function fn() {
 ⎕ ← ⌈ 100.5
 ⎕ ← ⌈ 100.7
 ⎕ ← ⌈ 100.2
 ⎕ ← ⌈ 100.1 200.1 300.1
 ⎕ ← ⌈ 3 3 ⍴ 10.2
}
 fn()
101
101
101
101 201 301
 11 11 11
 11 11 11
 11 11 11

Page 414

Visual APL Programmer's Reference
/ ⌿ Compress Replicate

The Replicate function can act as either a monadic or dyadic primitive.
result ← expr1 / expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

expr1 must be a vector equal in length to the last dimension of expr2. If another axis is specified, then the
length of expr1 must match the length of the specified dimension of expr2.

For values of 0 in expr1, elements in expr2 are removed. For positive integral elements in expr1, elements in
expr2 are replicated integral times.

Example

function fn() {
 ⎕ ← 0 1 0 1 / 1 2 3 4
 ⎕ ← 0 1 0 1 / 4 4 ⍴ ⍳ 16
 ⎕ ← 1 2 3 4 / 1 2 3 4
}
 fn()
2 4
 1 3
 5 7
 9 11
 13 15
1 2 2 3 3 3 4 4 4 4

Page 415

Visual APL Programmer's Reference
≡ Depth

The Depth function can act as either a monadic or dyadic primitive.
result ← ≡ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Depth function determines the deepest level of nesting present in expr1.

Example

function fn() {
 a = 1
 ⎕ ← ≡
 a = 1 2
 ⎕ ← ≡
 a = "test" 2
 ⎕ ← ≡
 a = ⊂ ⊂ 2 3
 ⎕ ← ≡
}
 fn()
0
1
2
3

Page 416

Visual APL Programmer's Reference
⊃ Disclose (Build Array From)

The Disclose function can act as either a monadic or dyadic primitive.
result ← ⊃ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Disclose function builds result from the elements of expr1.

If expr1 has only one (1) element, result is simply the contents of that first element. This simple case of
Disclose is also known as un-nest, since it removes one (1) level of nesting from the data of expr1.

If expr1 contains two (2) or more elements, each element of expr1 is conformed such that every element of
expr1 has the same rank and shape, and these elements are then structured into the result. The result is
structured by concatenating together the conformed elements of expr1, and reshaping the result to be the
shape of expr1 concatenated with the determined conformed shape applied to the elements of expr1.

The Disclose function is the inverse of the Enclose function.

Example

function fn() {
 a = 1
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = 1 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = ⊂ ⊂ 1 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = (1 2 3) 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
 a = (3 3 ⍴ 1 2 3) 2 3
 ⎕ ← ⊃ a
 ⎕ ← ⍴ ⊃ a
}
 fn()
1

1 2 3
3
 1 2 3

 1 2 3
 2 0 0
 3 0 0
3 3
 1 2 3
 1 2 3
 1 2 3

 2 0 0
 0 0 0
 0 0 0

 3 0 0
 0 0 0
 0 0 0
3 3 3

Page 417

Page 418

Visual APL Programmer's Reference
÷ Divide

The ÷ function can act as either a monadic or a dyadic primitive.
result ← expr1 ÷ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The division operator (÷) divides its first operand by its second. All numeric types have predefined division
operators.

Dependent state: ⎕ DBZ, ⎕ DBZV

The ⎕DBZ state variable provides control over the way in which divide addresses division by zero.

The default value is 0 to match .Net languages, however, you can set ⎕DBZ to the following:

⎕dbz:
 0 : 1÷0 = 0
 0÷0 = 0
 1 : 1÷0 = DOMAIN ERROR
 0÷0 = 1
 2 : 1÷0 = DOMAIN ERROR
 0÷0 = DOMAIN ERROR
 3 : 1÷0 = NaN or ⎕dbzv
 0÷0 = NaN or ⎕dbzv
 4 : 1÷0 = +-Infinity
 0÷0 = NaN

You can set ⎕DBZV to any object, and it will be returned when ⎕dbz is set to 3.

User-defined types can contain cross language overloads to the ÷ operator.

Example

function fn() {
 ⎕ ← 10 ÷ 20
 ⎕ ← 20 ÷ 10
 ⎕ ← 10 20 ÷ 20 10
 ⎕ ← 10.1 20.2 ÷ 10 20
 ⎕ ← 10 20 ÷ 10.1 20.1
 ⎕ ← (3 3 ⍴ ⍳ 9) ÷ 10
}

 fn()
0.5
2
0.5 2
1.01 1.01
0.9900990099 0.9950248756
 0 0.1 0.2
 0.3 0.4 0.5
 0.6 0.7 0.8

Page 419

Visual APL Programmer's Reference
↓ Drop

The Drop function can act as either a monadic or dyadic primitive.
result ← expr1 ↓ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Drop function removes data from dimensions of expr2, according to the amounts specified in expr1.

The length of expr1 should match the rank of expr2, and each element of expr1 specifies the amount of data
to drop from the respective dimension of expr2.

The elements of expr1 can be either negative, positive, or 0. If an element of expr1 is positive, that length is
dropped from the related dimension of expr2. If an element of expr1 is negative, that length is dropped from
opposite end of the related dimension of expr2. If an element of expr1 is 0, no data is dropped from the
related dimension of expr2.

Example

function fn() {
 ⎕ ← 1 ↓ 10 11 12
 ⎕ ← 3 ↓ 10 11 12 13 14 15
 ⎕ ← ¯1 ↓ 10 11 12
 ⎕ ← ¯3 ↓ 10 11 12 13 14 15
 ⎕ ← 2 2 ↓ 3 3 ⍴ ⍳ 9
 ⎕ ← ¯2 ¯2 ↓ 3 3 ⍴ ⍳ 9
}
 fn()
11 12
13 14 15
10 11
10 11 12
 8
 0

Page 420

Visual APL Programmer's Reference
¨ Each (For-Each data iteration)

Performs the specified operator expression across each element of expr1 and expr2.
result ← expr1 operator¨ expr2

Where:
result

An expression.
expr1

An expression.
operator

An operator expression.
expr2

An expression.

Rem arks

The Each operator is a specialized short hand construct simulating a single for loop across the elements of
expr2.

The Each data iterator performs the specified operator expression between each element of expr1 and expr2.
 If expr1 or expr2 is a scalar, that expression is considered to be the same rank and shape of the higher rank
expression.

Example

function fn() {
 ⎕ ← 2 ⍴ ¨ 1 2 3
 ⎕ ← (⊂ 2 2) ⍴ ¨ 1 2 3
 ⎕ ← (⊂ 2 2) ⍴ ¨ (1 2) (⍳ 4)
 ⎕ ← (⊂ 1 2 3) + ¨ (1 2 3) (10 20 30)
 ⎕ ← (⊂ ⊂ 1 2 3) + ¨¨ (1 2 3) (10 20 30)
 ⎕ ← 3 ⍳ ¨ (1 2 3) (4 5 6)
 ⎕ ← (⊂ 2 3) ⍳ ¨ (2 3) (4 5) (5 6)
 ⎕ ← ⍳ ¨ 1 2 3
 ⎕ ← ⍴ ¨ (1 2) (3 4 5) (3 3 ⍴ ⍳ 9)
}
 fn()
 1 1 2 2 3 3
 1 1 2 2 3 3
 1 1 2 2 3 3
 1 2 0 1
 1 2 2 3
 2 4 6 11 22 33
 2 3 4 3 4 5 4 5 6 11 12 13 21 22 23 31 32 33
 1 1 0 1 1 1
 0 1 2 2 2 2
 0 0 1 0 1 2
 2 3 3 3

Page 421

Visual APL Programmer's Reference
⊂ Enclose

The Enclose function can act as either a monadic or dyadic primitive.
result ← ⊂ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Enclose function creates result by nesting expr1 once.

The only exception to this enclosure rule is if expr1 is a native .Net type scalar, such as Int32, Double, or
Char. If expr1 is a .Net native type scalar, the data is not enclosed, and result is exactly equal to expr1.

The Enclose function is the inverse of the Disclose function.

Example

function fn() {
 a = ⊂
 ⎕ ← "shape of enclosed scalar"
 ⎕ ← ⍴
 a = ⊂ 2 3
 ⎕ ← "shape of enclosed vector"
 ⎕ ← ⍴
 a = ⊂ 1 2 3) (5 6 7)
 ⎕ ← "shape of enclosed vector of vectors"
 ⎕ ← ⍴
 a = ⊂ (1 2 3) (4 5 6)
 ⎕ ← "shape of enclose of each vector"
 ⎕ ← ⍴
 ⎕ ← "shape of each enclosed vector"
 ⎕ ← ⍴ a
 a = ⊂ ⊂ 2 3
 ⎕ ← "shape of the original vector using each"
 ⎕ ← ⍴ ¨a
}
 fn()
shape of enclosed scalar

shape of enclosed vector

shape of enclosed vector of vectors

shape of enclose of each vector
2
shape of each enclosed vector

shape of the original vector using each
 3

Page 422

Visual APL Programmer's Reference
∊ Enlist (Flatten Array)

The Enlist function can act as either a monadic or dyadic primitive.
result ← ∊ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Enlist function produces a flattened version of expr1. result contains all data which was present in expr1
and its sub elements, with all nesting, shape, and rank removed, so that result is a simple vector.

Example

function fn() {
 a = ∊ 1
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ 3 3 ⍴ ⍳ 9
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ (1 2 3) (4 5 6)
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ∊ (⊂ ⊂ ⊂ 1 2 3) (⊂ ⊂ "test")
 ⎕ ← a
 ⎕ ← ⍴ a
}
 fn()
1
1
1 2 3
3
0 1 2 3 4 5 6 7 8
9
1 2 3 4 5 6
6
 1 2 3 test
7

Page 423

Visual APL Programmer's Reference
≈ Equality (Approximately Equal)

The Approximately Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≈ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Approximately Equal function returns a 1 if expr1 is equal to expr2, or if expr2 is within ⎕CT of expr1.
 Otherwise, the return is 0.

Example

function fn() {
 ⎕ ← 10 ≈ 12
 ⎕ ← 10 ≈ 9 10 11
 ⎕ ← 10 ≈ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≈ 1 2 3
 ⎕ ← 1 2 3 ≈ 1+1 2 3
 ⎕ ← 1 2 3 ≈ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≈ 3 3 ⍴ 10 11
}
 fn()
0
0 1 0
 0 0 0
 0 0 1
 0 0 0
1 1 1
0 0 0
0 0 0
 0 0 0
 0 0 0
 0 0 0

Page 424

Visual APL Programmer's Reference
⍎ Execute

Executes the code supplied by expr1
 result ← ⍎ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Execute expression dynamically executes the code returned by expr1. expr1 can return either a string, a
dynamic variable (IVariable), or a compiled code object (obtainable through the compile method). If expr1
evaluates to a string, then the code is parsed, compiled, and then executed. If expr1 is a compiled code
object, no parsing and compilation is required, and the code object is executed immediately.

Note: Language features which effect the code flow of a function do not effect the function which initiated the
dynamic execution. Examples of these kinds of statements include yield, return, break, continue, branching,
and conditional branching. Such statements can be used within the respective constructs to which they apply,
such as a yield statement within a function defined in the same dynamic execution.

Advanced Dynamic Execution Features:

Dynamic execution allows you to override the module dictionaries used within the context of the dynamic
execution. Using this feature, you can specify either or both of the local variable and global variable
dictionaries, which enables the dynamic execution of code within contexts other than the context of the
function which called the dynamic execution. You can even create entirely new contexts under program
control just for the purpose of dynamically executing code.

The following example calls dynamic execute and specifies that only "a" and "b" are to be used in the local
dictionary of the execution:

 a = 10
 b = 20 30 40
 c = ⍎ "a+b" in (a,b)
 c
30 40 50

Depending on where an execute statement is programmed in your code, you will have access to either or
both of the global dictionaries ws and wsi. The field ws contains all static data which exists in the current
context of where you reference ws, and wsi contains all instance data for the context it which it is referenced.

In functions which are defined with the static access modifier, only the ws field will be accessible, because by
definition no instance data can be referenced from a static method. In an instance method, or any method
which does not exist in a static class or has the static modifier applied to its definition, you also have access
to the global field wsi.

By default, when you run a dynamic execution and do not specify the global context in which it will run, the
wsi (or ws for static methods) is passed as the default global dictionary.

Dynamically defining contexts:

You can dynamically create a global context under program control, which can be used in place of the default
ws or wsi global fields.

Here is an example of creating a module dictionary which contains a single element "alist". Once the
dictionary is created and initialized, the dictionary is then passed to execute as the global dictionary:

Note: Any object which inherits from IDictionary can be used as a global dictionary.

 using System
 using System.Collections
 using System.Collections.Generic
 gd = Dictionary[object, object]()
 a = ArrayList()
 a.Add(10)
0
 a.Add("test")

Page 425

1
 a.Count
2
 gd.Add("alist",a)
 ⍎ "alist.Add('more')" in (),gd
false
 a.Count
3

As you can see above, the variable "alist" does not exist in the context in which the execute is run, and only
exists as an entry in the newly created Dictionary object which was passed to the execute statement. Using
this methodology, you can dynamically create any arbitrary context in which to run your dynamic execution.

Dynamic Evaluation:

All code which is processed by dynamic execute is fully compiled to the lowest possible level in .Net, which
allows the code to run as fast as any code compiled at runtime. In some cases, the code statement to be run
by execute may be small enough that the extra time required to compile the code would be unnecessary, and
in these cases it may be optimal to interpret the code directly.

To directly interpret a code snippet, use the eval statement. Here is the above example for execute, modified
to instead use the eval method:

 using System
 using System.Collections
 using System.Collections.Generic
 gd = Dictionary[object, object]()
 a = ArrayList()
 a.Add(10)
0
 a.Add("test")
1
 a.Count
2
 gd.Add("alist",a)
 eval("alist.Add('more')", null, gd)
false
 a.Count
3

The performance gain of directly interpreting code is only found when evaluating small and simple snippets of
code. While fully supported, snippets which include statements such as for or while loops would not be
normally appropriate, because the iteration process re-evaluates each line of code as it is run in the for loop,
and is therefore not as highly optimized as direct compilation.

Example

 a = 10
 b = 20 30 40
 ⍎ "a+b"
30 40 50
 c = ⍎ "a+b"
 c
30 40 50
 c = ⍎ "a+b" in (a,b)
 c
30 40 50
 using System.Collections.Generic
 gd = Dictionary[object, object]()
 x
name 'x' is not defined
 c = ⍎ "x = a+b" in (a,b),gd
 x
name 'x' is not defined
 gd["x"]
30 40 50
 using System.Collections
 h = Hashtable()
 gd["newhash"] = h
 h.Count
0

Page 426

 c = ⍎ "newhash.Add(\"one\",100.9)" in (),gd
 gd["newhash"].Count
1
 h.Count
1
 h["one"]
100.9
 e = compile("a = b+c",ws)
 b = 10
 c = 100
 ⍎ e in (b,c)
110
 a
110
 ⍎ e
110

Page 427

Visual APL Programmer's Reference
\ Expand (Pad)

 The Expand function can act as either a monadic or dyadic primitive.
result ← expr1 \ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The length of the result is determined by the length of expr1.

expr1 is a numeric vector, where at every non zero (0) element the next element of expr2 will be inserted
into the result. Where a zero (0) occurs in expr1, the fill data element for expr2 is inserted into the result
instead.

Example

function fn() {
 ⎕ ← 1 0 1 0 1 \ 1 2 3
 ⎕ ← 1 0 1 0 1 \ 3 3 ⍴ ⍳ 9
 ⎕ ← 1 0 1 \ "test" (1 2 3)
 ⎕ ← 1 0 0 1 1 \ 3 3 ⍴ ⍳ 9
}
 fn()
1 0 2 0 3
 0 0 1 0 2
 3 0 4 0 5
 6 0 7 0 8
 test 1 2 3
 0 0 0 1 2
 3 0 0 4 5
 6 0 0 7 8

Page 428

Visual APL Programmer's Reference
* Exponential (Exp)

The Exponential function can act as either a monadic or dyadic primitive.
result ← * expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Exponential function expands the Math.Exp method to work with numeric arrays.

Math.Exp returns the number e raised to the power expr1. If expr1 equals NaN or PositiveInfinity, that value
is returned. If expr1 equals NegativeInfinity, 0 is returned.

Example

function fn() {
 ⎕ ← *0
 ⎕ ← *1
 ⎕ ← *2
 ⎕ ← *3
}

 fn()
1
2.718281828
7.389056099
20.08553692

Page 429

Visual APL Programmer's Reference
! Factorial

The Factorial function can act as either a monadic or dyadic primitive.
result ← ! expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Factorial function determines the mathematical factorial of expr1. For non integral expr1, the standard
mathematical procedure of determining the factorial result through the Gamma function is applied.

Example

function fn() {
 ⎕ ← !1
 ⎕ ← !2
 ⎕ ← !3
 ⎕ ← !4
 ⎕ ← !1 2 3 4
}
 fn()
1
2
6
24
1 2 6 24

Page 430

Visual APL Programmer's Reference
⍷ Find

The Find function can act as either a monadic or dyadic primitive.
result ← expr1 expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Find function returns an integer array of the same shape and rank as expr2, with a one (1) wherever the
array expr1 was found in expr2. expr1 and expr2 can be arrays of any shape, rank, and depth.

Dependent state: CT

Example

function fn() {
 ⎕ ← 1 2 3 ⍷ 1 2 3 4 1 2 3
 ⎕ ← 0 1 2 ⍷ 3 3 ⍴ ⍳ 9
 ⎕ ← "what" ⍷ "morewhatofwhat"
 ⎕ ← "hey" ⍷ 4 3 ⍴ "heyyouheyyou"
}
 fn()
1 0 0 0 1 0 0
 1 0 0
 0 0 0
 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0
 1 0 0
 0 0 0
 1 0 0
 0 0 0

Page 431

Visual APL Programmer's Reference
↑ First

The First function can act as either a monadic or dyadic primitive.
result ← ↑ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The First function returns the first element of expr1, disclosing the element if it is enclosed.

The First function is a short hand for accessing the first element of an array.

Example

function fn() {
 ⎕ ← ↑ 1 2 3
 ⎕ ← ↑ 3 3 ⍴ ⍳ 9
 ⎕ ← ↑ 3 3 3 ⍴ ⍳ 27
 ⎕ ← ↑ "test"
 ⎕ ← ↑ 4 4 ⍴ "test"
}
 fn()
1
0
0
t
t

Page 432

Visual APL Programmer's Reference
⌊ Floor

The Floor function can act as either a monadic or dyadic primitive.
result ← ⌊ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Dependent state: CT

The Floor function returns the largest whole number less than or equal to expr1. If expr1 is equal to NaN,
NegativeInfinity, or PositiveInfinity, then that value is returned.

The behavior of this function follows IEEE Standard 754, section 4. This kind of rounding is sometimes called
rounding toward negative infinity.

Note: The Floor function uses CT when determining if expr1 is already equal to an integral value. If expr1
is within CT of the next greater whole number, than the Floor function does not apply. Instead, Floor
assumes that if expr1 cannot be rounded to the next lesser whole number, than it must match the next
greatest whole number, and the next greatest whole number is returned. This guarantees that only integers
will return from the Floor function.

Example

function fn() {
 ⎕ ← ⌊ 1.1
 ⎕ ← ⌊ 1.5
 ⎕ ← ⌊ 1.8
 ⎕ ← ⌊ 1.1 1.5 1.8
 ⎕ ← ⌊ 3 3 ⍴ 10.1 11.1 12.1
}

 fn()
1
1
1
1 1 1
 10 11 12
 10 11 12
 10 11 12

Page 433

Visual APL Programmer's Reference
⍕ Format

The Format function can act as either a monadic or dyadic primitive.
result ← expr1 ⍕ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: NFI, PP

The Format function Creates

Simple formatter that provides simple width control and converts objects to their string representation. Relies
on ⎕nfi

⍕ 2 3 ⍴ ⍳ 6
 0 1 2
 3 4 5
 (2 3 ⍴ ⍳ 6).ToString()
 0 1 2
 3 4 5

The ToString method in most cases is equivalent.

 1 0 4 1 6 2 ⍕ 2 3 ⍴ ⍳ 6
0 1.0 2.00
3 4.0 5.00

Notice that the width of each column was controlled by the left argument. The left argument is composed of
value pairs, width and number of decimals.
Using a negative value for number of decimals formats objects in Exponential.

 10 ¯5 ⍕ 10 20 30 999.4
 1.0000E1 2.0000E1 3.0000E1 9.9940E2

Example

function fn() {
 ⎕ ← ⍕ 1 2 3
 ⎕ ← 3 ⍕ 1.2 2.3 3.4
 ⎕ ← 7 2 ⍕ 1.2 2.3 3.4
 ⎕ ← 7 ¯2 ⍕ 1.2 2.3 3.4
 ⎕ ← 7 2 ⍕ 3 3 ⍴ 1.2 2.3 3.4
 ⎕ ← 1 0 6 2 7 3 ⍕ 2 3 ⍴ 1 2 3
}
 fn()
1 2 3
1.200 2.300 3.400
 1.20 2.30 3.40
 1.2E0 2.3E0 3.4E0
 1.20 2.30 3.40
 1.20 2.30 3.40
 1.20 2.30 3.40
1 2.00 3.000
1 2.00 3.000

Page 434

Visual APL Programmer's Reference
⊤ From Base 10 (Encode)

Produces a vector of numbers, which is the representation of expr2 with radix specifications expr1.
result ← expr1 ⊤ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

From Base 10 (Encode) is the inverse function of To Base 10 (Decode)

Example

function fn() {
 ⎕ ← 10 10 10 10 ⊤ 1776
 ⎕ ← "Convert 3622 minutes to 2 days, 12 hours, 22 minutes"
 ⎕ ← 0 24 60 ⊤ 3622
 ⎕ ← "Convert 10 to 8 bits"
 ⎕ ← 2 2 2 2 2 2 2 2 ⊤ 10
}
 fn()
1 7 7 6
Convert 3622 minutes to 2 days, 12 hours, 22 minutes
2 12 22
Convert 10 to 8 bits
0 0 0 0 1 0 1 0

Page 435

Visual APL Programmer's Reference
⍒ Grade Down

The Grade Down function can act as either a monadic or dyadic primitive.
result ← expr1 ⍒ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO

The Grade Down function returns an integer array of indices which specify the sorted order of expr2, in
descending order, according to either the order of expr1 if it is supplied, or the IComparable interface
implemented by the argument data in expr2.

The Grade functions extend the Microsoft Array.Sort method to work with arrays of all rank and depth.

The Microsoft Array.Sort method performs a highly optimized, unstable Q-Sort on the elements of vectors to
be sorted, using the IComparable interface implemented by each element of the array being sorted for
determining if one value is greater than another.

The Grade functions extend Array.Sort to function on arrays in general, and also stabilize the result so that
elements which are considered equal appear in the result in the same order that they appeared in expr2.
Also, if expr2 is all of a single type, only one comparitor is utilized, further optimizing the sorting process.

If expr1 is supplied, a custom comparitor is created which sorts the elements of expr2 according to the order
of their appearance in expr1. If an element of expr2 does not exist in expr1, that element is considered to
have the least importance in the sorting process, and will appear after all other elements in the result which
did exist in expr1. Of course, all elements of the result which do not appear in expr1 are stabilized as the
sort progresses, and appear in the order in which they occurred in expr2.

Note that the result might vary depending on the current CultureInfo.

Note: The IComparable interface defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method. Visit the Microsoft web site to see examples of how
to implement the IComparable interface on your Visual APL classes.

Example

function fn1() {
 a = 50 40 30 20 10
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a]
 a = 10 20 30 40 50
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a]
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← ⍒ a[;0]
 ⎕ ← a[⍒ a[;0];]
 a = "abcde"
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a]
 a = 3 3 ⍴ "abcdefghi"
 ⎕ ← ⍒ a
 ⎕ ← a[⍒ a;]
}
 fn1()
0 1 2 3 4
50 40 30 20 10
4 3 2 1 0
50 40 30 20 10
2 1 0
 6 7 8
 3 4 5
 0 1 2
4 3 2 1 0
edcba

Page 436

2 1 0
ghi
def
abc
0 1 2
 1 2 3 2 3 4 3 4 5

function fn2() {
 a = "abcde"
 c = "edcba"
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a]
 a = 1 2 3 4 5
 c = 5 4 3 2 1
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a]
 a = 3 3 ⍴ ⍳ 9
 c = 9 8 7 6 5 4 3 2 1 0
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a;]
 a = (1 2 3) ("test") (3 4 5)
 c = (3 4 5) ("test") (1 2 3)
 ⎕ ← c ⍒ a
 ⎕ ← a[c ⍒ a]
}

 fn2()
0 1 2 3 4
abcde
0 1 2 3 4
1 2 3 4 5
0 1 2
 0 1 2
 3 4 5
 6 7 8
0 1 2
 1 2 3 test 3 4 5

Page 437

Visual APL Programmer's Reference
⍋ Grade Up

The Grade Up function can act as either a monadic or dyadic primitive.
result ← expr1 ⍋ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO

The Grade Up function returns an integer array of indices which specify the sorted order of expr2, in
ascending order, according to either the order of expr1 if it is supplied, or the IComparable interface
implemented by the argument data in expr2.

The Grade functions extend the Microsoft Array.Sort method to work with arrays of all rank and depth.

The Microsoft Array.Sort method performs a highly optimized, unstable Q-Sort on the elements of vectors to
be sorted, using the IComparable interface implemented by each element of the array being sorted for
determining if one value is greater than another.

The Grade functions extend Array.Sort to function on arrays in general, and also stabilize the result so that
elements which are considered equal appear in the result in the same order that they appeared in expr2.
Also, if expr2 is all of a single type, only one comparitor is utilized, further optimizing the sorting process.

If expr1 is supplied, a custom comparitor is created which sorts the elements of expr2 according to the order
of their appearance in expr1. If an element of expr2 does not exist in expr1, that element is considered to
have the least importance in the sorting process, and will appear after all other elements in the result which
did exist in expr1. Of course, all elements of the result which do not appear in expr1 are stabilized as the
sort progresses, and appear in the order in which they occurred in expr2.

Note that the result might vary depending on the current CultureInfo.

Note: The IComparable interface defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method. Visit the Microsoft web site to see examples of how
to implement the IComparable interface on your Visual APL classes.

Example

function fn1() {
 a = 50 40 30 20 10
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a]
 a = 10 20 30 40 50
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a]
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← ⍋ a[;0]
 ⎕ ← a[⍋ a[;0];]
 a = "abcde"
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a]
 a = 3 3 ⍴ "abcdefghi"
 ⎕ ← ⍋ a
 ⎕ ← a[⍋ a;]
}
 fn1()
4 3 2 1 0
10 20 30 40 50
0 1 2 3 4
10 20 30 40 50
0 1 2
 0 1 2
 3 4 5
 6 7 8
0 1 2 3 4

Page 438

abcde
0 1 2
abc
def
ghi

function fn2() {
 a = "abcde"
 c = "edcba"
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a]
 a = 1 2 3 4 5
 c = 5 4 3 2 1
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a]
 a = 3 3 ⍴ ⍳ 9
 c = 9 8 7 6 5 4 3 2 1 0
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a;]
 a = (1 2 3) ("test") (3 4 5)
 c = (3 4 5) ("test") (1 2 3)
 ⎕ ← c ⍋ a
 ⎕ ← a[c ⍋ a]
}
 fn2()
4 3 2 1 0
edcba
4 3 2 1 0
5 4 3 2 1
2 1 0
 6 7 8
 3 4 5
 0 1 2
2 1 0
 3 4 5 test 1 2 3

Page 439

Visual APL Programmer's Reference
> Greater Than

The Greater Than function can act as either a monadic or dyadic primitive.
result ← expr1 > expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Greater Than function returns 1 if expr1 is greater than expr2. Otherwise, the return is 0. All numeric
and enumeration types define a "greater than" relational operator.

User-defined types can contain cross language overloads to the > operator.

Example

function fn() {
 ⎕ ← 10 > 12
 ⎕ ← 10 > 9 10 11
 ⎕ ← 10 > 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 > 1 2 3
 ⎕ ← 1 2 3 > 1+1 2 3
 ⎕ ← 1 2 3 > 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) > 3 3 ⍴ 10 11
}
 fn()
0
1 0 0
 1 1 1
 1 1 0
 0 0 0
0 0 0
0 0 0
0 0 1
 1 0 1
 0 1 0
 1 0 1

Page 440

Visual APL Programmer's Reference
≥ Greater Than or Equal

The Greater Than or Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≥ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Greater Than or Equal function returns 1 if expr1 is greater than, or equal to, expr2. Otherwise, the
return is 0. All numeric and enumeration types define a "greater than or equal" relational operator.

User-defined types can contain cross language overloads to the ≥ operator. If ≥ is overloaded, ≤ must also
be overloaded.

Example

function fn() {
 ⎕ ← 10 ≥ 12
 ⎕ ← 10 ≥ 9 10 11
 ⎕ ← 10 ≥ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≥ 1 2 3
 ⎕ ← 1 2 3 ≥ 1+1 2 3
 ⎕ ← 1 2 3 ≥ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≥ 3 3 ⍴ 10 11
}
 fn()
0
1 1 0
 1 1 1
 1 1 1
 0 0 0
1 1 1
0 0 0
0 0 1
 1 0 1
 0 1 0
 1 0 1

Page 441

Visual APL Programmer's Reference
⍳ Index Of

The IndexOf function can act as either a monadic or dyadic primitive.
result ← expr1 ⍳ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO, ⎕ CT

The IndexOf function returns the index of the first occurrence of expr1 in expr2. If expr2 does not contain
expr1, the returned index is one plus the number of elements in expr2.

The IndexOf function is similar in use to the IndexOf method found on many objects in .Net, with the
exception of returning one plus the number of elements in the argument data, instead of a -1.

Example

function fn() {
 ⎕ ← "hello world" ⍳ "hello world"
 ⎕ ← 1 2 3 ⍳ 10 20 30 1 40 2 50 3 1 2 3
 ⎕ ← (⍳ 10) ⍳ 1 4 20
 ⎕ ← 0 1 2 3 ⍳ 3 3 ⍴ ⍳ 9
 ⎕ ← 1 ⍳ 3 2 1 3 2 1
}
 fn()
0 1 2 2 4 5 6 4 8 2 10
3 3 3 0 3 1 3 2 0 1 2
1 4 10
 0 1 2
 3 4 4
 4 4 4
1 1 0 1 1 0

Page 442

Visual APL Programmer's Reference
. Inner Product

The Inner Product function can act as either a monadic or dyadic primitive.
result ← expr1 operatorexpr1 . operatorexpr2 expr2

Where:
result

An expression.
expr1

An expression.
operatorexpr1

An operator expression.
operatorexpr2

An operator expression.
expr2

An expression.

Rem arks

The Inner Product function is a specialized short hand construct for successively calling operators in a pre
defined order.

The Inner Product function creates its result by first calling the function specified by operatorexpr2 as though
that function had been called dyadically with expr1 and expr2, and then takes the result of that operation, and
uses it as the right operand to the reduce version of operatorexpr1.

Example

function fn() {
 ⎕ ← (3 3 ⍴ ⍳ 9) ∧ . ≈ 0 1 2
 ⎕ ← (3 5 ⍴ "hellowhatsupdoc") ∧ . ≈ "whats"
 ⎕ ← 1 2 3 +.× 1 2 3
 ⎕ ← 10+.×(1 2 3) (4 5 6)
}
 fn()
1 0 0
0 1 0
14
 50 70 90

Page 443

Visual APL Programmer's Reference
 Interval

The Interval function can act as either a monadic or dyadic primitive.
result ← ⍳ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Dependent state: IO

The Interval function produces an integer vector from one (1) to expr1, or if IO is zero (0), from zero (0)
to (expr1 - 1).

Example

function fn() {
 ⎕ ← ⍳ 10
 ⎕ ← 1+ ⍳ 10
 ⎕ ← 3+3× ⍳ 10
}
 fn()
0 1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9 10
3 6 9 12 15 18 21 24 27 30

Page 444

Visual APL Programmer's Reference
⍪ Laminate

The Laminate function can act as either a monadic or dyadic primitive.
result ← expr1 ⍪ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Implicit argument: ⎕ IO

Catenates expr1 with expr2 along the first axis, unless another axis is provided.

Scalar expressions are expanded to conform with the non scalar expression.

Array expressions which differ by a rank of 1 are expanded to be conformable with the higher rank
expression. Arrays must match in primary dimensions.

Example

function fn() {
 a ← 1 2 3 ⍪ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← 1 2 3 ⍪ 1 3 ⍴ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← 1 2 3 ⍪ 3 3 ⍴ ⍳ 9
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← 1 ⍪ 1 3 ⍴ 1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a ← "abc" ⍪ 2 3 ⍴ "efghij"
 ⎕ ← a
 ⎕ ← ⍴ a
}
 fn()
1 2 3 1 2 3
6
 1 2 3
 1 2 3
2 3
 1 2 3
 0 1 2
 3 4 5
 6 7 8
4 3
 1 1 1
 1 2 3
2 3
abc
efg
hij
3 3

Page 445

Visual APL Programmer's Reference
< Less Than

The Less Than function can act as either a monadic or dyadic primitive.
result ← expr1 < expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Less Than function returns 1 if expr1 is less than expr2. Otherwise, the return is 0. All numeric and
enumeration types define a "less than" relational operator.

User-defined types can contain cross language overloads to the < operator.

Example

function fn() {
 ⎕ ← 10 < 12
 ⎕ ← 10 < 9 10 11
 ⎕ ← 10 < 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 < 1 2 3
 ⎕ ← 1 2 3 < 1+1 2 3
 ⎕ ← 1 2 3 < 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) < 3 3 ⍴ 10 11
}
 fn()
1
0 0 1
 0 0 0
 0 0 0
 1 1 1
0 0 0
1 1 1
1 1 0
 0 1 0
 1 0 1
 0 1 0

Page 446

Visual APL Programmer's Reference
≤ Less Than or Equal

The Less Than or Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≤ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Less Than or Equal function returns 1 if expr1 is less than, or equal to, expr2. Otherwise, the return is 0.
 All numeric and enumeration types define a "less than or equal" relational operator.

User-defined types can contain cross language overloads to the ≤ operator. If ≤ is overloaded, ≥ must also
be overloaded.

Example

function fn() {
 ⎕ ← 10 ≥ 12
 ⎕ ← 10 ≥ 9 10 11
 ⎕ ← 10 ≥ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≥ 1 2 3
 ⎕ ← 1 2 3 ≥ 1+1 2 3
 ⎕ ← 1 2 3 ≥ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≥ 3 3 ⍴ 10 11
}
 fn()
0
1 1 0
 1 1 1
 1 1 1
 0 0 0
1 1 1
0 0 0
0 0 1
 1 0 1
 0 1 0
 1 0 1

Page 447

Visual APL Programmer's Reference
⍟ Logarithm (Log)

The Logarithm function can act as either a monadic or dyadic primitive.
result ← expr1 ⍟ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Logarithm function expands the Math.Log methods to work with numeric arrays.

Example

function fn() {
 ⎕ ← 2 ⍟ 4
 ⎕ ← 2 ⍟ 8
 ⎕ ← 2 ⍟ 16
 ⎕ ← 2 ⍟ 32
 ⎕ ← 10 ⍟ 100 1000 10000 100000
}
 fn()
2
3
4
5
2 3 4 5

Page 448

Visual APL Programmer's Reference
| Magnitude (Absolute Value) (Abs)

The Magnitude function can act as either a monadic or dyadic primitive.
result ← | expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Magnitude function expands the Math.Abs method to work with numeric arrays.

Math.Abs returns the absolute value of a specified number.

Example

function fn() {
 ⎕ ← ∣ 10
 ⎕ ← ∣ ¯10
 ⎕ ← ∣ 10 ¯10 ¯3 2 ¯1
}

 fn()
10
10
10 10 3 2 1

Page 449

Visual APL Programmer's Reference
≡ Match (Identity)

The Match function can act as either a monadic or dyadic primitive.
result ← expr1 ≡ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Match function returns a result of either 1 or 0. The result is 1 if expr1 and expr2 are identical in data,
shape, rank, and depth, at all levels of nesting in expr1 and expr2. Otherwise, the result is 0.

Example

function fn() {
 a = 1 2 3
 b = 1 2 3
 ⎕ ← a ≡ b
 a = 1
 b = 1
 ⎕ ← a ≡ b
 a = "test" "what"
 b = 1 2 3 "what"
 ⎕ ← a ≡ b
 a = "more" 1 2 3 "of" 4 5 6
 b = "more" 1 2 3 "of" 4 5 6
 ⎕ ← a ≡ b
 a = 1 2 3
 b = 3 3 ⍴ ⍳ 9
 ⎕ ← a ≡ b
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← a ≡ b
}
 fn()
1
1
0
1
0
1

Page 450

Visual APL Programmer's Reference
⌹ Matrix Divide

The Matrix Divide function can act as either a monadic or dyadic primitive.
result ← expr1 ⌹ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Solve, or least squares fit, a set of simultaneous equations where expr1 is the vector of constants, and expr2
is a matrix of coefficients.

Example

function fn() {
 // solve these linear equations using
 // matrix divide
 // 1x + 3y = 31
 // 4x + 4y = 68
 // 6x + 7y = 109
 ⎕ ← 31 68 109 ⌹ 3 2 ⍴ 1 3 4 4 6 7
}
 fn()
10 7

Page 451

Visual APL Programmer's Reference
⌹ Matrix Inverse

The Matrix Inverse function can act as either a monadic or dyadic primitive.
result ← ⌹ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Calculate the matrix inverse of expr1.

Example

function fn() {
 ⎕ ← ⌹ 3
 ⎕ ← ⌹ 3 2
 ⎕ ← ⌹ 3 2 2
 ⎕ ← ⌹ 3 2 2 3
 ⎕ ← ⌹ 2 2 ⍴ 3 2 2 3
}
 fn()
0.3333333333
0.2307692308 0.1538461538
0.1764705882 0.1176470588 0.1176470588
0.1153846154 0.07692307692 0.07692307692 0.1153846154
 0.6 ¯0.4
 ¯0.4 0.6

Page 452

Visual APL Programmer's Reference
⌈ Maximum (Max)

The Maximum function can act as either a monadic or dyadic primitive.
result ← expr1 ⌈ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Maximum function returns the larger of two specified numbers.

Example

function fn() {
 ⎕ ← 4 ⌈ 20
 ⎕ ← ¯3 ⌈ ¯6
 ⎕ ← 10 ⌈ 11 5 13 6
 ⎕ ← ¯5 ⌈ 10 ¯20 4 ¯2
 ⎕ ← 5 4 5 4 ⌈ 6 3 4 6
}
 fn()
20
¯3
11 10 13 10
10 ¯5 4 ¯2
6 4 5 6

Page 453

Visual APL Programmer's Reference
∊ Member (Is Element Of)

The Member function can act as either a monadic or dyadic primitive.
result ← expr1 ∊ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Implicit argument: ⎕CT

The Member function returns an integer 1 or 0, indicating whether expr1 occurs within expr2. A result of 1
indicates that expr1 occurs in expr2. Otherwise, the result is 0.

Example

function fn() {
 ⎕ ← 1 ∊ 1 2 3 1 2 3
 ⎕ ← 1 2 3 ∊ ⍳ 9
 ⎕ ← 30 40 1 2 ∊ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) ∊ ⍳ 5
 ⎕ ← "hello" "world" ∊ "what" "a" "world"
 ⎕ ← "testing" (1 2 3) ∊ (1 2 3) "testing"
}
 fn()
1
1 1 1
0 0 1 1
 1 1 1
 1 1 0
 0 0 0
0 1
1 1

Page 454

Visual APL Programmer's Reference
⌊ Minimum (Min)

The Minimum function can act as either a monadic or dyadic primitive.
result ← expr1 ⌊ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Minimum function returns the larger of two specified numbers.

Example

function fn() {
 ⎕ ← 4 ⌊ 20
 ⎕ ← ¯3 ⌊ ¯6
 ⎕ ← 10 ⌊ 11 5 13 6
 ⎕ ← ¯5 ⌊ 10 ¯20 4 ¯2
 ⎕ ← 5 4 5 4 ⌊ 6 3 4 6
}
 fn()
4
¯6
10 5 10 6
¯5 ¯20 ¯5 ¯5
5 3 4 4

Page 455

Visual APL Programmer's Reference
× Multiply

The Multiply function can act as either a monadic or dyadic primitive.
result ← expr1 × expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The multiplication function (×) computes the product of its operands. All numeric types have predefined
multiplication operators.

User-defined types can contain cross language overloads to the × operator.

Example

function fn() {
 ⎕ ← 2 × 2
 ⎕ ← 2 × 1 2 3
 ⎕ ← 2 3 4 × 1 2 3
 ⎕ ← 2 × 3 3 ⍴ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) × 3 3 ⍴ ⍳ 9
 ⎕ ← (1 2 3) (1 2 3) × (4 5 6) (5 6 7)
 ⎕ ← 1 2 3 × double.PositiveInfinity
}
 fn()
4
2 4 6
2 6 12
 0 2 4
 6 8 10
 12 14 16
 0 1 4
 9 16 25
 36 49 64
 4 10 18 5 12 21
Infinity Infinity Infinity

Page 456

Visual APL Programmer's Reference
 Nand

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical NAND of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ⍲ 1 0 1 0
 ⎕ ← 0 1 0 1 ⍲ 0 0 0 0
 ⎕ ← 1 ⍲ 1
 ⎕ ← 1 ⍲ 0
 ⎕ ← 0 ⍲ 0
 ⎕ ← 1 2 3 4 ⍲ 4 3 2 1
 ⎕ ← 1 2 3 4 ⍲ 0 0 0 0
}

 fn()
0 1 0 1
1 1 1 1
0
1
1
0 0 0 0
1 1 1 1

Page 457

Visual APL Programmer's Reference
⍟ Natural Logarithm (NatLog)

The Natural Logarithm function can act as either a monadic or a dyadic primitive.
result ← ⍟ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Natural Logarithm function expands the Math.Log method to work with numeric arrays.

Math.Log Returns the natural (base e) logarithm of a specified number.

Example

function fn() {
 ⎕ ← ⍟ 0
 ⎕ ← ⍟ 1
 ⎕ ← ⍟ 2.7182818284
 ⎕ ← ⍟ 2.7182818284*2
}
-Infinity
0
1
2

Page 458

Visual APL Programmer's Reference
- Negative (Negate)

The Negate function can act as either a monadic or a dyadic primitive.
result ← - expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Negative function performs the negate operation on expr1. Negate (-) operators are predefined for all
numeric types.

User-defined types can contain cross language overloads to the - operator.

Example

function fn() {
 ⎕ ← -5
 ⎕ ← -5 6 7
 ⎕ ← -5 ¯6 ¯7
 ⎕ ← -3 3 ⍴ ⍳ 9
}
 fn()
¯5
¯5 ¯6 ¯7
¯5 6 7
 0 ¯1 ¯2
 ¯3 ¯4 ¯5
 ¯6 ¯7 ¯8

Page 459

Visual APL Programmer's Reference
 Nor

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical NOR of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ⍱ 1 0 1 0
 ⎕ ← 0 1 0 1 ⍱ 0 0 0 0
 ⎕ ← 1 ⍱ 1
 ⎕ ← 1 ⍱ 0
 ⎕ ← 0 ⍱ 0
 ⎕ ← 1 2 3 4 ⍱ 4 3 2 1
 ⎕ ← 1 2 3 4 ⍱ 0 0 0 0
}

 fn()
0 1 0 1
1 0 1 0
0
0
1
0 0 0 0
0 0 0 0

Page 460

Visual APL Programmer's Reference
~ Not

The ~ function performs a logical NOT operation on its operand.
result ← ~ expr1

Where:

result
An expression.

expr1
An expression.

Rem arks

Monadic ~ functions are predefined for the number types. For number types and arrays of numbers, ~
computes the logical NOT of its operand.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← ∼ 1 0 1 0
 ⎕ ← ∼ 0 0 0 0
 ⎕ ← ∼ 1
 ⎕ ← ∼ 0
 ⎕ ← ∼ 4 3 2 1
}

 fn()
0 1 0 1
1 1 1 1
0
1
0 0 0 0

Page 461

Visual APL Programmer's Reference
≠ Not Equality (Not Approximately Equal)

The Not Approximately Equal function can act as either a monadic or dyadic primitive.
result ← expr1 ≠ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ CT

The Not Approximately Equal function returns a 0 if expr1 is equal to expr2, or if expr2 is within ⎕CT of expr1.
 Otherwise, the return is 1.

Example

function fn() {
 ⎕ ← 10 ≠ 12
 ⎕ ← 10 ≠ 9 10 11
 ⎕ ← 10 ≠ 5+3 3 ⍴ ⍳ 9
 ⎕ ← 1 2 3 ≠ 1 2 3
 ⎕ ← 1 2 3 ≠ 1+1 2 3
 ⎕ ← 1 2 3 ≠ 1.1 2.1 2.1
 ⎕ ← (3 3 ⍴ 10.1) ≠ 3 3 ⍴ 10 11
}
 fn()
1
1 0 1
 1 1 1
 1 1 0
 1 1 1
0 0 0
1 1 1
1 1 1
 1 1 1
 1 1 1
 1 1 1

Page 462

Visual APL Programmer's Reference
∨ Or

The function can act as either a monadic or a dyadic primitive.
result ← expr1 expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dyadic functions are predefined for the integral types. For integral types and arrays of integrals,
computes the logical OR of its operands.

0 is always treated as false, all other values including 1 are treated as true.

Example

function fn() {
 ⎕ ← 1 0 1 0 ∨ 1 0 1 0
 ⎕ ← 0 1 0 1 ∨ 0 0 0 0
 ⎕ ← 1 ∨ 1
 ⎕ ← 1 ∨ 0
 ⎕ ← 0 ∨ 0
 ⎕ ← 1 2 3 4 ∨ 4 3 2 1
 ⎕ ← 1 2 3 4 ∨ 0 0 0 0
}

 fn()
1 0 1 0
0 1 0 1
1
1
0
1 1 1 1
1 1 1 1

Page 463

Visual APL Programmer's Reference
∘ . Outer Product

The Outer Product function can act as either a monadic or dyadic primitive.
result ← expr1 ∘ . operatorexpr1 expr2

Where:
result

An expression.
expr1

An expression.
operatorexpr1

An operator expression.
expr2

An expression.

Rem arks

The Outer Product function is a specialized short hand construct simulating two nested for loops.

The Outer Product function creates its result by taking one element at a time from expr1, and calling the
dyadic function specified by operatorexpr1 with each element of expr2. Once the first element from expr1
has been combined with every element from expr2, the next element from expr1, is taken, and the process is
repeated, until each element of expr1 has been combined with every element of expr2, through the dyadic
operation specified in operatorexpr1.

Example

function fn() {
 ⎕ ← "sample 1"
 ⎕ ← 1 ∘ .+100 100 100
 ⎕ ← "sample 2"
 ⎕ ← 10 10 10 ∘ .+100 100 100
 ⎕ ← "sample 3"
 ⎕ ← 11 12 13 ∘ .+100 100 100
 ⎕ ← "sample 4"
 ⎕ ← 11 12 13 ∘ .+3 3 ⍴ 100 100 100
 ⎕ ← "sample 5"
 ⎕ ← 11 12 13 ∘ .+3 3 ⍴ ⍳ 9
}
 fn()
sample 1
 101 101 101
sample 2
 110 110 110
 110 110 110
 110 110 110
sample 3
 111 111 111
 112 112 112
 113 113 113
sample 4
 111 111 111
 111 111 111
 111 111 111

 112 112 112
 112 112 112
 112 112 112

 113 113 113
 113 113 113
 113 113 113
sample 5
 11 12 13
 14 15 16
 17 18 19

 12 13 14
 15 16 17
 18 19 20

 13 14 15
 16 17 18
 19 20 21

Page 464

Page 465

Visual APL Programmer's Reference
⊂ Partition (Pattern Enclose)

The Partition function can act as either a monadic or dyadic primitive.
result ← expr1 ⊂ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Partition function splits expr2 into a nested vector, according to the enclosure pattern specified by expr1.

The rules for structuring an enclosure pattern are as follows:

 If an element of expr1 is greater than (>) the previous element of expr1, than a new nesting group is
begun, and the previous group is closed.

 If an element of expr1 is less than or equal (<=) the previous element of expr1, then the corresponding
element of expr2 is included in the current nesting group.

 If an element of expr1 is equal to 0, than the corresponding element of expr2 is not included in the result.

Example

function fn() {
 a = 1 0 1 ⊂ 10 20 30
 ⎕ ← a
 ⎕ ← ⍴
 a = 1 0 1 ⊂ 3 3 ⍴ ⍳
 ⎕ ← a
 ⎕ ← ⍴
 a = 1 1 1 2 1 1 2 1 1 ⊂ ⍳
 ⎕ ← a
 ⎕ ← ⍴
 a = 1 1 1 2 1 1 ⊂ 2 6 ⍴ ⍳ 2
 ⎕ ← a
 ⎕ ← ⍴
}

 fn()
 10 30
2
 0 2
 3 5
 6 8
3 2
 0 1 2 3 4 5 6 7 8
3
 0 1 2 3 4 5
 6 7 8 9 10 11
2 2

Page 466

Visual APL Programmer's Reference
○ Pi Times

The PiTimes function can act as either a monadic or dyadic primitive.
result ← ○ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The PiTimes function multiplies expr1 by the system constant Math.PI.

At the time of this writing, the Math.PI system constant was held at: 3.14159265358979323846

Example

function fn() {
 ⎕ ← ○ 1
 ⎕ ← ○ 2
 ⎕ ← ○ 1 2 ¯3
}
 fn()
3.141592654
6.283185307
3.141592654 6.283185307 ¯9.424777961

Page 467

Visual APL Programmer's Reference
 Pick

The Pick function can act as either a monadic or dyadic primitive.
result ← expr1 ⊃ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: IO

The Pick function indexes into expr2 at the index expr1, and discloses the result.

If the length of expr1 is 1, expr1 is used as an index into expr2, and the element produced from that index
operation is then disclosed once, so that one level of nesting is removed from the element data.

If expr2 has rank greater than 1, then expr1 should contain an enclosed vector of indices, where the length of
the vector is the same as the rank of expr2. Because Pick performs an index into expr2 using the element
from expr1, the enclosed vector can be any value that is valid for indexing into expr2 using bracket indexing.

If the length of expr1 is more than 1, a progressive Pick operation is performed. First, the last element of
expr1 is used to Pick data from expr2. Then, the next element of expr1 is used to Pick data from the result
returned by the first Pick. This continues until all elements of expr1 have been processed. This functionality
allows the short hand of only having to make a single call to the Pick function to perform a progressive Pick
operation.

Example

function fn() {
 ⎕ ← 1 ⊃ 1 2 3
 ⎕ ← 2 ⊃ (1 2 3) (4 5 6) (7 8 9)
 ⎕ ← 1 ⊃ 2 ⊃ (1 2 3) (4 5 6) (7 8 9)
 ⎕ ← 1 2 ⊃ (1 2 3) (4 5 6) (7 8 9)
 ⎕ ← 1 2 ⊃ "hello" "world" "more"
 ⎕ ← (⊂ (1 2) 2) ⊃ 3 3 ⍴ ⍳ 9
}

 fn()
2
7 8 9
8
6
r
5 8

Page 468

Visual APL Programmer's Reference
* Power

The Power function can act as either a monadic or dyadic primitive.
result ← expr1 * expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Power function returns expr1 raised to the expr2 power.

The Power function expands the Math.Pow method to work with numeric arrays.

Math.Pow returns a specified number raised to a specified power.

Note: For a complete and extensive list of how Math.Pow performs with special Double and Float values, such
as Double.NaN and Double.PositiveInfinity, see the Math.Pow documentation available on Microsoft.com

Example

function fn() {
 ⎕ ← 10 * 0
 ⎕ ← 10 * 2
 ⎕ ← 2.2 * 2
 ⎕ ← 1 2 3 * 2
 ⎕ ← 1 2 3 * 2 3 4
 ⎕ ← (3 3 ⍴ ⍳ 9) * 2
 ⎕ ← (3 3 ⍴ ⍳ 9) * 3 3 ⍴ ⍳ 9
}
 fn()
1
100
4.84
1 4 9
1 8 81
 0 1 4
 9 16 25
 36 49 64
 1 1 4
 27 256 3125
 46656 823543 16777216

Page 469

Visual APL Programmer's Reference
, Ravel

The Ravel function can act as either a monadic or dyadic primitive.
result ← , expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Ravel function returns a vector which contains all elements of expr1, regardless of the shape of expr1.

If expr1 is a scalar, the result vector has a length of 1 and contains 1 element.

If expr1 is an array of rank 2, with 2 rows and 2 columns, the result has a length of 4 and contains 4
elements.

The Ravel function never changes the nesting level of expr1, as opposed to the Enlist function, which
completely flattens an array, which includes removing all levels of nesting present in the data.

Example

function fn() {
 a = ,1
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ,1 2 3
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ,3 3 ⍴ ⍳ 9
 ⎕ ← a
 ⎕ ← ⍴ a
 a = ,(1 2 3) (4 5 6)
 ⎕ ← a
 ⎕ ← ⍴ a
}
 fn()
1
1
1 2 3
3
0 1 2 3 4 5 6 7 8
9
 1 2 3 4 5 6
2

Page 470

Visual APL Programmer's Reference
÷ Reciprocal

The Reciprocal function can act as either a monadic or dyadic primitive.
result ← ÷ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Reciprocal function applies the mathematical reciprocal operation to its operand expr1, or 1 divided by
expr1.

Example

function fn() {
 ⎕ ← ÷1
 ⎕ ← ÷1 2 3
 ⎕ ← ÷3 3 ⍴ 1 2 3 4 5 6 7 8 9
 ⎕ ← ÷ 1 ¯2 ¯3
}
 fn()
1
1 0.5 0.3333333333
 1 0.5 0.3333333333
 0.25 0.2 0.1666666667
 0.1428571429 0.125 0.1111111111
1 ¯0.5 ¯0.3333333333

Page 471

Visual APL Programmer's Reference
/ Reduce (Reduction)

Progressively performs the specified function between each element of expr1
return ← operatorexpr1 / expr1
return ← operatorexpr1 expr1
return ← expr2 operatorexpr1 / expr1
return ← expr2 operatorexpr1 expr1

Where:

result
An expression.

operatorexpr1
An operator expression.

expr1
An expression.

expr2
An expression.

Rem arks

The Reduce function requires that operatorexpr1 evaluate to a dyadic function to be a valid argument
expression.

To see the effect of passing both expr1 and expr2 to the Reduce operator, please read below under: Calling
the Reduce operator dyadically

Processing Order:

The Reduce operator is a specialized short hand construct simulating a single for loop, which progressively
calls the dyadic operatorexpr1 with the result of the last call to operatorexpr1 as its right operand, and an
element taken in receding order from the end of expr1 as its left operand.

The Reduce function works exactly as a reverse for loop, where it iteratively calls a function with the result of
the last iteration of the for loop as the right argument to the function, and the left argument is the next
element in line from expr1. Note that the for loop is a reverse for loop in that it does not take elements from
expr1 starting at the first and proceeding to the last, but rather begins taking elements from end of expr1,
until it reaches the first element.

Forms of Reduce:

There are two forms of the Reduce function:

/ (Reduce Last Dimension) and (Reduce First Dimension)

Both forms of Reduce perform exactly the same operation, except that they have a different default axis over
which they apply the action on the data from expr1. These two forms of Reduce are provided as a short hand
when processing data, since most data processing occurs on either the first of the last dimension of data. If
an axis is explicitly specified, / (Reduce Last Dimension) and (Reduce First Dimension) perform exactly the same
operations.

Calling the Reduce operator dyadically:

Because of the nature of the Reduce operator, only data from expr1 is ever passed to the dyadic operator
specified in operatorexpr1. With this being the case, data passed to Reduce through expr2 is not used as the
left argument in the call to operatorexpr1, but is rather an argument to the Reduce operator which denotes a
special mode of processing the data in expr1. For more information on this mode of Reduce processing,
please see: Special Reduce Processing.

Example

function fn() {
 ⎕ ← +/1 2 3
 ⎕ ← +/3 3 ⍴ ⍳ 9
 ⎕ ← ×/1 2 3
 ⎕ ← ×/3 3 ⍴ ⍳ 9
 ⎕ ← 3+/1 2 3
 ⎕ ← 3 3+/1 2 3 4 5 6 7 8 9 10 11 12
 ⎕ ← 3 3+/2 12 ⍴ 1 2 3 4 5 6 7 8 9 10 11 12
}

 fn()

Page 472

6
3 12 21
6
0 60 336
6
6 15 24 33
 6 15 24 33
 6 15 24 33

Page 473

Visual APL Programmer's Reference
⍴ Reshape

The Reshape function can act as either a monadic or dyadic primitive.
result ← expr1 ⍴ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Reshape function changes the shape of expr2 to the shape specified in expr1, repeating or removing data
as necessary.

expr1 should be an integral vector.

expr2 can be an array of any kind and shape.

If the number of elements required to fill an array of shape expr1 exceeds the number of elements available
in expr2, the elements of expr2 are repeated as necessary, until all elements of the return array are filled.

If the number of elements required to fill an array of shape expr1 is less than the number of elements
present in expr2, than only as many elements as are needed to fill the result array are taken from expr2.

Following these definitions, if the number of elements required to fill an array of shape expr1 matches the
number of elements present in expr2, than no repeating or eliding of elements is performed.

Example

function fn() {
 ⎕ ← "using shape to create a vector"
 a = 3 ⍴ 0
 ⎕ ← a
 ⎕ ← ⎕ dr a
 ⎕ ← "using typing to create a vector"
 ⎕ ← "creates vector with default value"
 ⎕ ← "much quicker than shape"
 a = new int[3]
 ⎕ ← a
 ⎕ ← ⎕ dr a
 a = new double[3]
 ⎕ ← a
 ⎕ ← ⎕ dr a
 ⎕ ← "create vectors with given values"
 ⎕ ← 3 ⍴ 1
 ⎕ ← "create 2 dimensional arrays"
 ⎕ ← 3 3 ⍴ ⍳ 9
 ⎕ ← "create 3 dimentional and n dimensional arrays"
 ⎕ ← 3 3 3 ⍴ ⍳ 27
 ⎕ ← "use nested arrays"
 ⎕ ← 3 ⍴ ⊂ "test"
 ⎕ ← 3 ⍴ "test" (1 2 3)
 ⎕ ← 3 3 ⍴ "test" (1 2 3)

}
 fn()
using shape to create a vector
0 0 0
323
using typing to create a vector
creates vector with default value
much quicker than shape
0 0 0
323
0 0 0
645
create vectors with given values
1 1 1
create 2 dimensional arrays
 0 1 2

Page 474

 3 4 5
 6 7 8
create 3 dimentional and n dimensional arrays
 0 1 2
 3 4 5
 6 7 8

 9 10 11
 12 13 14
 15 16 17

 18 19 20
 21 22 23
 24 25 26
use nested arrays
 test test test
 test 1 2 3 test
test 1 2 3test
 1 2 3test 1 2 3
test 1 2 3test

Page 475

Visual APL Programmer's Reference
| Residue

The Residue function can act as either a monadic or dyadic primitive.
result ← expr1 | expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Implicit Argument: ⎕ CT

The residue operator (|) computes the remainder after dividing expr2 by expr1.

Example

function fn() {
 ⎕ ← 10 ∣ 10 11 12 20 21 22
 ⎕ ← 10 ∣ 1 2 3
 ⎕ ← 10 11 12 ∣ 10 11 12
 ⎕ ← 10 ∣ 3 3 ⍴ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) ∣ 3 3 ⍴ ⍳ 9
 ⎕ ← 10 ∣ 10.1 10.2
}
 fn()
0 1 2 0 1 2
1 2 3
0 0 0
 0 1 2
 3 4 5
 6 7 8
 0 0 0
 0 0 0
 0 0 0
0.1 0.2

Page 476

Visual APL Programmer's Reference
? Roll and Deal

The Deal function can act as either a monadic or dyadic primitive.
result ← expr1 ? expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dependent state: ⎕ IO, ⎕ RL

Roll, monadic ?:

The Roll function selects a random integer between ⎕IO and (expr2 - ⎕IO), for each element in expr2. expr2
should evaluate to a single integer or an integer vector.

Deal, dyadic ?:

The Deal function creates a vector(s) of unique random integers, each equal in length to the each integer
specified in expr1. For each element of expr1, the corresponding integer in expr2 must be of a greater than
or equal value.

Example

function fn() {
 ⎕ ← ?6
 ⎕ ← 6 ? 6
 ⎕ ← 6 6 ? 6
 ⎕ ← 6 6 ? 6 6
 ⎕ ← ? 3 3 ⍴ 6
 ⎕ ← 6 ? 2 2 ⍴ 6
 ⎕ ← 6 10 ? 6 10
 ⎕ ← ? 10 5 20 8
}
 fn()
5
5 3 4 0 2 1
 3 5 2 0 4 1 1 4 0 5 3 2
 5 0 4 1 3 2 0 3 1 4 2 5
 5 2 5
 0 4 0
 3 0 1
 2 5 1 4 0 3 4 0 5 2 3 1
 2 0 1 3 4 5 3 1 2 5 4 0
 1 0 3 2 4 5 0 7 1 6 4 5 2 8 3 9
1 0 11 4

Page 477

Visual APL Programmer's Reference
⌽ ⊖ Rotate and Reverse

The Rotate function can act as either a monadic or dyadic primitive.
result ← expr1 ⌽ expr2
result ← expr1 ⊖ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Rotate function rotates the data supplied by expr2 by the number if iterations specified by expr1.

The Reverse function, or the monadic form of Rotate, completely reverses the contents of expr2.

Dyadic Forms of Rotate:

The Rotate function has two dyadic forms:
-
⌽ (Rotate Last Dimension) and ⊖ (Rotate First Dimension)

The only difference between the two dyadic forms of Rotate is the default axis on which they rotate data in
expr2. If the axis is explicitly specified, both forms produce the same result.

Monadic Forms of Reverse:

The Reverse function has two monadic forms:

⌽ (Reverse Last Dimension) and ⊖ (Reverse First Dimension)

The only difference between the two monadic forms of Reverse is the default axis on which they reverse data
in expr2. If the axis is explicitly specified, both forms produce the same result.

Example

function fn1() {
 ⎕ ← ⌽ "hello world"
 ⎕ ← ⌽ 1 2 3 4.5 4.6 4.7
 ⎕ ← ⌽ 3 3 ⍴ ⍳ 9
 ⎕ ← 5 ⌽ "hello world"
 ⎕ ← 1 ⌽ 3 3 ⍴ ⍳ 9
}
 fn1()
dlrow olleh
4.7 4.6 4.5 3 2 1
 2 1 0
 5 4 3
 8 7 6
 worldhello
 1 2 0
 4 5 3
 7 8 6

function fn2() {
 ⎕ ← "rotate scalar"
 ⎕ ← ⊖ 1
 ⎕ ← "rotate vector"
 ⎕ ← ⊖ 1 2 3
 ⎕ ← "rotate matrix"
 ⎕ ← ⊖ 3 3 ⍴ ⍳ 9
 ⎕ ← "specify amount to rotate axis"
 ⎕ ← 1 2 ¯1 ⊖ 3 3 ⍴ ⍳ 9
 ⎕ ← ⊖ 2 5 ⍴ "helloworld"
}

Page 478

 fn2()
rotate scalar
1
rotate vector
3 2 1
rotate matrix
 6 7 8
 3 4 5
 0 1 2
specify amount to rotate axis
 3 7 8
 6 1 2
 0 4 5
world
hello

Page 479

Visual APL Programmer's Reference

\ ⍀ Scan

The Scan operator can act as either a monadic or dyadic primitive.
result ← operatorexpr1 \ expr1

Where:
result

An expression.
operatorexpr1

An operator expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Scan operator is a specialized short hand construct simulating a repeated call to the Reduce operator.

The Scan operator runs the Reduce operation on all element of expr2, then on (expr2.Length - 1) elements
of expr2, then on (expr2.Length - 2) elements of expr2. Scan continues to decrement the number of
elements on which it performs the Reduce operation, until there are no elements left across which to Reduce.
 The result of the Scan operation is the concatenated result of each call that was made to the Reduce
operator during the Scan.

The result of each Scan operation is inserted into the result vector beginning at the last position and ending at
the first, so that the result of the first Reduce operation is assigned into the last element of the return vector,
and the last Reduce operation performed by the Scan is assigned to the first element of the result vector.

Example

function fn() {
 ⎕ ← +\1
 ⎕ ← +\ ⍳ 9
 ⎕ ← +\3 3 ⍴ ⍳ 9
 ⎕ ← 3+\1 2 3 4 5 6 7 8 9 10 11 12
 ⎕ ← 3 3+\1 2 3 4 5 6 7 8 9 10 11 12
 a ← ,\"ab" "cd" "ed"
 ⎕ ← a
 a ← ,\2 6 ⍴ 10+ ⍳ 12
 ⎕ ← a
}
 fn()
1
0 1 3 6 10 15 21 28 36
 0 1 3
 3 7 12
 6 13 21
6 9 12 15 18 21 24 27 30 33
6 15 24 33
 ab cdab edcdab
 10 10 11 10 11 12 10 11 12 13 10 11 12 13 14 10 11 12 13 14 15
 16 16 17 16 17 18 16 17 18 19 16 17 18 19 20 16 17 18 19 20 21

Page 480

Visual APL Programmer's Reference
⍴ Shape

The Shape function can act as either a monadic or dyadic primitive.
result ← ⍴ expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

The Shape function returns a vector of integers which are the current lengths of the dimensions of expr2.

Example

function fn() {
 ⎕ ← "shape of scalar"
 ⎕ ← ⍴ 1
 ⎕ ← "shape of vector"
 ⎕ ← ⍴ ,1
 ⎕ ← ⍴ 1 2 3
 ⎕ ← ⍴ 3 3 ⍴ ⍳ 9
 ⎕ ← ⍴ 1 "abc" (2 3 4) "more"
}
 fn()
shape of scalar

shape of vector
1
3
3 3
4

Page 481

Visual APL Programmer's Reference
× Sign

The Sign function can act as either a monadic or dyadic primitive.
result ← × expr1

Where:
result

An expression.
expr1

An expression.

Rem arks

Returns a value indicating the sign of a number, where a negative number has a sign of -1, a positive number
has a sign of 1, and a 0 has a sign of 0.

Example

function fn() {
 ⎕ ← × 10
 ⎕ ← × 0
 ⎕ ← × ¯10
 ⎕ ← × 10 0 ¯10
 ⎕ ← × 3 3 ⍴ 10 0 ¯10
}

 fn()
1
0
¯1
1 0 ¯1
 1 0 ¯1
 1 0 ¯1
 1 0 ¯1

Page 482

Visual APL Programmer's Reference
⌷ Squad Index

The Squad Index function can act as either a monadic or dyadic primitive.
result ← expr1 ⌷ expr2

Where:

result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Provides a primitive for indexing.

expr1 is any array which is valid for bracket indexing.

Example

function fn() {
 a = 1 2 3 4
 ⎕ ← "index a vector with a scalar"
 ⎕ ← 1 ⌷ a
 ⎕ ← "index a vector with a vector"
 ⎕ ← (1 2) ⌷ a
 a = 3 3 ⍴ ⍳ 9
 ⎕ ← "index a matrix with a vector"
 ⎕ ← 1 1 ⌷ a
 ⎕ ← "index a matrix specifying axis"
 ⎕ ← 1 ⌷ [1] a
 ⎕ ← "index a matrix with a vector"
 ⎕ ← (1 2) ⌷ a
 ⎕ ← "index a matrix with a vector and scalar"
 ⎕ ← (1 2) 1 ⌷ a
 ⎕ ← "index a matrix with two vectors"
 ⎕ ← (1 2) (,1) ⌷ a
}
 fn()
index a vector with a scalar
2
index a vector with a vector
2 3
index a matrix with a vector
4
index a matrix specifying axis
1 4 7
index a matrix with a vector
5
index a matrix with a vector and scalar
4 7
index a matrix with two vectors
 4
 7

Page 483

Visual APL Programmer's Reference
- Subtract

The Subtract function can act as either a monadic or dyadic primitive.
result ← expr1 - expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Subtract functions subtract the second operand from the first. Subtract functions are predefined for all
numeric and enumeration types

User-defined types can contain cross language overloads to the - operator.

Example

function fn() {
 ⎕ ← 2 - 1
 ⎕ ← 2 - 1 2 3
 ⎕ ← 1 2 3 - 1 2 3
 ⎕ ← 1.1 1.2 1.3 - 1
 ⎕ ← 1.1 1.2 1.3 - 1.1 1.2 1.3
 ⎕ ← 1 - 3 3 ⍴ ⍳ 9
 ⎕ ← (3 3 ⍴ ⍳ 9) - 3 3 ⍴ ⍳ 9
}
 fn()
1
1 0 ¯1
0 0 0
0.1 0.2 0.3
0 0 0
 1 0 ¯1
 ¯2 ¯3 ¯4
 ¯5 ¯6 ¯7
 0 0 0
 0 0 0
 0 0 0

Page 484

Visual APL Programmer's Reference
↑ Take

The Take function can act as either a monadic or dyadic primitive.
result ← expr1 ↑ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

The Take function returns data from dimensions of expr2, according to the amounts specified in expr1.

The length of expr1 should match the rank of expr2, and each element of expr1 specifies the amount of data
to Take from the respective dimension of expr2.

The elements of expr1 can be either negative, positive, or 0. If an element of expr1 is positive, that length is
taken from the related dimension of expr2. If an element of expr1 is negative, that length is taken from
opposite end of the related dimension of expr2. If an element of expr1 is 0, the data is elided from the
resultant dimension of the result.

Example

function fn() {
 ⎕ ← 1 ↑ 10
 ⎕ ← 2 ↑ 10
 ⎕ ← 2 ↑ "a"
 ⎕ ← 10 ↑ 10
 ⎕ ← 2 2 ↑ 3 3 ⍴ ⍳ 9
 ⎕ ← ¯2 ¯2 ↑ 3 3 ⍴ ⍳ 9
 ⎕ ← 4 ↑ (1 2) (3 4)
}
 fn()
10
10 0
a
10 0 0 0 0 0 0 0 0 0
 0 1
 3 4
 4 5
 7 8
 1 2 3 4 0 0 0 0

Page 485

Visual APL Programmer's Reference
⊥ To Base 10 (Decode)

Produces a single number of radix base 10 from expr2, where expr2 is a vector of numbers, and expr1 is
a vector of numbers specifying the radix of each element of expr2.

result ← expr1 ⊥ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

If expr1 is a scalar, expr1 is considered to be the same length as expr2 (scalar expansion).

Example

function fn() {
 ⎕ ← 10 10 10 10 ⊥ 1 7 7 6
 ⎕ ← "Convert 2 days, 12 hours, 22 minutes to total minutes"
 ⎕ ← 1 24 60 ⊥ 2 12 22
 ⎕ ← "Convert 8 bits to base 10 number"
 ⎕ ← 2 2 2 2 2 2 2 2 ⊥ 0 0 0 0 1 0 1 0
}
 fn()
1776
Convert 2 days, 12 hours, 22 minutes to total minutes
3622
Convert 8 bits to base 10 number
10

Page 486

Visual APL Programmer's Reference
⍉ Transpose

The Transpose function can act as either a monadic or dyadic primitive.
result ← expr1 ⍉ expr2
result ← ⍉ expr2

Where:
result

An expression.
expr1

An expression.
expr2

An expression.

Rem arks

Dyadic Transpose:

The Transpose function creates a result array that contains all elements of expr2, except that the dimensions
of the data, and consequently the positions of the data in the result array, are remapped according to the
remap sequence specified by expr1.

The length of expr1 must be equal to the rank of expr2.

expr1 must be a vector of indices, where no index is greater than the rank of expr2.

If all elements of expr1 are unique, then following definition of Transpose applies:

The result of Transpose is obtained by iterating sequentially through each element of expr2, determining the
array index if that element, remapping that array index according to expr1, and then assigning the indexed
element into the result array at the remapped index.

If elements of expr1 are repeated, then the following definition applies:

The elements of the result of Transpose are the elements in expr2 where the following definition holds true:

An element is selected from expr2, where the array index of that element has repeated
indices at the same locations as the repeated indices in expr1.

Monadic Transpose:

If the left argument to the Transpose function is omitted, the dimensions of expr2 are reversed. The result of
Monadic Transpose can be replicated with dyadic Transpose, if the supplied expr1 is a reversed vector of
indices from 1 to the rank of expr2.

Example

function fn() {
 ⎕ ← ⍉ 1
 ⎕ ← ⍉ 1 2 3
 ⎕ ← ⍉ 2 4 ⍴ ⍳ 8
 ⎕ ← "specify axis"
 ⎕ ← 0 1 ⍉ 2 4 ⍴ ⍳ 8
 ⎕ ← "reorder axis"
 ⎕ ← 1 0 ⍉ 2 4 ⍴ ⍳ 8
 ⎕ ← "reorder axis"
 ⎕ ← 2 0 1 ⍉ 2 4 2 ⍴ ⍳ 16
}
 fn()
1
1 2 3
 0 4
 1 5
 2 6
 3 7
specify axis
 0 1 2 3
 4 5 6 7
reorder axis
 0 4

Page 487

 1 5
 2 6
 3 7
reorder axis
 0 8
 1 9

 2 10
 3 11

 4 12
 5 13

 6 14
 7 15

Page 488

Visual APL Programmer's Reference
○ Trigonometric Functions

The Trigonometric function can act as either a monadic or dyadic primitive.
result ← expr1 ○ expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

This primitive provides array extensions to all of the System.Math libraries, and also provides additional
functionallity not found on System.Math.

Valid expr1 elements and their meaning are:

¯7 - Hyperbolic Arc Tan
¯6 - Hyperbolic Arc Cos
¯5 - Hyperbolic Arc Sin
¯4 - (¯1+expr2*2)*0.5
¯3 - Arc Tan
¯2 - Arc Cos
¯1 - Arc Sin
 0 - (1-expr2*2)*0.5
 1 - Sin
 2 - Cos
 3 - Tan
 4 - (1+expr2*2)*0.5
 5 - Hyperbolic Sin
 6 - Hyperbolic Cos
 7 - Hyperbolic Tan

expr1 can be either a scalar or array, and is applied to expr2.

Example

function fn() {
 ⎕ ← 0 2 ○ .5 .5
 ⎕ ← 1 ○ .5
}
 fn()
0.8660254038 0.8775825619
0.4794255386

Page 489

Visual APL Programmer's Reference
~ Without

Dyadic function ~ evaluates whether the elements in expr1 exist in expr2, and returns those elements of
expr1 which do not exit in expr2.
result ← expr1 ~ expr2

Where:

result
An expression.

expr1
An expression.

expr2
An expression.

Rem arks

Dependent state: ⎕ CT

Dyadic function ~ evaluates whether the elements in expr1 exist in expr2, and returns those elements of
expr1 which do not exit in expr2.

Example

function fn() {
 ⎕ ← 1 2 3 ∼ 1 2 3 4 5 6
 ⎕ ← 1 2 3 4 5 6 ∼ 1 2 3
 ⎕ ← 1 ∼ 2
 ⎕ ← 1 ∼ 1
 ⎕ ← "test" "two" ∼ "test" "three"
}

 fn()

4 5 6
1

 two

Page 490

Visual Studio .NET Tips and Tricks
Abstract

This book provides you with the information you need to effectively use Visual APL in the Visual Studio
development environment.

Navigation

To navigate this book, you may either use the tree view on the left to navigate chapter by chapter,
section by section, or view the entire book on one page in "Visual Studio .NET Tips and Tricks" in the
left hand tree view.

Page 491

Introduction
Visual Studio .NET comes complete with many features and functions that dramatically increase our efficiency
as developers. As a powerful code editor, compiler, and debugger, it contains features to stress-test,
analyze, and optimize your code, and allows easy integration with code documentation, reporting, or
smart-device programming, such as the Pocket PC.

Because of the sheer number of features that Visual Studio .NET contains, it is a challenge for .NET
developers to become familiar with all of its features, shortcuts, and functionalities. The beginner developer
will find a virtual treasure trove of features with which to start, while advanced Visual Studio .NET users will
appreciate the many new features and improvements the new Visual Studio .NET 2005 brings.

Most of these features and functionalities are documented, and are accessible through the VS.NET main menu
or context menus. But, because of the vast number of features with which VS.NET is equipped, developers
don’t always know them or use them. This guide should help familiarize developers with the tips and tricks
that are at their disposal in this powerful tool and their specific application to the Visual APL language.

Chapter 1: Editing Code
While you create code, there are many techniques and shortcuts that allow you to write and navigate through
your code quickly and easily. This chapter introduces many of the tips and tricks you will need for such tasks
as code navigation, performing complex find-and-replace searches, and generating code.

1.0 - Inserting Comment Tokens (Ctrl-K,Ctrl-H)

This feature enables you to write a comment and find it again easily. To see a list of all reminders you
placed in your code (see Figure 1):

Without recompiling, select View > Show Tasks > All

To insert task shortcuts in your code:

Press C trl-K, C trl-H.

This marks the current line with a shortcut icon and inserts a clickable shortcut icon in the Task List.

To remove the shortcut:

Press C trl-K, C trl-H.

 These shortcuts survive IDE restarts.

Page 492

Figure 1. Comment Tokens.

1.1 - Commenting Code Blocks (Ctrl-K, Ctrl-C)
One-line comments are extremely useful in explaining seldom used code and assisting in navigation and
definition of development projects. To inserted a comment for a code block or segment:

Press the “//” token for Visual APL.

Additionally, Visual APL allows you to comment entire paragraphs and segments. To place a comment in a
paragraph or segment:

Select “/#” (and corresponding “#/”) tag around the comment.

To quickly comment entire paragraphs:

Select the text.

C lick the Comment button (see Figure 2) or

Press C trl-K, C trl-C .

This comments an entire selection.

To uncomment any selection:

C lick the Uncomment button or

Press C trl-K, C trl-U.

Figure 5 - Comment and Uncomment buttons

1.2 -Creating Regions

The more code you generate, the more difficult it can become to navigate. In addition to selecting classes
and their methods from the drop-down lists above the main editor, you can also group your code into logical
regions. Regions are extremely helpful for dividing code in logical ways and even commenting it. Regions
allow you to collapse code to a single line defining the region and still easily see what is inside it once it is
collapsed. They can even be nested. Automatically generated code in VS.NET usually uses this feature, so
you may already be familiar with it.

To specify a region:

Insert a #region keyword and a description at the beginning of your segment and a corresponding
#endregion keyword at the end of your segment (see Figure 3).

Figure 3 - Creating regions

The Outlining menu displays various collapse and expand options. To expand and collapse the current region
you are in:

Press C trl-M, C trl-M.

To expand or collapse all regions at once:

Page 493

Right-click the gray bar to the left of the main editor window.

To collapse an individual region:

C lick the plus sign next to the #region keyword.

This collapses the code into a single line that shows the region description.

To display the inside of a collapsed region:

Move the mouse over the gray description area (see Figure 4).

Figure 4 - M ouse over a region to see its content

You can even drag and drop collapsed regions inside your code. When you paste a collapsed region into a
different location, the pasted text is automatically expanded.

1.3 -Hiding Selection by Using Temporary Regions (Ctrl-M,Ctrl-H)
Regions are created automatically for methods, comments, and sections encompassed by the #region
compiler directive. In Visual APL and in regular text files, you have the option to create temporary regions
around any section without the need for “#region”. This is useful when you want to create a region that will
not be preserved once your project is closed. In this case, you can temporarily define a region using the
following method:

Highlight the section you want to hide and press Ctrl-M, C trl-H.

This hides the current selection in a temporary collapsed region (see Figure 5).

To expand a temporary collapsed region:

Press C trl-M, C trl-M.

Temporary regions are lost after you close a project.

Figure 5 - Hiding portions of any text file

For creating regions which are preserved past the closing of your project, see “Creating Regions”

1.4 -Selecting a Single Word (Ctrl+W)
To select a single word when editing code:

Double-click anywhere in the word or just press Ctrl-W.

Double-clicking in a word is a common method used by many word processing and publishing programs to
quickly select a word.

Page 494

1.5 -Placing Code into the Toolbox (Ctrl-Alt-X)
When creating a project, you may want to use certain pieces of code or text again and again. You may have
a standard copyright header that you place at the top of each file or a certain line of code to perform a
common task. To simplify this repetitive task, you can place it into your Toolbox. The Toolbox is the window
that lists all windows or web controls. To place your item into the Toolbox, use the following method:

1. Pull up the Toolbox:

 Press C trl-Alt-X.

2. Move the frequently used text or code into the Toolbox:

Highlight your item and drag the selected text onto the General tab in your Toolbox

 (see Figure 10).

3. Rename the produced text item in your Toolbox

 Right-click it and choose Rename Item from the pop-up menu.

Figure 10. Adding text to the Toolbox

To insert an item into your text or code from the Toolbox:

 Select the item in your Toolbox, then either:

 Drag it into your code window or

 Place your cursor in your text where you want to insert the item,
 Double-click the entry

The General tab in the Toolbox is project and solution independent, and it retains its content even after you
restart VS.NET.

1.6 - Using the Clipboard Ring (Ctrl-Shift-V)
The C lipboard Ring works like a historical file of the last used text selections that you placed on the C lipboard.
Because it preserves many levels of selections, it is useful when you accidentally overwrite the current
C lipboard content or when you find yourself needing several different items concurrently.

To use the C lipboard Ring you can either:

Double-click one of the remembered C lipboard items to paste it at the cursor’s current location or

Drag it into the editor.

When the C lipboard Ring contains many C lipboard items, or when you cannot see the complete contents of
each item in the ring, it’s useful to cycle through the C lipboard Ring.

To progress one item at a time through the C lipboard Ring:

Select Edit > Cycle C lipboard Ring (C trl-Shift-V)

Doing this repeatedly makes VS.NET cycle through the C lipboard Ring’s contents, displaying the stored
C lipboard contents in the text editor at the cursor’s current location. This method makes it easy to paste
specific content in the code editor as it becomes visible during the cycling. Continue cycling through the
C lipboard’s contents until you find your desired item.

Page 495

1.7 - Transposing a Single Character or Word (Ctrl-T or Ctrl-Shift-T)
To switch the position of the current characters or words on either side of the cursor you need to use
Transpose. This procedure switches the characters or words, then moves the cursor to the right. Transpose
is useful if you mistype a word or write a sentence or code segment with words in the incorrect order.

To transpose a single character:

Press C trl-T.

This swaps the two characters surrounding the cursor and moves the cursor to the right by one character.
Pressing Ctrl-T repeatedly allows you to move a single character further to the right one character at a time.

To transpose a single word:

Press C trl-Shift-T.

Note: This does more than just swap two adjacent words. VS.NET knows to ignore “unimportant” single
characters, such as equal signs, string quotes, white spaces, commas, etc.

Suppose you have a line of code that originally looks like this:

new SqlCommand("trans", stored_procedure, conn);

Pressing Ctrl-Shift-T repeatedly on the word “trans” would yield the following:

new SqlCommand("stored_procedure", trans, conn);

and finally this:

new SqlCommand("stored_procedure", conn, trans);

The quotation marks and commas retain their original positions throughout the process. When you reach the
end of a line, pressing Ctrl-Shift-T transposes the word with the first word of the next line.

1.8 - Cutting, Copying, Deleting, and Transposing a Single Line
If you need to cut, copy, delete or transpose an entire line, you can do this easily with one keyboard
sequence.

To copy the complete, current line to the C lipboard:

Press C trl-C (or click the Copy icon) without any text selected.

To cut an entire line:

Press C trl-X (or click the Cut icon) without any text selected.

This will cut the entire current line and place it in the C lipboard.

To delete a single line:

Press C trl-L without any text selected.

 To transpose, or swap the current line with the one below it:

Press Alt-Shift-T without any text selected.

Doing this also moves the cursor down by one line. This allows you to press this keyboard shortcut repeatedly
until you move your current line to the desired position.

Page 496

1.9 - Formatting Entire Blocks (Ctrl-K, Ctrl-F or Ctrl-K,Ctrl-D)
To apply formatting to an entire selection, there are several useful functions you can use. Uppercasing,
lowercasing, or deleting horizontal white spaces are just a few examples.

To access these features:

Select Edit > Advanced

One of the most useful features here is the Format Selection function.

To access the Format Selection Function:

Press C trl-K, C trl-F,

This feature formats an entire selection and inserts tabs where appropriate to modify the code with the
correct code-specific block indentation. This is usually done automatically when someone enters code upon
closing a block (such as by typing the “}” sign in Visual APL) but Format Selection forces this automatic
format (see Figures 11 and 12).

You can also format the entire document. To do this:

Press C trl-K, C trl-D.

Figure 11. Before formatting block

Figure 12. After formatting block

1.10 - Toggling Word-Wrapping (Ctrl-R,Ctrl-R)
To turn word wrapping on and off for the current view:

Select Edit > Advanced

Or use the keyboard shortcut:

(C trl-R, C trl-R)

1.11 - Creating GUIDs
As you develop new classes and components, you often need to create Global Unique Identifiers (GUIDs).
These are 128-bit values often represented by 32 hexadecimals. In the past, component developers used
GUIDs to assign their components with unique names to reduce the likelihood of two components sharing the
same GUID. Developers now use GUIDs for anything that requires a unique identifier. GUIDs can be created
manually by randomly selecting 32 hexadecimals, but this is somewhat tedious. VS.NET comes with a utility
that creates GUIDs for you whenever you need one.

Page 497

To create a GUID, open the Create GUID dialog box:

Select Tools > Create GUID (see Figure 13).

Here you can generate identifiers in various formats, including common code items often used in COM
development.

Figure 13. Create GUID tool

1.12 - Creating Rectangular Selections
To make a rectangular selection of text or code, there is a technique which allows you to do this without
including the intervening lines (see Figure 14).

To select a rectangular area:

Press the Alt key while dragging the mouse to select the area.

Manipulating the selection by copying, cutting, or pasting rectangular blocks can be done very easily this
way.

Figure 14. Rectangular selection

1.13 - Switching Between Views (F7)
For Windows forms, you can easily switch between both views. To toggle between designer and code views:

Press F7 (designer and code)

1.14 - Going to a Line Number (Ctrl-G)
For quick and easy navigation inside your code or text file, you can jump to a particular line.

To go to a specific line number you need to access the go to dialog box. To do this, either:

press C trl-G or

Page 498

double-click the line number status bar at the bottom.

A small dialog box will appears. To jump to a line number:

enter a line number

If you type a line number that is out of the range of possible line numbers, the cursor jumps to the beginning
or end of the file, respectively. A number which exceeds the number of lines in the file will place you at the
end of the file. A number that is too low will jump you to the beginning of the file.

1.15 - Searching for a Word
There are several methods for searching for a word inside a file. It is helpful to know all the methods for
ease in moving around your file. The following are common methods for finding a word.

1. Access the Find dialog box

Select Edit > Find

Enter a term in the Find dialog box.

2. Access the Combo box in the main toolbar next to the configuration drop-down list. To open the
combo box and invoke the search function:

Press C trl-D

Enter or paste a word into this list and press Enter

 Repeat pressing Enter in that drop-down list to find the next match.

3. Select the entire word, or place the cursor somewhere inside the word:

Press C trl-F3.

 This invokes the same search function I described just previously. Repeatedly pressing
 C trl-F3 iterates over all matches.

Using either the combo box or the Ctrl-F3 shortcut applies the same search options specified in the Find dialog
box. Set the options you desire in the Find dialog box first to search correctly (for example, enabling Search
Hidden Text to include all collapsed regions in the search area).

1.16 - Performing an Incremental Search (Ctrl-I)
An incremental search allows you to find occurrences of a search key as you type it one letter at a time. After
each keystroke, VS.NET immediately highlights the next available occurrence that matches whatever you
have typed so far. The more letters you type, the more likely is it that the found occurrence is indeed what
you are seeking.

To initiate an incremental search:

Press C trl-I

You do not need to enter the entire word to find a specific occurrence; you only need to type the minimum
number of characters that would uniquely identify the word for which you are searching.

To return to normal editing mode:

Press Escape

In the C ielo Explorer you have to single click with the mouse.

If you are unsatisfied, press C trl-I repeatedly to find the next occurrence that matches your partial search
key, or press C trl-Shift-I to find the previous matches. You can, of course, simply enter more letters to
narrow the search further.

1.17 - Searching or Replacing with Regular Expressions or
Wildcards
Regular expressions can look extremely intimidating, but they are extremely powerful tools to find
complicated search keys and patterns. Regular expressions is a built in feature that allows you to describe a

Page 499

searchable pattern in terms of wildcards, characters, and groups.

This feature in VS.NET is often overlooked by many developers. To access this feature, bring up the Search
or the Replace dialog box:

Press either C trl-F or C trl-H, respectively

Note: Besides the regular options to refine your search, the last check box allows you to define your search
based on regular expressions or wildcards.

You can use either of two modes. To use Regular Expression mode, specify the expression using a similar
notation you are accustomed to with the System.Text.RegularExpressions namespace.

To see a list of possible constructs that you can insert into your regular expression:

C lick the arrow button next to the Find What field (see Figure 15).

Figure 15. Use regular expressions.

To use Wildcard mode, construct your search pattern using the more commonly known wildcards from
MS-DOS, such as “*” and “?”.

If used correctly, these two modes can be very helpful in refining your search algorithm or when developing
programs based on regular expressions.

1.18 - Global Search or Replace (Ctrl-Shift-F or Ctrl-Shift-H)
The global search and replace feature in VS.NET spans entire projects and solutions. This is similar to
normal search and replace dialog boxes, except that you can specify the scope of the search or replace
action over multiple files.

To bring up the global search or global replace dialog box:

Press C trl-Shift-F or C trl-Shift-H, respectively

Page 500

This feature allows you to perform a global search and replace in just the current document, the current
project, the entire solution, or any open documents (see Figure 16). You can also filter which files you want to
search based on wildcards.

Figure 16. Global search and replace.

Once the search or replace action is started, VS.NET searches all specified documents and modifies them if
required. The global replace, will also prompt you to leave modified documents open. This option allows you
to undo the replace, because only open documents offer the undo feature. If you don’t select that option,
global replace will automatically save the modified files and make this a permanent action.

To immediately stop a global search or replace anytime:

Press C trl-Break.

Once a search or replace action is completed, a list of occurrences that have been found will be displayed in
the “Find Result” dialog box.

To iterate over the Find Result list:

Press F8 or navigate to an occurrence by double-clicking it.

If that occurrence is currently located in a collapsed region, you can expand it. To automatically expand the
region:

Double-click the same find result in the list again.

On initiating a new find or replace action, VS.NET clears this window to fill the list with the new results. If you
want to keep the results of the previous search and output the result in a second window:

Check the Display in Find 2 option in the search dialog box

Page 501

You can then tab between both result sets.

All find/replace functionalities are included in a single dialog box (see Figure 17), you can also access the
global find/replace functionalities using the drop-down list at the top. All shortcuts remain the same.

Figure 17. Global replace in files

1.19 - Using Bookmarks
Bookmarks enable you to return quickly to a given page or section of your code or file. When you determine
critical sections of your programming that you want to return to frequently, instead of scrolling to these
places, bookmark those lines.

To place a bookmark, first, make the bookmark toolbar visible:

Right-click any existing toolbar and select Text Editor from the pop-up menu.

C lick on the blue flag icon in Text Editor toolbar.

Another method which can be used to place a bookmark:

Press C trl-K, C trl-K.

This second method not only makes a bookmark visible on the left side of the code, but you can now jump
quickly among other bookmarks. To jump to the other bookmarks you can either:

C lick the appropriate flag buttons on the toolbar (see Figure 18) or

Press C trl-K, C trl-P (for the previous bookmark) or C trl-K, C trl-N (for the next bookmark).

Figure 18. Bookmark toolbar

To clear all bookmarks:

Press the C lear Flag icon or

Press C trl-K, C trl-L.

The Find dialog box in VS.NET allows you to bookmark all matching occurrences as follows:

C lick the Mark All button.

As part of VS.NET 2005 considerable support for bookmarks, you can also have the option of moving to the
next or previous bookmark within the same file as follows:

Press the appropriate buttons on the bookmark toolbar (see Figure 28).

Figure 28 - M ove to bookmarks in the same file in VS.NET 2005

You can also name your bookmarks by first opening a new Bookmarks window:

Page 502

Press C trl-K, C trl-W or

Select View > Other Windows >Bookmark Window.

This displays all the bookmarks that you have created (see Figure 19).

To jump to a bookmark’s location:

Double-click the bookmark.

To rename a bookmark:

Press F2 or

Right-click the bookmark and use the Rename context menu item.

You can categorize your bookmarks and organize them into folders. You can also, jump to the next or
previous bookmark within the same folder. To perform any of these functions, simply select the appropriate
icon on the toolbar.

Figure 19. M anage your bookmarks in the Bookmarks Window.

The Bookmarks window shows check boxes next to each folder and bookmark. These allow you to disable a
bookmark without deleting it. Disabled bookmarks are skipped when you use any of the buttons or shortcuts
to navigate your bookmarks.

1.20 - Using Browser-Like Navigation (Ctrl -, Ctrl Shift -)
VS.NET is equipped with browser-like “back” and “forward” buttons in the IDE that allow you to review the
most recent cursor locations. The Navigate-Backward and Navigate-Forward buttons are located to the right
of the Undo and Redo buttons (see top left of Figure 20). You can also access them in the View menu.

Figure 20. Navigate buttons

Similar to a web browser, VS.NET keeps a history of your recently accessed locations. After using the Go To
Definition feature or after switching arbitrarily to another file or even just jumping between different line
numbers of the same file, you can easily return back to the last edit location as follows:

C lick the Navigate-Backward button.

These Navigate buttons have pre-assigned shortcuts. To Navigate back:

Press C trl-Hyphen

To Navigate forward:

Press C trl-Shift-Hyphen.

1.21 - Inserting External Text File
A common method of inserting code fragments involves opening a file in Notepad and copying the code from
there. To bypass this step of opening and closing Notepad you can:

Select Edit > Insert File as Text from within the code editor.

Page 503

Chapter 2: Exploring the IDE
Visual Studio .NET is an easily customizable feature-rich Integrated Development Environment (IDE). It
allows a developer quick access to commonly used commands and activities which enable you to control and
modify your project and solutions. This chapter covers a range of topics such as: the Solution Explorer;
window positioning; managing macros; modifying menu items and other tips and tricks useful for in
navigating inside the IDE.

2.0 - Setting Project Dependencies
In a large solution with multiple projects and custom build events, it is often necessary to control the build
order for your projects. VS.NET has the capability to figure out which project needs to be built first by
analyzing the references of each one. The first project built is normally the one referenced first. This
algorithm is based on your set project references for your projects.

VS.NET also allows you to compile a certain project before another one without having project references.
 This is accomplished from a pop-up menu that allows you to choose Project Dependencies. To designate the
order in which projects will be built:

Right-click your project that needs to be built last and choose Project Dependencies from the pop-up
menu.

Set manual dependencies on other projects by check-marking them.

This will ensure that the checked projects will be built before the current project (see Figure 21). A drop-down
menu for the current project allows you to switch to another project’s dependencies.

Figure 21. Setting project dependencies manually

VS.NET prevents you from creating circular references or modifying dependencies that resulted from adding
project references. To verify the build order at any given time:

C lick the read-only Build Order tab.

Note: In VS.NET 2005, the Project Dependencies context menu item in the Solution Explorer does not exist
for web applications, instead, you need to select Websites > Project Dependencies.

2.1 - Embedding Files As Resources

Page 504

Embedding files as resources allows you to embed any given file directly into your produced assembly. For
instance to display a company logo on your Windows application, you could produce a regular Windows
assembly and link to an external image that you send along with your application. You can also embed the
image right into the assembly you produce. This enables you to avoid shipping the external image and, more
importantly, prevents the possibility of these two files becoming separated.

To embed a file as a resource, it must first be included in your solution. You can then select the file in the
Solution Explorer and change the Build Action property in the Properties window. The build action tells the
compiler what to do with the specified file. If you select the Embedded Resource build action, the actual bytes
of the file will be stored inside the produced assembly (regardless of whether this is an EXE or a DLL).

At runtime, you can then extract the bytes using the following code:

Assembly oAssembly =
System.Reflection.Assembly.GetExecutingAssembly();

Stream streamOfBytes =
oAssembly.GetManifestResourceStream("mylogo.bmp");

After this retrieves the bytes from the given embedded resource, you have to convert those bytes back into
the original file type (using Image.FromStream(), for instance, to convert it back into a picture). Notice how
this code is orthogonal to the file type being embedded as a resource. This enables you to embed any file
type: sound and movie files, PDF files, or even another assembly.

2.2 - Changing the Font Size of IDE Windows for Demos
It is a common practice when demonstrating VS.NET or your code, to increase the font size of the text editor
so that everyone in the audience can easily see the demonstration. The font size can be easily increased by
a couple of methods:

Select Tools > Options > Environment > Font and Colors > Size.

This works great, except that the text in the Output windows, Solution Explorer, C lass view, Macro Explorer,
or in the file tab titles can still be very hard to read.

Control the size of the text in these elements as follows:

In the same settings window, the first drop-down list reads Show Settings For. Change it to read
Dialogs and Tools Windows.

Set the font and the size here in this window.

You control the format of the text elements of the majority of the IDE windows. The changes come into full
effect after you restart the IDE.

To increase the font of the Output window:

Change Show Settings For to Text Output Tools Windows.

To reset any of these settings to their default installation values:

C lick the Use Defaults button.

Note: This button applies only to the currently selected item in the Show Settings For drop-down list, so
repeat this step for every setting that you want reset back to the default settings.

2.3 - Dragging Files to Obtain a Full Path
A useful feature of VS.NET is the ability to drag files from your Solution Explorer directly into your code. If
you do this in a source code file, it will simply insert the full path to the selected file into your code.

2.4 - Moving Any Window Around
Every window in VS.NET is movable, resizable, and dockable: the Solution Explorer or Macro Explorer; the
Properties, Task, and Output windows; and even your Toolbox, Server Explorer, and Find/Replace windows.
To move any window in VS.NET:

Drag the title bar to the desired position.

Page 505

As you drag a window close to a dockable region (such as tabs or near another window frame), an outline
appears, allowing you to preview the result before dropping the window.

To dock and undock windows:

Double-click the title bar.

You can also move the order of tabs in your tab windows. This includes the files tabs at the top of your
editor.

While the ability to control window positioning gives VS.NET enormous flexibility, the preview outlines are too
confusing to make this an intuitive interface. If you have moved the windows positions and would like them
reset, you can always reset all windows positions to their installation defaults:

Select Tools > Options > Environment > General > Reset Windows Layout.

With VS.NET 2005, you can also reset the windows positions. To do this:

Select Window > Reset Windows Layout.

One aspect of moving windows around is the ability to create a split screen. Use the following steps to split
the editor into two vertical screens complete with their own set of file tabs (see Figure 23):

Drag the tab of any open file and move it to the right of your editor (to the left of where the Solution
Explorer usually resides).

This docks your selected file to the right and splits the editor into two vertical screens.

To close vertical split mode either:

C lose the second set by clicking the small X at the top right, or

Drag the file tabs back to the left along with the other files.

Figure 22. Vertical split

To create a horizontal split screen:

Drag a file tab to the bottom of your editor.

Page 506

2.5 - Creating Split Screens in the Same File
The “Moving Any Window Around” trick described in “Moving Any Window Around” shows how to create split
screens so you can see two files next to each other. What if you want to create a split screen to see two
locations of the same file? To do this:

select Window > Split

The horizontal divider can also be generated using a faster method:

Move your cursor right above the vertical scrollbar of the main editor. There is a very thin, short,
rectangular-shaped divider (see Figure 23).

Place your mouse over that divider, the mouse icon changes to the divider icon.

Drag the divider down to the center of the screen to create the split screen (see Figure 24).

Figure 23. Horizontal split divider

Figure 24. Split document.

To move the divider back to the top of your editor window:

Select the divider bar and slide back into its original position.

2.6 - Customizing the VS.NET Menu and Toolbars
The VS.NET menu can be customized in a variety of ways. You can add and remove commands as well as
reorder them. To customize the menu and toolbars:

Select Tools > Customize.

With the Customize dialog box open, navigate back to the VS.NET menu.

The menu now does not react to left mouse-click events and will show context menus when you right-click the

Page 507

menu items. Here you can rename, edit, and delete menu items; drag menu items around; or even create
your own cascading menu groups.

You can also manage the icons for each menu item by right-clicking the item and selecting Choose Button
Image from the pop-up menu. If you are not satisfied with the icons in the selection, you can copy icons from
other menu items to your newly created menu ones. To copy icons from other menu items:

Right-click a menu item with the desired icon.

Choose Copy Button Image from the pop-up menu

Right-click the menu item you want to modify.

Choose Paste Button Image from the pop-up menu.

To add other commands to a menu:

Drag a command from the Command tab directly into the VS.NET menu.

Note: In addition to directly modifying the VS.NET menu items as long as the Customize dialog box is open,
VS.NET 2005 adds a complete new GUI to modify the menu. The new GUI appears when you select Tools >
Customize > Rearrange Commands. Here you can move, add, and delete menu items as well as toolbar
buttons (see Figure 25).

Figure 25. Customize menus using the rearrange commands

Page 508

2.7 - Dragging Files from Windows Explorer into VS.NET
Visual Studio .NET completely supports file drag (and drop) actions. It allows you to drag files from Windows
Explorer directly into VS.NET. If you drop them in the Solution Explorer under a project, it will first be copied
into the same directory as the project and then included into the project. If you drag them into the code
editor, VS.NET will either start the default external viewer (for example, Adobe Acrobat for PDF files) or
display the file’s contents inside VS.NET if it’s a file type that it understands.

To drag files from Windows Explorer into VS.NET if you don’t have enough screen space:

Drag the file into the Windows taskbar at the bottom of your screen

Pause for a few seconds over the taskbar for VS.NET. The pause brings VS.NET into focus.

Drop the file into the appropriate location.

2.8 - Using Full-Screen Mode (Ctrl – Shift – Enter)
Full-screen mode allows you to hide virtually everything except the main editor, where the entire screen
shows the main view. To enter full-screen mode:

Select View > Full Screen or

Press C trl-Shift-Enter.

The main menu is still visible at the top, and a floating button that closes full-screen mode is also available.
To hide the C lose Full Screen mode button—you need to memorize the keyboard shortcut that returns to
normal mode or:

Select View > Full Screen again.

Full-screen mode is available for any view, including the HTML, Designer, and XML views.

2.9 - Copying the Fully Qualified Name of a Class
The C lass view is a hierarchical view of all your classes and namespaces in your solution. To display this
view:

Select View > C lass View or press C trl-Shift-C .

To go to any class and its members and navigate to the member definitions:

Double-click on the desired item.

Another useful feature allows you to extract the full namespace of any class or member:

Highlight the class or the class member.

Press C trl-C .

This copies the complete namespace of the selected item to the C lipboard. This feature comes in handy when
you have a complex or deep namespace structure.

To paste the namespace into the VS.NET code editor, there is no need to copy it to the C lipboard first. Use
the following method:

Drag a class or member of a class from the C lass view directly into your code

Watch VS.NET paste the complete namespace and member name there.

2.10 - Changing Properties of Several Controls
When designing your Windows forms, you can use the Properties window to modify a control’s behavior and
appearance. The Properties window, however, is adaptable when you select several controls at the same
time. To select a series of controls either:

Hold down Ctrl or Shift when selecting controls or

Draw a selection rectangle with your mouse,

The Properties window automatically displays the properties that are common to all of the selected controls.
With all controls selected, any change you make in the Properties window affects all selected controls.

Page 509

This is useful for instance, after you drag a series of text boxes from the Toolbox onto your form and want to
get rid of the default “TextBox1,” “TextBox2,” etc. values.

Select all the text boxes.

Change the Text value to a single space by pressing Spacebar.

Change it back to an empty string by pressing Delete.

Do this twice because the initial values of each text box differ originally, so the Text property displays
an empty string as the “common value”.

This deletes the default text in all of them.

2.11 - Locking Controls
When laying out windows controls on Windows forms, you can easily move the controls around or create
event handlers by simple dragging and double-clicking. However, this simplicity has its drawbacks as you can
move things around accidentally very easily. This can cause problems if you have already finished designing
your Windows forms. In order to prevent this from happening, you can lock your form.

To lock the position of your controls on your form:

While in the Designer view, right-click anywhere on your form

Choose Lock Controls from the pop-up menu (see Figure 26).

You still have the ability to add event handlers and modify a control’s appearance, but you can no longer
accidentally move or resize a control. To indicate that it is locked and unmovable, a thin, black outline
appears around each selected control.

To return to the Designer view:

Right-click your form and choose Lock Controls from the pop-up menu again.

Figure 26. Lock controls in a form

2.12 - Toggling the Description in the Properties Window
The Properties window not only displays all properties of a selected control, but the Description pane at the
bottom briefly describes the active property. As you select different properties, the Description box informs
you what the selected property does. To turn off the Description box panel:

Right-click the property name.

Choose Description from the pop-up menu.

To turn it back on use the same method.

2.13 - Change Drop-Down List Values in the Properties Window
Whenever a property only accepts a finite set of values, the value field becomes a drop-down list, from which
you make your selection. For instance, the FormBorderStyle property of a Windows form only accepts None,

Page 510

FixedSingle, Fixed3D, FixedDialog, Sizable, FixedToolWindow, and SizableToolWindow. To select the
appropriate item:

Open the drop-down list.

Select the style you want.

Anytime you have a drop-down list in the Properties window, you can iterate over the list more quickly by
simply double-clicking the property or its corresponding drop-down list. Without expanding the list first,
double-clicking it sets the value to the next available item in the list (or to the first item if the current value is
the last one).

This trick can be extremely useful when switching Boolean values because a double-click changes the value
quickly from True to False, or vice versa.

2.14 - Adding and Removing Event Handlers Through the IDE
Adding default handlers through the IDE is quite easy. In most cases, you only need to double-click a control
which creates the necessary code for the default event handler.

Adding and removing non-default events handlers is still easy, but, in Visual APL, it requires not only the
removal of the method itself but the removal of the code that hooks an event handler to an event, often
found in the InitializeComponents() method.

The proper, but relatively hidden, way to add and remove event handlers in Visual APL is to use the
Properties window:

Select the control

C lick the Events button in the Properties window (the yellow thunderbolt).

The Property window displays all the events that the selected control exposes, along with any event handler
that is already hooked up to them.

In addition, the event handler fields are clickable (see Figure 27).

To create an event handler:

Double-click an empty field.

Choose which event you want to subscribe to.

To hook an event handler which is already written, to an event:

Use the drop-down button next to the selected field that automatically lists all matching event
handlers.

Figure 27. Setting events

To delete an event handler:

Delete the value in the event field.

Page 511

This also removes the event handler subscription you have in the InitializeComponents() method.

2.15 - Selecting Control Through a Drop-Down List
When there are many controls on a Windows form, it can become a challenge to find a specific control, and
select it. This problem often occurs when many panels overlap one other or when the Windows form becomes
too crowded to isolate a specific control that you want to modify.

To select a specific control:

Select the drop-down list that appears right above the Properties window.

Select the desired control.

Note: This drop-down list is only populated in the Designer view. It contains all the controls that exist on the
Windows form. To select a certain control, you just need to know its ID and data type.

Chapter 3: Compiling, Debugging, and Deploying

Not only is VS.NET a great editor, it is also a powerful compiler, debugger, and profiler. It allows you to
precisely control your compilation procedure and provides the features which are absolutely essential in to
locating and fixing a bug: analyzing your code, attaching to running processes that you want to debug, and
changing code and variables at runtime. This chapter covers topics that you need to know when it comes to
compiling and debugging your programs.

3.0 - Setting the Default Namespace and Assembly Name
Following the official naming guidelines suggested throughout the industry, you would declare your classes in
your own company and project-specific namespace. Typically, you end up with the following namespace
hierarchy (at a minimum):

MyCompanyName.MyProject.MyClass

When you add new classes with the Add New Item dialog box, VS.NET does not place your new class in any
project namespace. It places it, by default, in the top-level namespace, which usually means the name of
your assembly. To set the default namespace when you create new projects:

Select Project > Properties > Application.

Specify the default namespace in the Default Namespace field.

This namespace can be many levels deep; new classes added through the VS.NET dialog box will be placed in
that specified namespace. In addition, you can also control the name of the assembly that is being generated
by specifying it in the Assembly Name field. While Windows applications typically use one word for the
assembly name, Control Library projects should be named using the same guidelines as the namespace.

3.1 - Generating Compiler Warnings Through the Obsolete Attribute
A commonly used way to display warnings in VS.NET at compile-time is to set an Obsolete Attribute to a
method. Throughout the product development cycle, occasionally certain methods become obsolete.
Sometimes the old method is not useful anymore. It may have become inefficient, or has been replaced by
another method. If you can’t modify those methods, will need to write another implementation of the method
using a slightly different name or signature. To maintain compatibility, you do not want to remove the old
method and break your code. This is where the Obsolete attribute comes in handy:

[Obsolete("Use the new MyMethodEx instead!")]
public void MyMethod()...

Setting the Obsolete attribute as above makes a warning message appear in the Task List stating that the
particular call to a method is obsolete. The warning message also includes your personalized message that
you pass as the attribute’s argument (such as, “Use the new MyMethodEx instead!”).

Page 512

As with the warning compiler directives, this method does not affect the compilation behavior in any way. You
also must activate the Task List to see these warnings. Unlike warning compiler directives, the warning only
appears if there is code that tries to invoke the obsolete method. These warnings will never appear if you
don’t refer to these methods anywhere in your code.

3.2 - Setting the Assembly Output Path
When you build a project, the produced assemblies are typically placed in the \bin\Configuration subfolder of
your project folder, where the configuration folder is typically Debug or Release.
These are the default settings. To specify another directory where you want to place the produced assemblies
and external files:

Select Project > Properties > Build for Visual APL projects.

Place either a relative or absolute path in the Output Path field.

This setting is used at the next build.

These configuration-specific properties allow you to specify a different output path for each configuration. For
instance, if you want, you can set the default output path for the Debug release as the usual bin subfolder,
while directing the release build directly to a network share on your internal company network.

3.3 - Setting the .NET Framework Version for Your Assembly
A great side-by-side installation feature of the .NET Framework is the ability to have multiple versions of the
.NET Framework installed on a given computer, without any of them interfering. By default, all non-web
applications use the .NET Framework with which they were compiled (if available), whereas web applications
by default always use the most recent version of the .NET Framework.

You can specify which .NET Framework is supported and required for your assembly by modifying the
application configuration file (MyApplication.exe.config or Web.config). What you need to do is:

Insert the appropriate Configuration/startup/supportedRuntime and
Configuration/startup/requiredRuntime XML tags in the configuration file

Set its version attribute to the specific .NET Framework version.

This enables you to force a Windows application to use an older version of the .NET Framework.

This configuration modification is easy in VS.NET. To set this for Visual APL:

Select Project > Properties > General > Target Platform.

Set the supported and required runtime versions for your assembly (see Figure 28).

To verify that your assembly is picking up the correct version, check the Version property in the .NET
Framework class System.Environment.

Figure 28. Choosing the target runtime.

Page 513

Note: Supporting the 1.0 Framework, or even version 1.1 is an unsupported environment. Simple programs
most likely will work, but for more complex programs you are strongly advised to check the compatibilities
manually in case your code uses version 2.0–specific features.

3.4 - Moving the Next Statement During Debugging
When stepping through your program one line at a time, you may need to jump a few lines back. To do
this:

Right-click an arbitrary line

Choose Set Next Statement from the pop-up menu (see Figure 29).

This forces the debugger to jump to that line and continue debugging “normally” from there.

Figure 29. Set Next Statement

To jump back, and also jump forward in and out of control statements:

Drag the yellow arrow to any line.

Note: You cannot jump out of the current stack frame, so you are limited to moving inside your current
method.

In addition, moving the current execution line can bring your program into states that under normal execution
could not occur. Still, it’s an extremely useful feature to rerun certain code lines without restarting your
debugging session.

3.5 - Changing Variable Values in the Watch Window
In addition to moving the next-statement pointer, you can change variable values at debug-time. In the
process of debugging your application, you may have moved your variables of interest into the Watch window

Page 514

(probably by dragging your variable there). The Watch window does more than display the current variable
value and type; the value field is also editable.

For most value types this is accomplished by entering the new value.

Note: You need to change the internal tick value of DateTime variables.

As for reference types, you can re-reference variables to other variables. Let’s say you have two instances of
hash tables in your Watch window, named foo and bar. Setting the variable foo to the reference bar’s hash
table is as easy as typing bar in foo’s value field. You can only change a reference variable to another
reference variable of the same type (or its derived types).

Note: This can bring your program into states that under normal conditions would never be encountered.

3.6 - Executing SQL Procedures Through the Server Explorer
The SQL Server tree branch in the Server Explorer allows you inspect and analyze a SQL Server instance. In
addition to the general features of inspecting a database table and Excel-like modifications of table contents
by editing rows, the Server Explorer has other useful features.

VS.NET has limited capabilities of editing stored procedures. To view, edit, and modify stored procedures:

Right-click any stored procedure.

Choose Edit Stored Procedure from the pop-up menu.

Unfortunately, this feature does not compete well with the Enterprise Manager because error messages
regarding syntax error are too general. Nevertheless, it’s quite useful for its designed purpose of viewing,
editing, and modifying stored procedures.

To execute stored procedures at design-time:

Right-click a stored procedure.

Choose Run Stored Procedure from the pop-up menu.

VS.NET inspects your stored procedure’s parameter list. If necessary, the Run Stored Procedure dialog box
is displayed:

Enter each parameter’s value.

Execute your stored procedure and see the results.

3.7 - Customizing the Call Stack
A stack trace is a visual representation of the current hierarchy of method invocations as VS.NET steps
through your program. While debugging your program, you step into methods and methods within methods.
The stack trace keeps track of all these different levels.

To see the current stack trace:

Select Debug > Windows > Call Stack or

Press C trl-Alt-C ,

Each method invocation is displayed on its own line, including the line-number and argument values. Each
new method invocation is known as a stack frame.

The stack trace has been around in Visual Studio for a long time and is a widely known tool. The advantage
of the stack trace window is that it allows you to identify how you get to the current execution point and also
inspect the arguments that have been passed to the methods.

To make VS.NET immediately jump to the method invocation on a particular level of your program:

Double-click any line in the stack trace.

A relatively unknown aspect of the stack trace is that you can customize the Call Stack window. To do this:

Right-click the call stack.

Customize what appears there (see Figure 30) according to your requirements.

Page 515

In addition, you can send the information regarding a single method invocation to a coworker:

Copy a stack frame to the C lipboard by pressing Ctrl-C .

To send your coworker the entire call stack:

Press C trl-A first, or

Before copying the selection to the C lipboard, Choose Select All from the context menu that appears
after you right-click.

Figure 30. Customize the CallStack

3.8 - Attaching VS.NET to an Already Running Process

To instruct VS.NET to debug your program, you first are telling it to build your project (if necessary) then
start the program in debug mode. This means that VS.NET is attached to the program so that it can react to
breakpoints and other debug-related methods, assuming that the project was built with the debug release. To
debug your program:

Press F5

There some cases, where you need, or want, to debug an already running process that has not been started
with VS.NET you must:

Open the project for the program that is already running.

Select Debug > Attach to Process

A list of all active processes on your machine is displayed.

From the Processes dialog box, select the process you are interested in debugging and click Attach.

3.9 - Debugging Several Projects Inside the Solution

Page 516

In a multi-project solution, VS.NET will start the project that you have marked as the “startup project.” That
project is indicated in the Solution Explorer with bold letters. If you start the other projects through Windows
Explorer, you will see that VS.NET does not hit any breakpoints for those projects because VS.NET was not
attached as a debugger to them.

It is possible to debug those programs anyway, using the instructions in, “Attaching VS.NET to an Already
Running Process.”

To instruct VS.NET to start a project and attachs itself to a specific program:

Right-click your project

Select Debug > Start New Instance from the pop-up menu.

You can repeat these steps several times to start multiple instances of your program and still debug them all.
This is useful in debugging multi-threaded client-server scenarios.

Tell VS.NET which projects you want to start on each new debug session (see Figure 31):

Right-click your solution

Choose Set Startup Projects from the pop-up menu.

By default, VS.NET uses the Single Startup project, where only one project is started.

To start more than one project:

Switch to Multiple Startup Projects

Modify the Action value for each property: None, Start, or Start Without Debugging.

To control the order by which these multiple projects start:

C lick the Move Up or Move Down button to position your projects in the list.

In a client-server scenario, you can use this to make sure that the server program is started before the client
program.

Figure 31. M ultiple startup projects

3.10 - Breaking Only for Certain Exception Types
A good program usually catches all possible exceptions that can be thrown at runtime. However, this makes it
a bit difficult for developers to debug a complex program that is still in development. Because there aren’t
any unhandled exceptions, VS.NET never catches an exception or prompts the user to break into the code
whenever a specific exception is being thrown.

Page 517

To specify the exceptions that developers are interested in defining, there is a setting in VS.NET. To utilize
this setting:

Select Debug > Exceptions, or

C trl-Alt-E.

A tree view–style list of all possible exceptions that VS.NET can hook into (see Figure 32) will be displayed.

In addition to the many Common Language Runtime exceptions, you can hook into C++, Native Run-Time
checks, and Win32 exceptions.

Figure 32. Break on specific exceptions

From this list you are able to:

Set, for each possible exception, exactly when to break into the debugger.

You can either hook into the debugger when a specific exception is thrown or when an exception is not
handled. In the predefined .NET exceptions, you can hook into your own .NET exceptions.

To specify the complete, fully qualified string that defines your .NET exception, for example,
“MyCompany.MyProduct.MyBusinessException”:

C lick the Add button in the Exceptions dialog box.

3.11 - Breaking Only When Certain Conditions Apply (Ctrl – Alt – B)
A heavily used method to add or remove exceptions is by clicking the gray vertical bar to the left of the
editor. C licking it adds and removes the red circle that indicates a breakpoint. By doing so, many developers
never encounter the very useful conditions that you can set for breakpoints.
To access these conditions:

Set your breakpoint using your normal method.

Right-click your breakpoint.

From the context menu, choose Condition (Figure 33) to get to the Breakpoints window (Figure 34).

Two buttons stand out at the bottom of the Breakpoints window. To specify a condition under which a
breakpoint becomes active:

Enter a .NET expression.

This can either be simply a variable name (“myBoolVariable”) or a more complex .NET expression
(“((System.DateTime.Now.Second % 10) == 0)”). You can choose to break into the debugger if the
expression evaluates to True or when the expression value changes. Naturally, for the first option, the

Page 518

expression has to evaluate to a Boolean value. For the second option, your expression can be anything.
VS.NET breaks into the debugger only if the runtime value of that expression changes from the last time it
passes by this conditional exception (this implies that program execution has to pass by this code segment at
least once previously, before it can recognize a change in value).

Given the flexibility of the expression, this feature can be very powerful. For instance, you can debug a
snapshot of a DataSet only if the DataTable row size is greater than 0.

In VS.NET 2005, all the above-mentioned conditions are accessed in the following way:

Sset your breakpoint as you would normally do.

Right-click your breakpoint.

From the context menu, choose Condition to get to the same screen (see Figure 62).

Figure 33. Set breakpoint condition.

Figure 34. Breakpoints Window

To see and modify the condition in the Breakpoints window:

Open that window by selecting Debug > Windows > Breakpoints or

Pressing Ctrl-Alt-B.

A list of all breakpoints that you have set, along with their conditions will be displayed.

Note: You can disable breakpoints from this window as well, using the check boxes, or jump to their location
in the file by double-clicking them.

3.12 - Saving Any Output Window
The Output window (Ctrl-Alt-O) shows a lot of trace information regarding your program execution. It lists
whenever the .NET Framework loads a DLL for your application and, probably more importantly, all the
messages that you have emitted with System.Debug.WriteLine.

To save all these trace logs:

Press C trl-S to save the entire output to a file.

Page 519

To search through the Output window:

Press C trl-F

You can even apply some of the other editor tips and tricks such as C trl-C for copying an entire line or C trl-R,
C trl-R for word-wrapping (although VS.NET 2005 now offers a button for word-wrapping in the Output
window).

3.13 - Aligning UI Elements Automatically
If you are positioning UI elements in a Windows form, you have probably noticed various colored lines that
appear on the form as you move or resize elements (see Figure 35). This allows you to snap your UI element
to vertical or horizontal lines. Solid blue indicates lines to which other UI elements have already been
snapped; they help you align elements consistently. Green dotted lines indicate the default margin between
the UI element you are moving or resizing and the elements around it; they help you maintain uniform
spacing between elements. Finally, solid red lines indicate that the text inside the current element is aligned
with an adjacent UI element or its text.

Figure 35. Align lines

To position UI elements without snapping to these colored lines:

Press Alt to turn off automatic alignment temporarily.

To switch back to the grid where all UI elements are aligned to a predefined grid:

Select Tools > Options > Windows Forms Designer > General and change LayoutMode back to
SnapToGrid.

Note: After changing that value, you need to close and reopen the Designer view to use the newly selected
layout mode. In SnapToGrid mode, you can press the Ctrl key to move elements without snapping them to
the grid.

3.14 - Adding a Standard Menu Strip
Standard Windows applications use a common set of top-level menu items. In most cases, they are File, Edit,
Tools, and Help. VS.NET 2005 allows you to add these default menu items to your own Windows forms
applications. To add your own menu strip:

Drag a MenuStrip to your Windows form.

With the MenuStrip selected, the description panel below the Properties window shows an Insert Standard
Items link (see Figure 74):

C lick that link.

VS.NET inserts these standard items onto your MenuStrip. Menu items you insert contain the default submenu
items as well. For instance, the File menu includes the usual New, Open, Save, Save As, Print, Print Preview,
and Exit items, along with its default shortcuts, hot keys, and icons.

Page 520

Figure 36. M enu strip standard items

3.15 - Setting the Tab Order of Controls
The tab order is the order by which controls on the form receive focus as you press the Tab key. You can
control this order by setting the Tab Index property of each control to a number that corresponds to the
position in this order. This can prove difficult at times because you don’t know—and can’t see—the other
controls’ tab index unless you select them.

Figure 37 - Tab Order button on the left of the Layout bar

VS.NET 2005 introduces a new way to set the tab order: the Tab Order button on the Layout bar (see Figure
37).

C lick the Tab Order button to display the tab index for all UI elements on the form.

You now see all the tab indices.

C lick repeatedly on each UI element to set the tab order in linear fashion.

The first element you select is given a tab index of zero. The next one you select has a tab index of one, and
so on. As you set the index for each control, the background color of the tab index caption switches from blue
to white, so you can keep track of which UI elements you have already tagged. To prevent you from
accidentally selecting a wrong UI element, a gray rectangle surrounds the element you mouse over for better
identification.

When you are done setting the tab order:

C lick the Tab Order button again or

Press the Escape key.

3.16 - Importing and Exporting IDE Settings
VS.NET is an extremely powerful tool with many things in the IDE that you can customize to suit your
specifications. Because you will become accustomed to your particular settings, moving from one machine to
another can cause problems if you are not able to move your IDE settings along with you.

VS.NET 2005 allows you to export your IDE settings to an XML file (the extension is actually “.vssettings”). To
import it into another instance of VS.NET on another computer:

Select Tools > Import > Export Settings.

In the tree view shown in the Import/Export Settings dialog box, you are presented with all the customizable
options you can export (see Figure 38).

Check the options you want to be part of your profile.

Page 521

Export them to the .vssettings file.

Figure 38. Export VS Settings

Import the .vssettings file to another VS.NET IDE.

Select which settings you want to import and which ones to ignore.

In the same dialog box you can also reset your complete VS.NET IDE to a particular profile. These might be
custom profiles that you saved before. You can also reset to the default installation settings (which is just
another regular .vssettings file).

To create a master .vssettings file for coordination between co-workers, e-mail it to all your team members
so that they can import it individually. You can also create the single .vssettings file and place it on a
well-known network share on the intranet. To obtain these settings have the members of your team:

Select Tools > Options > Environment > Import > Export Settings > Team Settings.

There they have to turn on Track Team Settings File and point it to that shared .vssettings file. Next time they
start their IDE, it will detect the file and import it. One advantage of this feature is that another trusted team
lead can export a version of the shared .vssettings file and overwrite it, so that the IDEs of each developer
will detect that change and import it upon the next startup.

3.17 - Closing All Other Windows
It’s very common to have a lot of files open at the same time when developing your program. After working
for a while, you might have several dozen files open and want to close all of them except the one on which
you are currently working.

To close all the open files:

Page 522

Right-click one of the file tabs.

Choose C lose All But This from the pop-up menu.

This option does exactly what it says (see Figure 39).

Other menu options new to VS.NET 2005:

1. Open Containing Folder
 -starts up Windows Explorer and opens the folder in which your file is located.

2. Copy Full Path
 -copies the full file path of the selected file into the C lipboard.

Figure 39. File tabs options

3.18 - Showing Shortcuts for All Buttons
Using and memorizing shortcuts whenever available, gives you a strong advantage when developing. It
naturally increases your speed and therefore your efficiency. Keyboard shortcuts prove to be faster than
manipulating the mouse. Many VS.NET menu and submenu items have these shortcuts which are seen every
time you click the menu item.

This reminder is also available for the toolbar buttons. To see this reminder:

Select Tools > Customize

Check both the Show ScreenTips on Toolbars and Show Shortcut Keys in ScreenTips options.

Now as you mouse over a button, the ToolTip that appears after a small delay will also show the button’s
keyboard shortcut, if available.

Page 523

Introduction
Visual Studio .NET comes complete with many features and functions that dramatically increase our efficiency
as developers. As a powerful code editor, compiler, and debugger, it contains features to stress-test,
analyze, and optimize your code, and allows easy integration with code documentation, reporting, or
smart-device programming, such as the Pocket PC.

Because of the sheer number of features that Visual Studio .NET contains, it is a challenge for .NET
developers to become familiar with all of its features, shortcuts, and functionalities. The beginner developer
will find a virtual treasure trove of features with which to start, while advanced Visual Studio .NET users will
appreciate the many new features and improvements the new Visual Studio .NET 2005 brings.

Most of these features and functionalities are documented, and are accessible through the VS.NET main menu
or context menus. But, because of the vast number of features with which VS.NET is equipped, developers
don’t always know them or use them. This guide should help familiarize developers with the tips and tricks
that are at their disposal in this powerful tool and their specific application to the Visual APL language.

Page 524

Chapter 1: Editing Code
While you create code, there are many techniques and shortcuts that allow you to write and navigate through
your code quickly and easily. This chapter introduces many of the tips and tricks you will need for such tasks
as code navigation, performing complex find-and-replace searches, and generating code.

Page 525

1.0 - Inserting Comment Tokens (Ctrl-K,Ctrl-H)

This feature enables you to write a comment and find it again easily. To see a list of all reminders you
placed in your code (see Figure 1):

Without recompiling, select View > Show Tasks > All

To insert task shortcuts in your code:

Press C trl-K, C trl-H.

This marks the current line with a shortcut icon and inserts a clickable shortcut icon in the Task List.

To remove the shortcut:

Press C trl-K, C trl-H.

 These shortcuts survive IDE restarts.

Figure 1. Comment Tokens.

Page 526

1.1 - Commenting Code Blocks (Ctrl-K, Ctrl-C)
One-line comments are extremely useful in explaining seldom used code and assisting in navigation and
definition of development projects. To inserted a comment for a code block or segment:

Press the “//” token for Visual APL.

Additionally, Visual APL allows you to comment entire paragraphs and segments. To place a comment in a
paragraph or segment:

Select “/#” (and corresponding “#/”) tag around the comment.

To quickly comment entire paragraphs:

Select the text.

C lick the Comment button (see Figure 2) or

Press C trl-K, C trl-C .

This comments an entire selection.

To uncomment any selection:

C lick the Uncomment button or

Press C trl-K, C trl-U.

Figure 5 - Comment and Uncomment buttons

Page 527

1.2 -Creating Regions

The more code you generate, the more difficult it can become to navigate. In addition to selecting classes
and their methods from the drop-down lists above the main editor, you can also group your code into logical
regions. Regions are extremely helpful for dividing code in logical ways and even commenting it. Regions
allow you to collapse code to a single line defining the region and still easily see what is inside it once it is
collapsed. They can even be nested. Automatically generated code in VS.NET usually uses this feature, so
you may already be familiar with it.

To specify a region:

Insert a #region keyword and a description at the beginning of your segment and a corresponding
#endregion keyword at the end of your segment (see Figure 3).

Figure 3 - Creating regions

The Outlining menu displays various collapse and expand options. To expand and collapse the current region
you are in:

Press C trl-M, C trl-M.

To expand or collapse all regions at once:

Right-click the gray bar to the left of the main editor window.

To collapse an individual region:

C lick the plus sign next to the #region keyword.

This collapses the code into a single line that shows the region description.

To display the inside of a collapsed region:

Move the mouse over the gray description area (see Figure 4).

Figure 4 - M ouse over a region to see its content

You can even drag and drop collapsed regions inside your code. When you paste a collapsed region into a
different location, the pasted text is automatically expanded.

Page 528

1.3 -Hiding Selection by Using Temporary Regions (Ctrl-M,Ctrl-H)
Regions are created automatically for methods, comments, and sections encompassed by the #region
compiler directive. In Visual APL and in regular text files, you have the option to create temporary regions
around any section without the need for “#region”. This is useful when you want to create a region that will
not be preserved once your project is closed. In this case, you can temporarily define a region using the
following method:

Highlight the section you want to hide and press Ctrl-M, C trl-H.

This hides the current selection in a temporary collapsed region (see Figure 5).

To expand a temporary collapsed region:

Press C trl-M, C trl-M.

Temporary regions are lost after you close a project.

Figure 5 - Hiding portions of any text file

For creating regions which are preserved past the closing of your project, see “Creating Regions”

Page 529

1.4 -Selecting a Single Word (Ctrl+W)
To select a single word when editing code:

Double-click anywhere in the word or just press Ctrl-W.

Double-clicking in a word is a common method used by many word processing and publishing programs to
quickly select a word.

Page 530

1.5 -Placing Code into the Toolbox (Ctrl-Alt-X)
When creating a project, you may want to use certain pieces of code or text again and again. You may have
a standard copyright header that you place at the top of each file or a certain line of code to perform a
common task. To simplify this repetitive task, you can place it into your Toolbox. The Toolbox is the window
that lists all windows or web controls. To place your item into the Toolbox, use the following method:

1. Pull up the Toolbox:

 Press C trl-Alt-X.

2. Move the frequently used text or code into the Toolbox:

Highlight your item and drag the selected text onto the General tab in your Toolbox

 (see Figure 10).

3. Rename the produced text item in your Toolbox

 Right-click it and choose Rename Item from the pop-up menu.

Figure 10. Adding text to the Toolbox

To insert an item into your text or code from the Toolbox:

 Select the item in your Toolbox, then either:

 Drag it into your code window or

 Place your cursor in your text where you want to insert the item,
 Double-click the entry

The General tab in the Toolbox is project and solution independent, and it retains its content even after you
restart VS.NET.

Page 531

1.6 - Using the Clipboard Ring (Ctrl-Shift-V)
The C lipboard Ring works like a historical file of the last used text selections that you placed on the C lipboard.
Because it preserves many levels of selections, it is useful when you accidentally overwrite the current
C lipboard content or when you find yourself needing several different items concurrently.

To use the C lipboard Ring you can either:

Double-click one of the remembered C lipboard items to paste it at the cursor’s current location or

Drag it into the editor.

When the C lipboard Ring contains many C lipboard items, or when you cannot see the complete contents of
each item in the ring, it’s useful to cycle through the C lipboard Ring.

To progress one item at a time through the C lipboard Ring:

Select Edit > Cycle C lipboard Ring (C trl-Shift-V)

Doing this repeatedly makes VS.NET cycle through the C lipboard Ring’s contents, displaying the stored
C lipboard contents in the text editor at the cursor’s current location. This method makes it easy to paste
specific content in the code editor as it becomes visible during the cycling. Continue cycling through the
C lipboard’s contents until you find your desired item.

Page 532

1.7 - Transposing a Single Character or Word (Ctrl-T or Ctrl-Shift-T)
To switch the position of the current characters or words on either side of the cursor you need to use
Transpose. This procedure switches the characters or words, then moves the cursor to the right. Transpose
is useful if you mistype a word or write a sentence or code segment with words in the incorrect order.

To transpose a single character:

Press C trl-T.

This swaps the two characters surrounding the cursor and moves the cursor to the right by one character.
Pressing Ctrl-T repeatedly allows you to move a single character further to the right one character at a time.

To transpose a single word:

Press C trl-Shift-T.

Note: This does more than just swap two adjacent words. VS.NET knows to ignore “unimportant” single
characters, such as equal signs, string quotes, white spaces, commas, etc.

Suppose you have a line of code that originally looks like this:

new SqlCommand("trans", stored_procedure, conn);

Pressing Ctrl-Shift-T repeatedly on the word “trans” would yield the following:

new SqlCommand("stored_procedure", trans, conn);

and finally this:

new SqlCommand("stored_procedure", conn, trans);

The quotation marks and commas retain their original positions throughout the process. When you reach the
end of a line, pressing Ctrl-Shift-T transposes the word with the first word of the next line.

Page 533

1.8 - Cutting, Copying, Deleting, and Transposing a Single Line
If you need to cut, copy, delete or transpose an entire line, you can do this easily with one keyboard
sequence.

To copy the complete, current line to the C lipboard:

Press C trl-C (or click the Copy icon) without any text selected.

To cut an entire line:

Press C trl-X (or click the Cut icon) without any text selected.

This will cut the entire current line and place it in the C lipboard.

To delete a single line:

Press C trl-L without any text selected.

 To transpose, or swap the current line with the one below it:

Press Alt-Shift-T without any text selected.

Doing this also moves the cursor down by one line. This allows you to press this keyboard shortcut repeatedly
until you move your current line to the desired position.

Page 534

1.9 - Formatting Entire Blocks (Ctrl-K, Ctrl-F or Ctrl-K,Ctrl-D)
To apply formatting to an entire selection, there are several useful functions you can use. Uppercasing,
lowercasing, or deleting horizontal white spaces are just a few examples.

To access these features:

Select Edit > Advanced

One of the most useful features here is the Format Selection function.

To access the Format Selection Function:

Press C trl-K, C trl-F,

This feature formats an entire selection and inserts tabs where appropriate to modify the code with the
correct code-specific block indentation. This is usually done automatically when someone enters code upon
closing a block (such as by typing the “}” sign in Visual APL) but Format Selection forces this automatic
format (see Figures 11 and 12).

You can also format the entire document. To do this:

Press C trl-K, C trl-D.

Figure 11. Before formatting block

Figure 12. After formatting block

Page 535

1.10 - Toggling Word-Wrapping (Ctrl-R,Ctrl-R)
To turn word wrapping on and off for the current view:

Select Edit > Advanced

Or use the keyboard shortcut:

(C trl-R, C trl-R)

Page 536

1.11 - Creating GUIDs
As you develop new classes and components, you often need to create Global Unique Identifiers (GUIDs).
These are 128-bit values often represented by 32 hexadecimals. In the past, component developers used
GUIDs to assign their components with unique names to reduce the likelihood of two components sharing the
same GUID. Developers now use GUIDs for anything that requires a unique identifier. GUIDs can be created
manually by randomly selecting 32 hexadecimals, but this is somewhat tedious. VS.NET comes with a utility
that creates GUIDs for you whenever you need one.

To create a GUID, open the Create GUID dialog box:

Select Tools > Create GUID (see Figure 13).

Here you can generate identifiers in various formats, including common code items often used in COM
development.

Figure 13. Create GUID tool

Page 537

1.12 - Creating Rectangular Selections
To make a rectangular selection of text or code, there is a technique which allows you to do this without
including the intervening lines (see Figure 14).

To select a rectangular area:

Press the Alt key while dragging the mouse to select the area.

Manipulating the selection by copying, cutting, or pasting rectangular blocks can be done very easily this
way.

Figure 14. Rectangular selection

Page 538

1.13 - Switching Between Views (F7)
For Windows forms, you can easily switch between both views. To toggle between designer and code views:

Press F7 (designer and code)

Page 539

1.14 - Going to a Line Number (Ctrl-G)
For quick and easy navigation inside your code or text file, you can jump to a particular line.

To go to a specific line number you need to access the go to dialog box. To do this, either:

press C trl-G or

double-click the line number status bar at the bottom.

A small dialog box will appears. To jump to a line number:

enter a line number

If you type a line number that is out of the range of possible line numbers, the cursor jumps to the beginning
or end of the file, respectively. A number which exceeds the number of lines in the file will place you at the
end of the file. A number that is too low will jump you to the beginning of the file.

Page 540

1.15 - Searching for a Word
There are several methods for searching for a word inside a file. It is helpful to know all the methods for
ease in moving around your file. The following are common methods for finding a word.

1. Access the Find dialog box

Select Edit > Find

Enter a term in the Find dialog box.

2. Access the Combo box in the main toolbar next to the configuration drop-down list. To open the
combo box and invoke the search function:

Press C trl-D

Enter or paste a word into this list and press Enter

 Repeat pressing Enter in that drop-down list to find the next match.

3. Select the entire word, or place the cursor somewhere inside the word:

Press C trl-F3.

 This invokes the same search function I described just previously. Repeatedly pressing
 C trl-F3 iterates over all matches.

Using either the combo box or the Ctrl-F3 shortcut applies the same search options specified in the Find dialog
box. Set the options you desire in the Find dialog box first to search correctly (for example, enabling Search
Hidden Text to include all collapsed regions in the search area).

Page 541

1.16 - Performing an Incremental Search (Ctrl-I)
An incremental search allows you to find occurrences of a search key as you type it one letter at a time. After
each keystroke, VS.NET immediately highlights the next available occurrence that matches whatever you
have typed so far. The more letters you type, the more likely is it that the found occurrence is indeed what
you are seeking.

To initiate an incremental search:

Press C trl-I

You do not need to enter the entire word to find a specific occurrence; you only need to type the minimum
number of characters that would uniquely identify the word for which you are searching.

To return to normal editing mode:

Press Escape

In the C ielo Explorer you have to single click with the mouse.

If you are unsatisfied, press C trl-I repeatedly to find the next occurrence that matches your partial search
key, or press C trl-Shift-I to find the previous matches. You can, of course, simply enter more letters to
narrow the search further.

Page 542

1.17 - Searching or Replacing with Regular Expressions or
Wildcards
Regular expressions can look extremely intimidating, but they are extremely powerful tools to find
complicated search keys and patterns. Regular expressions is a built in feature that allows you to describe a
searchable pattern in terms of wildcards, characters, and groups.

This feature in VS.NET is often overlooked by many developers. To access this feature, bring up the Search
or the Replace dialog box:

Press either C trl-F or C trl-H, respectively

Note: Besides the regular options to refine your search, the last check box allows you to define your search
based on regular expressions or wildcards.

You can use either of two modes. To use Regular Expression mode, specify the expression using a similar
notation you are accustomed to with the System.Text.RegularExpressions namespace.

To see a list of possible constructs that you can insert into your regular expression:

C lick the arrow button next to the Find What field (see Figure 15).

Figure 15. Use regular expressions.

To use Wildcard mode, construct your search pattern using the more commonly known wildcards from
MS-DOS, such as “*” and “?”.

If used correctly, these two modes can be very helpful in refining your search algorithm or when developing
programs based on regular expressions.

Page 543

1.18 - Global Search or Replace (Ctrl-Shift-F or Ctrl-Shift-H)
The global search and replace feature in VS.NET spans entire projects and solutions. This is similar to
normal search and replace dialog boxes, except that you can specify the scope of the search or replace
action over multiple files.

To bring up the global search or global replace dialog box:

Press C trl-Shift-F or C trl-Shift-H, respectively

This feature allows you to perform a global search and replace in just the current document, the current
project, the entire solution, or any open documents (see Figure 16). You can also filter which files you want to
search based on wildcards.

Figure 16. Global search and replace.

Once the search or replace action is started, VS.NET searches all specified documents and modifies them if
required. The global replace, will also prompt you to leave modified documents open. This option allows you
to undo the replace, because only open documents offer the undo feature. If you don’t select that option,
global replace will automatically save the modified files and make this a permanent action.

To immediately stop a global search or replace anytime:

Press C trl-Break.

Once a search or replace action is completed, a list of occurrences that have been found will be displayed in
the “Find Result” dialog box.

To iterate over the Find Result list:

Page 544

Press F8 or navigate to an occurrence by double-clicking it.

If that occurrence is currently located in a collapsed region, you can expand it. To automatically expand the
region:

Double-click the same find result in the list again.

On initiating a new find or replace action, VS.NET clears this window to fill the list with the new results. If you
want to keep the results of the previous search and output the result in a second window:

Check the Display in Find 2 option in the search dialog box

You can then tab between both result sets.

All find/replace functionalities are included in a single dialog box (see Figure 17), you can also access the
global find/replace functionalities using the drop-down list at the top. All shortcuts remain the same.

Figure 17. Global replace in files

Page 545

1.19 - Using Bookmarks
Bookmarks enable you to return quickly to a given page or section of your code or file. When you determine
critical sections of your programming that you want to return to frequently, instead of scrolling to these
places, bookmark those lines.

To place a bookmark, first, make the bookmark toolbar visible:

Right-click any existing toolbar and select Text Editor from the pop-up menu.

C lick on the blue flag icon in Text Editor toolbar.

Another method which can be used to place a bookmark:

Press C trl-K, C trl-K.

This second method not only makes a bookmark visible on the left side of the code, but you can now jump
quickly among other bookmarks. To jump to the other bookmarks you can either:

C lick the appropriate flag buttons on the toolbar (see Figure 18) or

Press C trl-K, C trl-P (for the previous bookmark) or C trl-K, C trl-N (for the next bookmark).

Figure 18. Bookmark toolbar

To clear all bookmarks:

Press the C lear Flag icon or

Press C trl-K, C trl-L.

The Find dialog box in VS.NET allows you to bookmark all matching occurrences as follows:

C lick the Mark All button.

As part of VS.NET 2005 considerable support for bookmarks, you can also have the option of moving to the
next or previous bookmark within the same file as follows:

Press the appropriate buttons on the bookmark toolbar (see Figure 28).

Figure 28 - M ove to bookmarks in the same file in VS.NET 2005

You can also name your bookmarks by first opening a new Bookmarks window:

Press C trl-K, C trl-W or

Select View > Other Windows >Bookmark Window.

This displays all the bookmarks that you have created (see Figure 19).

To jump to a bookmark’s location:

Double-click the bookmark.

To rename a bookmark:

Press F2 or

Right-click the bookmark and use the Rename context menu item.

You can categorize your bookmarks and organize them into folders. You can also, jump to the next or
previous bookmark within the same folder. To perform any of these functions, simply select the appropriate
icon on the toolbar.

Page 546

Figure 19. M anage your bookmarks in the Bookmarks Window.

The Bookmarks window shows check boxes next to each folder and bookmark. These allow you to disable a
bookmark without deleting it. Disabled bookmarks are skipped when you use any of the buttons or shortcuts
to navigate your bookmarks.

Page 547

1.20 - Using Browser-Like Navigation (Ctrl -, Ctrl Shift -)
VS.NET is equipped with browser-like “back” and “forward” buttons in the IDE that allow you to review the
most recent cursor locations. The Navigate-Backward and Navigate-Forward buttons are located to the right
of the Undo and Redo buttons (see top left of Figure 20). You can also access them in the View menu.

Figure 20. Navigate buttons

Similar to a web browser, VS.NET keeps a history of your recently accessed locations. After using the Go To
Definition feature or after switching arbitrarily to another file or even just jumping between different line
numbers of the same file, you can easily return back to the last edit location as follows:

C lick the Navigate-Backward button.

These Navigate buttons have pre-assigned shortcuts. To Navigate back:

Press C trl-Hyphen

To Navigate forward:

Press C trl-Shift-Hyphen.

Page 548

1.21 - Inserting External Text File
A common method of inserting code fragments involves opening a file in Notepad and copying the code from
there. To bypass this step of opening and closing Notepad you can:

Select Edit > Insert File as Text from within the code editor.

Page 549

Chapter 2: Exploring the IDE
Visual Studio .NET is an easily customizable feature-rich Integrated Development Environment (IDE). It
allows a developer quick access to commonly used commands and activities which enable you to control and
modify your project and solutions. This chapter covers a range of topics such as: the Solution Explorer;
window positioning; managing macros; modifying menu items and other tips and tricks useful for in
navigating inside the IDE.

Page 550

2.0 - Setting Project Dependencies
In a large solution with multiple projects and custom build events, it is often necessary to control the build
order for your projects. VS.NET has the capability to figure out which project needs to be built first by
analyzing the references of each one. The first project built is normally the one referenced first. This
algorithm is based on your set project references for your projects.

VS.NET also allows you to compile a certain project before another one without having project references.
 This is accomplished from a pop-up menu that allows you to choose Project Dependencies. To designate the
order in which projects will be built:

Right-click your project that needs to be built last and choose Project Dependencies from the pop-up
menu.

Set manual dependencies on other projects by check-marking them.

This will ensure that the checked projects will be built before the current project (see Figure 21). A drop-down
menu for the current project allows you to switch to another project’s dependencies.

Figure 21. Setting project dependencies manually

VS.NET prevents you from creating circular references or modifying dependencies that resulted from adding
project references. To verify the build order at any given time:

C lick the read-only Build Order tab.

Note: In VS.NET 2005, the Project Dependencies context menu item in the Solution Explorer does not exist
for web applications, instead, you need to select Websites > Project Dependencies.

Page 551

2.1 - Embedding Files As Resources
Embedding files as resources allows you to embed any given file directly into your produced assembly. For
instance to display a company logo on your Windows application, you could produce a regular Windows
assembly and link to an external image that you send along with your application. You can also embed the
image right into the assembly you produce. This enables you to avoid shipping the external image and, more
importantly, prevents the possibility of these two files becoming separated.

To embed a file as a resource, it must first be included in your solution. You can then select the file in the
Solution Explorer and change the Build Action property in the Properties window. The build action tells the
compiler what to do with the specified file. If you select the Embedded Resource build action, the actual bytes
of the file will be stored inside the produced assembly (regardless of whether this is an EXE or a DLL).

At runtime, you can then extract the bytes using the following code:

Assembly oAssembly =
System.Reflection.Assembly.GetExecutingAssembly();

Stream streamOfBytes =
oAssembly.GetManifestResourceStream("mylogo.bmp");

After this retrieves the bytes from the given embedded resource, you have to convert those bytes back into
the original file type (using Image.FromStream(), for instance, to convert it back into a picture). Notice how
this code is orthogonal to the file type being embedded as a resource. This enables you to embed any file
type: sound and movie files, PDF files, or even another assembly.

Page 552

2.2 - Changing the Font Size of IDE Windows for Demos
It is a common practice when demonstrating VS.NET or your code, to increase the font size of the text editor
so that everyone in the audience can easily see the demonstration. The font size can be easily increased by
a couple of methods:

Select Tools > Options > Environment > Font and Colors > Size.

This works great, except that the text in the Output windows, Solution Explorer, C lass view, Macro Explorer,
or in the file tab titles can still be very hard to read.

Control the size of the text in these elements as follows:

In the same settings window, the first drop-down list reads Show Settings For. Change it to read
Dialogs and Tools Windows.

Set the font and the size here in this window.

You control the format of the text elements of the majority of the IDE windows. The changes come into full
effect after you restart the IDE.

To increase the font of the Output window:

Change Show Settings For to Text Output Tools Windows.

To reset any of these settings to their default installation values:

C lick the Use Defaults button.

Note: This button applies only to the currently selected item in the Show Settings For drop-down list, so
repeat this step for every setting that you want reset back to the default settings.

Page 553

2.3 - Dragging Files to Obtain a Full Path
A useful feature of VS.NET is the ability to drag files from your Solution Explorer directly into your code. If
you do this in a source code file, it will simply insert the full path to the selected file into your code.

Page 554

2.4 - Moving Any Window Around
Every window in VS.NET is movable, resizable, and dockable: the Solution Explorer or Macro Explorer; the
Properties, Task, and Output windows; and even your Toolbox, Server Explorer, and Find/Replace windows.
To move any window in VS.NET:

Drag the title bar to the desired position.

As you drag a window close to a dockable region (such as tabs or near another window frame), an outline
appears, allowing you to preview the result before dropping the window.

To dock and undock windows:

Double-click the title bar.

You can also move the order of tabs in your tab windows. This includes the files tabs at the top of your
editor.

While the ability to control window positioning gives VS.NET enormous flexibility, the preview outlines are too
confusing to make this an intuitive interface. If you have moved the windows positions and would like them
reset, you can always reset all windows positions to their installation defaults:

Select Tools > Options > Environment > General > Reset Windows Layout.

With VS.NET 2005, you can also reset the windows positions. To do this:

Select Window > Reset Windows Layout.

One aspect of moving windows around is the ability to create a split screen. Use the following steps to split
the editor into two vertical screens complete with their own set of file tabs (see Figure 23):

Drag the tab of any open file and move it to the right of your editor (to the left of where the Solution
Explorer usually resides).

This docks your selected file to the right and splits the editor into two vertical screens.

To close vertical split mode either:

C lose the second set by clicking the small X at the top right, or

Drag the file tabs back to the left along with the other files.

Page 555

Figure 22. Vertical split

To create a horizontal split screen:

Drag a file tab to the bottom of your editor.

Page 556

2.5 - Creating Split Screens in the Same File
The “Moving Any Window Around” trick described in “Moving Any Window Around” shows how to create split
screens so you can see two files next to each other. What if you want to create a split screen to see two
locations of the same file? To do this:

select Window > Split

The horizontal divider can also be generated using a faster method:

Move your cursor right above the vertical scrollbar of the main editor. There is a very thin, short,
rectangular-shaped divider (see Figure 23).

Place your mouse over that divider, the mouse icon changes to the divider icon.

Drag the divider down to the center of the screen to create the split screen (see Figure 24).

Figure 23. Horizontal split divider

Figure 24. Split document.

To move the divider back to the top of your editor window:

Select the divider bar and slide back into its original position.

Page 557

2.6 - Customizing the VS.NET Menu and Toolbars
The VS.NET menu can be customized in a variety of ways. You can add and remove commands as well as
reorder them. To customize the menu and toolbars:

Select Tools > Customize.

With the Customize dialog box open, navigate back to the VS.NET menu.

The menu now does not react to left mouse-click events and will show context menus when you right-click the
menu items. Here you can rename, edit, and delete menu items; drag menu items around; or even create
your own cascading menu groups.

You can also manage the icons for each menu item by right-clicking the item and selecting Choose Button
Image from the pop-up menu. If you are not satisfied with the icons in the selection, you can copy icons from
other menu items to your newly created menu ones. To copy icons from other menu items:

Right-click a menu item with the desired icon.

Choose Copy Button Image from the pop-up menu

Right-click the menu item you want to modify.

Choose Paste Button Image from the pop-up menu.

To add other commands to a menu:

Drag a command from the Command tab directly into the VS.NET menu.

Note: In addition to directly modifying the VS.NET menu items as long as the Customize dialog box is open,
VS.NET 2005 adds a complete new GUI to modify the menu. The new GUI appears when you select Tools >
Customize > Rearrange Commands. Here you can move, add, and delete menu items as well as toolbar
buttons (see Figure 25).

Page 558

Figure 25. Customize menus using the rearrange commands

Page 559

2.7 - Dragging Files from Windows Explorer into VS.NET
Visual Studio .NET completely supports file drag (and drop) actions. It allows you to drag files from Windows
Explorer directly into VS.NET. If you drop them in the Solution Explorer under a project, it will first be copied
into the same directory as the project and then included into the project. If you drag them into the code
editor, VS.NET will either start the default external viewer (for example, Adobe Acrobat for PDF files) or
display the file’s contents inside VS.NET if it’s a file type that it understands.

To drag files from Windows Explorer into VS.NET if you don’t have enough screen space:

Drag the file into the Windows taskbar at the bottom of your screen

Pause for a few seconds over the taskbar for VS.NET. The pause brings VS.NET into focus.

Drop the file into the appropriate location.

Page 560

2.8 - Using Full-Screen Mode (Ctrl – Shift – Enter)
Full-screen mode allows you to hide virtually everything except the main editor, where the entire screen
shows the main view. To enter full-screen mode:

Select View > Full Screen or

Press C trl-Shift-Enter.

The main menu is still visible at the top, and a floating button that closes full-screen mode is also available.
To hide the C lose Full Screen mode button—you need to memorize the keyboard shortcut that returns to
normal mode or:

Select View > Full Screen again.

Full-screen mode is available for any view, including the HTML, Designer, and XML views.

Page 561

2.9 - Copying the Fully Qualified Name of a Class
The C lass view is a hierarchical view of all your classes and namespaces in your solution. To display this
view:

Select View > C lass View or press C trl-Shift-C .

To go to any class and its members and navigate to the member definitions:

Double-click on the desired item.

Another useful feature allows you to extract the full namespace of any class or member:

Highlight the class or the class member.

Press C trl-C .

This copies the complete namespace of the selected item to the C lipboard. This feature comes in handy when
you have a complex or deep namespace structure.

To paste the namespace into the VS.NET code editor, there is no need to copy it to the C lipboard first. Use
the following method:

Drag a class or member of a class from the C lass view directly into your code

Watch VS.NET paste the complete namespace and member name there.

Page 562

2.10 - Changing Properties of Several Controls
When designing your Windows forms, you can use the Properties window to modify a control’s behavior and
appearance. The Properties window, however, is adaptable when you select several controls at the same
time. To select a series of controls either:

Hold down Ctrl or Shift when selecting controls or

Draw a selection rectangle with your mouse,

The Properties window automatically displays the properties that are common to all of the selected controls.
With all controls selected, any change you make in the Properties window affects all selected controls.

This is useful for instance, after you drag a series of text boxes from the Toolbox onto your form and want to
get rid of the default “TextBox1,” “TextBox2,” etc. values.

Select all the text boxes.

Change the Text value to a single space by pressing Spacebar.

Change it back to an empty string by pressing Delete.

Do this twice because the initial values of each text box differ originally, so the Text property displays
an empty string as the “common value”.

This deletes the default text in all of them.

Page 563

2.11 - Locking Controls
When laying out windows controls on Windows forms, you can easily move the controls around or create
event handlers by simple dragging and double-clicking. However, this simplicity has its drawbacks as you can
move things around accidentally very easily. This can cause problems if you have already finished designing
your Windows forms. In order to prevent this from happening, you can lock your form.

To lock the position of your controls on your form:

While in the Designer view, right-click anywhere on your form

Choose Lock Controls from the pop-up menu (see Figure 26).

You still have the ability to add event handlers and modify a control’s appearance, but you can no longer
accidentally move or resize a control. To indicate that it is locked and unmovable, a thin, black outline
appears around each selected control.

To return to the Designer view:

Right-click your form and choose Lock Controls from the pop-up menu again.

Figure 26. Lock controls in a form

Page 564

2.12 - Toggling the Description in the Properties Window
The Properties window not only displays all properties of a selected control, but the Description pane at the
bottom briefly describes the active property. As you select different properties, the Description box informs
you what the selected property does. To turn off the Description box panel:

Right-click the property name.

Choose Description from the pop-up menu.

To turn it back on use the same method.

Page 565

2.13 - Change Drop-Down List Values in the Properties Window
Whenever a property only accepts a finite set of values, the value field becomes a drop-down list, from which
you make your selection. For instance, the FormBorderStyle property of a Windows form only accepts None,
FixedSingle, Fixed3D, FixedDialog, Sizable, FixedToolWindow, and SizableToolWindow. To select the
appropriate item:

Open the drop-down list.

Select the style you want.

Anytime you have a drop-down list in the Properties window, you can iterate over the list more quickly by
simply double-clicking the property or its corresponding drop-down list. Without expanding the list first,
double-clicking it sets the value to the next available item in the list (or to the first item if the current value is
the last one).

This trick can be extremely useful when switching Boolean values because a double-click changes the value
quickly from True to False, or vice versa.

Page 566

2.14 - Adding and Removing Event Handlers Through the IDE
Adding default handlers through the IDE is quite easy. In most cases, you only need to double-click a control
which creates the necessary code for the default event handler.

Adding and removing non-default events handlers is still easy, but, in Visual APL, it requires not only the
removal of the method itself but the removal of the code that hooks an event handler to an event, often
found in the InitializeComponents() method.

The proper, but relatively hidden, way to add and remove event handlers in Visual APL is to use the
Properties window:

Select the control

C lick the Events button in the Properties window (the yellow thunderbolt).

The Property window displays all the events that the selected control exposes, along with any event handler
that is already hooked up to them.

In addition, the event handler fields are clickable (see Figure 27).

To create an event handler:

Double-click an empty field.

Choose which event you want to subscribe to.

To hook an event handler which is already written, to an event:

Use the drop-down button next to the selected field that automatically lists all matching event
handlers.

Figure 27. Setting events

To delete an event handler:

Delete the value in the event field.

This also removes the event handler subscription you have in the InitializeComponents() method.

Page 567

2.15 - Selecting Control Through a Drop-Down List
When there are many controls on a Windows form, it can become a challenge to find a specific control, and
select it. This problem often occurs when many panels overlap one other or when the Windows form becomes
too crowded to isolate a specific control that you want to modify.

To select a specific control:

Select the drop-down list that appears right above the Properties window.

Select the desired control.

Note: This drop-down list is only populated in the Designer view. It contains all the controls that exist on the
Windows form. To select a certain control, you just need to know its ID and data type.

Page 568

Chapter 3: Compiling, Debugging, and Deploying

Not only is VS.NET a great editor, it is also a powerful compiler, debugger, and profiler. It allows you to
precisely control your compilation procedure and provides the features which are absolutely essential in to
locating and fixing a bug: analyzing your code, attaching to running processes that you want to debug, and
changing code and variables at runtime. This chapter covers topics that you need to know when it comes to
compiling and debugging your programs.

Page 569

3.0 - Setting the Default Namespace and Assembly Name
Following the official naming guidelines suggested throughout the industry, you would declare your classes in
your own company and project-specific namespace. Typically, you end up with the following namespace
hierarchy (at a minimum):

MyCompanyName.MyProject.MyClass

When you add new classes with the Add New Item dialog box, VS.NET does not place your new class in any
project namespace. It places it, by default, in the top-level namespace, which usually means the name of
your assembly. To set the default namespace when you create new projects:

Select Project > Properties > Application.

Specify the default namespace in the Default Namespace field.

This namespace can be many levels deep; new classes added through the VS.NET dialog box will be placed in
that specified namespace. In addition, you can also control the name of the assembly that is being generated
by specifying it in the Assembly Name field. While Windows applications typically use one word for the
assembly name, Control Library projects should be named using the same guidelines as the namespace.

Page 570

3.1 - Generating Compiler Warnings Through the Obsolete Attribute
A commonly used way to display warnings in VS.NET at compile-time is to set an Obsolete Attribute to a
method. Throughout the product development cycle, occasionally certain methods become obsolete.
Sometimes the old method is not useful anymore. It may have become inefficient, or has been replaced by
another method. If you can’t modify those methods, will need to write another implementation of the method
using a slightly different name or signature. To maintain compatibility, you do not want to remove the old
method and break your code. This is where the Obsolete attribute comes in handy:

[Obsolete("Use the new MyMethodEx instead!")]
public void MyMethod()...

Setting the Obsolete attribute as above makes a warning message appear in the Task List stating that the
particular call to a method is obsolete. The warning message also includes your personalized message that
you pass as the attribute’s argument (such as, “Use the new MyMethodEx instead!”).

As with the warning compiler directives, this method does not affect the compilation behavior in any way. You
also must activate the Task List to see these warnings. Unlike warning compiler directives, the warning only
appears if there is code that tries to invoke the obsolete method. These warnings will never appear if you
don’t refer to these methods anywhere in your code.

Page 571

3.2 - Setting the Assembly Output Path
When you build a project, the produced assemblies are typically placed in the \bin\Configuration subfolder of
your project folder, where the configuration folder is typically Debug or Release.
These are the default settings. To specify another directory where you want to place the produced assemblies
and external files:

Select Project > Properties > Build for Visual APL projects.

Place either a relative or absolute path in the Output Path field.

This setting is used at the next build.

These configuration-specific properties allow you to specify a different output path for each configuration. For
instance, if you want, you can set the default output path for the Debug release as the usual bin subfolder,
while directing the release build directly to a network share on your internal company network.

Page 572

3.3 - Setting the .NET Framework Version for Your Assembly
A great side-by-side installation feature of the .NET Framework is the ability to have multiple versions of the
.NET Framework installed on a given computer, without any of them interfering. By default, all non-web
applications use the .NET Framework with which they were compiled (if available), whereas web applications
by default always use the most recent version of the .NET Framework.

You can specify which .NET Framework is supported and required for your assembly by modifying the
application configuration file (MyApplication.exe.config or Web.config). What you need to do is:

Insert the appropriate Configuration/startup/supportedRuntime and
Configuration/startup/requiredRuntime XML tags in the configuration file

Set its version attribute to the specific .NET Framework version.

This enables you to force a Windows application to use an older version of the .NET Framework.

This configuration modification is easy in VS.NET. To set this for Visual APL:

Select Project > Properties > General > Target Platform.

Set the supported and required runtime versions for your assembly (see Figure 28).

To verify that your assembly is picking up the correct version, check the Version property in the .NET
Framework class System.Environment.

Figure 28. Choosing the target runtime.

Note: Supporting the 1.0 Framework, or even version 1.1 is an unsupported environment. Simple programs
most likely will work, but for more complex programs you are strongly advised to check the compatibilities
manually in case your code uses version 2.0–specific features.

Page 573

3.4 - Moving the Next Statement During Debugging
When stepping through your program one line at a time, you may need to jump a few lines back. To do
this:

Right-click an arbitrary line

Choose Set Next Statement from the pop-up menu (see Figure 29).

This forces the debugger to jump to that line and continue debugging “normally” from there.

Figure 29. Set Next Statement

To jump back, and also jump forward in and out of control statements:

Drag the yellow arrow to any line.

Note: You cannot jump out of the current stack frame, so you are limited to moving inside your current
method.

In addition, moving the current execution line can bring your program into states that under normal execution
could not occur. Still, it’s an extremely useful feature to rerun certain code lines without restarting your
debugging session.

Page 574

3.5 - Changing Variable Values in the Watch Window
In addition to moving the next-statement pointer, you can change variable values at debug-time. In the
process of debugging your application, you may have moved your variables of interest into the Watch window
(probably by dragging your variable there). The Watch window does more than display the current variable
value and type; the value field is also editable.

For most value types this is accomplished by entering the new value.

Note: You need to change the internal tick value of DateTime variables.

As for reference types, you can re-reference variables to other variables. Let’s say you have two instances of
hash tables in your Watch window, named foo and bar. Setting the variable foo to the reference bar’s hash
table is as easy as typing bar in foo’s value field. You can only change a reference variable to another
reference variable of the same type (or its derived types).

Note: This can bring your program into states that under normal conditions would never be encountered.

Page 575

3.6 - Executing SQL Procedures Through the Server Explorer
The SQL Server tree branch in the Server Explorer allows you inspect and analyze a SQL Server instance. In
addition to the general features of inspecting a database table and Excel-like modifications of table contents
by editing rows, the Server Explorer has other useful features.

VS.NET has limited capabilities of editing stored procedures. To view, edit, and modify stored procedures:

Right-click any stored procedure.

Choose Edit Stored Procedure from the pop-up menu.

Unfortunately, this feature does not compete well with the Enterprise Manager because error messages
regarding syntax error are too general. Nevertheless, it’s quite useful for its designed purpose of viewing,
editing, and modifying stored procedures.

To execute stored procedures at design-time:

Right-click a stored procedure.

Choose Run Stored Procedure from the pop-up menu.

VS.NET inspects your stored procedure’s parameter list. If necessary, the Run Stored Procedure dialog box
is displayed:

Enter each parameter’s value.

Execute your stored procedure and see the results.

Page 576

3.7 - Customizing the Call Stack
A stack trace is a visual representation of the current hierarchy of method invocations as VS.NET steps
through your program. While debugging your program, you step into methods and methods within methods.
The stack trace keeps track of all these different levels.

To see the current stack trace:

Select Debug > Windows > Call Stack or

Press C trl-Alt-C ,

Each method invocation is displayed on its own line, including the line-number and argument values. Each
new method invocation is known as a stack frame.

The stack trace has been around in Visual Studio for a long time and is a widely known tool. The advantage
of the stack trace window is that it allows you to identify how you get to the current execution point and also
inspect the arguments that have been passed to the methods.

To make VS.NET immediately jump to the method invocation on a particular level of your program:

Double-click any line in the stack trace.

A relatively unknown aspect of the stack trace is that you can customize the Call Stack window. To do this:

Right-click the call stack.

Customize what appears there (see Figure 30) according to your requirements.

In addition, you can send the information regarding a single method invocation to a coworker:

Copy a stack frame to the C lipboard by pressing Ctrl-C .

To send your coworker the entire call stack:

Press C trl-A first, or

Before copying the selection to the C lipboard, Choose Select All from the context menu that appears
after you right-click.

Page 577

Figure 30. Customize the CallStack

Page 578

3.8 - Attaching VS.NET to an Already Running Process

To instruct VS.NET to debug your program, you first are telling it to build your project (if necessary) then
start the program in debug mode. This means that VS.NET is attached to the program so that it can react to
breakpoints and other debug-related methods, assuming that the project was built with the debug release. To
debug your program:

Press F5

There some cases, where you need, or want, to debug an already running process that has not been started
with VS.NET you must:

Open the project for the program that is already running.

Select Debug > Attach to Process

A list of all active processes on your machine is displayed.

From the Processes dialog box, select the process you are interested in debugging and click Attach.

Page 579

3.9 - Debugging Several Projects Inside the Solution
In a multi-project solution, VS.NET will start the project that you have marked as the “startup project.” That
project is indicated in the Solution Explorer with bold letters. If you start the other projects through Windows
Explorer, you will see that VS.NET does not hit any breakpoints for those projects because VS.NET was not
attached as a debugger to them.

It is possible to debug those programs anyway, using the instructions in, “Attaching VS.NET to an Already
Running Process.”

To instruct VS.NET to start a project and attachs itself to a specific program:

Right-click your project

Select Debug > Start New Instance from the pop-up menu.

You can repeat these steps several times to start multiple instances of your program and still debug them all.
This is useful in debugging multi-threaded client-server scenarios.

Tell VS.NET which projects you want to start on each new debug session (see Figure 31):

Right-click your solution

Choose Set Startup Projects from the pop-up menu.

By default, VS.NET uses the Single Startup project, where only one project is started.

To start more than one project:

Switch to Multiple Startup Projects

Modify the Action value for each property: None, Start, or Start Without Debugging.

To control the order by which these multiple projects start:

C lick the Move Up or Move Down button to position your projects in the list.

In a client-server scenario, you can use this to make sure that the server program is started before the client
program.

Figure 31. M ultiple startup projects

Page 580

3.10 - Breaking Only for Certain Exception Types
A good program usually catches all possible exceptions that can be thrown at runtime. However, this makes it
a bit difficult for developers to debug a complex program that is still in development. Because there aren’t
any unhandled exceptions, VS.NET never catches an exception or prompts the user to break into the code
whenever a specific exception is being thrown.

To specify the exceptions that developers are interested in defining, there is a setting in VS.NET. To utilize
this setting:

Select Debug > Exceptions, or

C trl-Alt-E.

A tree view–style list of all possible exceptions that VS.NET can hook into (see Figure 32) will be displayed.

In addition to the many Common Language Runtime exceptions, you can hook into C++, Native Run-Time
checks, and Win32 exceptions.

Figure 32. Break on specific exceptions

From this list you are able to:

Set, for each possible exception, exactly when to break into the debugger.

You can either hook into the debugger when a specific exception is thrown or when an exception is not
handled. In the predefined .NET exceptions, you can hook into your own .NET exceptions.

To specify the complete, fully qualified string that defines your .NET exception, for example,
“MyCompany.MyProduct.MyBusinessException”:

C lick the Add button in the Exceptions dialog box.

Page 581

3.11 - Breaking Only When Certain Conditions Apply (Ctrl – Alt – B)
A heavily used method to add or remove exceptions is by clicking the gray vertical bar to the left of the
editor. C licking it adds and removes the red circle that indicates a breakpoint. By doing so, many developers
never encounter the very useful conditions that you can set for breakpoints.
To access these conditions:

Set your breakpoint using your normal method.

Right-click your breakpoint.

From the context menu, choose Condition (Figure 33) to get to the Breakpoints window (Figure 34).

Two buttons stand out at the bottom of the Breakpoints window. To specify a condition under which a
breakpoint becomes active:

Enter a .NET expression.

This can either be simply a variable name (“myBoolVariable”) or a more complex .NET expression
(“((System.DateTime.Now.Second % 10) == 0)”). You can choose to break into the debugger if the
expression evaluates to True or when the expression value changes. Naturally, for the first option, the
expression has to evaluate to a Boolean value. For the second option, your expression can be anything.
VS.NET breaks into the debugger only if the runtime value of that expression changes from the last time it
passes by this conditional exception (this implies that program execution has to pass by this code segment at
least once previously, before it can recognize a change in value).

Given the flexibility of the expression, this feature can be very powerful. For instance, you can debug a
snapshot of a DataSet only if the DataTable row size is greater than 0.

In VS.NET 2005, all the above-mentioned conditions are accessed in the following way:

Sset your breakpoint as you would normally do.

Right-click your breakpoint.

From the context menu, choose Condition to get to the same screen (see Figure 62).

Figure 33. Set breakpoint condition.

Page 582

Figure 34. Breakpoints Window

To see and modify the condition in the Breakpoints window:

Open that window by selecting Debug > Windows > Breakpoints or

Pressing Ctrl-Alt-B.

A list of all breakpoints that you have set, along with their conditions will be displayed.

Note: You can disable breakpoints from this window as well, using the check boxes, or jump to their location
in the file by double-clicking them.

Page 583

3.12 - Saving Any Output Window
The Output window (Ctrl-Alt-O) shows a lot of trace information regarding your program execution. It lists
whenever the .NET Framework loads a DLL for your application and, probably more importantly, all the
messages that you have emitted with System.Debug.WriteLine.

To save all these trace logs:

Press C trl-S to save the entire output to a file.

To search through the Output window:

Press C trl-F

You can even apply some of the other editor tips and tricks such as C trl-C for copying an entire line or C trl-R,
C trl-R for word-wrapping (although VS.NET 2005 now offers a button for word-wrapping in the Output
window).

Page 584

3.13 - Aligning UI Elements Automatically
If you are positioning UI elements in a Windows form, you have probably noticed various colored lines that
appear on the form as you move or resize elements (see Figure 35). This allows you to snap your UI element
to vertical or horizontal lines. Solid blue indicates lines to which other UI elements have already been
snapped; they help you align elements consistently. Green dotted lines indicate the default margin between
the UI element you are moving or resizing and the elements around it; they help you maintain uniform
spacing between elements. Finally, solid red lines indicate that the text inside the current element is aligned
with an adjacent UI element or its text.

Figure 35. Align lines

To position UI elements without snapping to these colored lines:

Press Alt to turn off automatic alignment temporarily.

To switch back to the grid where all UI elements are aligned to a predefined grid:

Select Tools > Options > Windows Forms Designer > General and change LayoutMode back to
SnapToGrid.

Note: After changing that value, you need to close and reopen the Designer view to use the newly selected
layout mode. In SnapToGrid mode, you can press the Ctrl key to move elements without snapping them to
the grid.

Page 585

3.14 - Adding a Standard Menu Strip
Standard Windows applications use a common set of top-level menu items. In most cases, they are File, Edit,
Tools, and Help. VS.NET 2005 allows you to add these default menu items to your own Windows forms
applications. To add your own menu strip:

Drag a MenuStrip to your Windows form.

With the MenuStrip selected, the description panel below the Properties window shows an Insert Standard
Items link (see Figure 74):

C lick that link.

VS.NET inserts these standard items onto your MenuStrip. Menu items you insert contain the default submenu
items as well. For instance, the File menu includes the usual New, Open, Save, Save As, Print, Print Preview,
and Exit items, along with its default shortcuts, hot keys, and icons.

Figure 36. M enu strip standard items

Page 586

3.15 - Setting the Tab Order of Controls
The tab order is the order by which controls on the form receive focus as you press the Tab key. You can
control this order by setting the Tab Index property of each control to a number that corresponds to the
position in this order. This can prove difficult at times because you don’t know—and can’t see—the other
controls’ tab index unless you select them.

Figure 37 - Tab Order button on the left of the Layout bar

VS.NET 2005 introduces a new way to set the tab order: the Tab Order button on the Layout bar (see Figure
37).

C lick the Tab Order button to display the tab index for all UI elements on the form.

You now see all the tab indices.

C lick repeatedly on each UI element to set the tab order in linear fashion.

The first element you select is given a tab index of zero. The next one you select has a tab index of one, and
so on. As you set the index for each control, the background color of the tab index caption switches from blue
to white, so you can keep track of which UI elements you have already tagged. To prevent you from
accidentally selecting a wrong UI element, a gray rectangle surrounds the element you mouse over for better
identification.

When you are done setting the tab order:

C lick the Tab Order button again or

Press the Escape key.

Page 587

3.16 - Importing and Exporting IDE Settings
VS.NET is an extremely powerful tool with many things in the IDE that you can customize to suit your
specifications. Because you will become accustomed to your particular settings, moving from one machine to
another can cause problems if you are not able to move your IDE settings along with you.

VS.NET 2005 allows you to export your IDE settings to an XML file (the extension is actually “.vssettings”). To
import it into another instance of VS.NET on another computer:

Select Tools > Import > Export Settings.

In the tree view shown in the Import/Export Settings dialog box, you are presented with all the customizable
options you can export (see Figure 38).

Check the options you want to be part of your profile.

Export them to the .vssettings file.

Figure 38. Export VS Settings

Import the .vssettings file to another VS.NET IDE.

Select which settings you want to import and which ones to ignore.

In the same dialog box you can also reset your complete VS.NET IDE to a particular profile. These might be
custom profiles that you saved before. You can also reset to the default installation settings (which is just
another regular .vssettings file).

To create a master .vssettings file for coordination between co-workers, e-mail it to all your team members
so that they can import it individually. You can also create the single .vssettings file and place it on a
well-known network share on the intranet. To obtain these settings have the members of your team:

Page 588

Select Tools > Options > Environment > Import > Export Settings > Team Settings.

There they have to turn on Track Team Settings File and point it to that shared .vssettings file. Next time they
start their IDE, it will detect the file and import it. One advantage of this feature is that another trusted team
lead can export a version of the shared .vssettings file and overwrite it, so that the IDEs of each developer
will detect that change and import it upon the next startup.

Page 589

3.17 - Closing All Other Windows
It’s very common to have a lot of files open at the same time when developing your program. After working
for a while, you might have several dozen files open and want to close all of them except the one on which
you are currently working.

To close all the open files:

Right-click one of the file tabs.

Choose C lose All But This from the pop-up menu.

This option does exactly what it says (see Figure 39).

Other menu options new to VS.NET 2005:

1. Open Containing Folder
 -starts up Windows Explorer and opens the folder in which your file is located.

2. Copy Full Path
 -copies the full file path of the selected file into the C lipboard.

Figure 39. File tabs options

Page 590

3.18 - Showing Shortcuts for All Buttons
Using and memorizing shortcuts whenever available, gives you a strong advantage when developing. It
naturally increases your speed and therefore your efficiency. Keyboard shortcuts prove to be faster than
manipulating the mouse. Many VS.NET menu and submenu items have these shortcuts which are seen every
time you click the menu item.

This reminder is also available for the toolbar buttons. To see this reminder:

Select Tools > Customize

Check both the Show ScreenTips on Toolbars and Show Shortcut Keys in ScreenTips options.

Now as you mouse over a button, the ToolTip that appears after a small delay will also show the button’s
keyboard shortcut, if available.

Page 591

	Visual APL Tutorial
	Visual APL Tutorial Sections
	1 What is Visual APL?
	2 What are the Differences with Existing APL's?
	3 Is Visual APL fast?
	4 Compatibility with .Net and other .Net langauges?
	5 What About Workspaces?
	6 What Does the Source File Look Like?
	7 Is there an Interpreter?
	8 Visual APL Tutorial
	9 General Overview
	10 Using Visual APL as a Desktop Calculator
	11 APL Operators and Functions
	12 Strings
	13 Using System.Collections
	14 Controlling Program Flow
	15 Defining Functions
	16 More about defining functions
	17 Typing Arguments to Functions
	18 Data Types and Collections
	19 The Generic Collection
	20 Conditions for Flow Control
	21 Comparing objects
	22 Error Handling
	23 Throwing Exceptions
	24 Defining Clean-up Actions
	25 Namespace.Class
	26 Some Definitions
	27 Instance and Static sub
	28 Static fields and methods sub
	29 Inheritance
	30 Multiple Inheritance
	31 Size of classes
	32 Late Binding
	33 Strong Typing a Variable
	34 Early Binding
	35 Types, why do I care
	36 Casting and Coercion of Type
	37 The Need for Speed
	38 Static, Instance and IO, Random Seed...

	Visual APL Development Environment
	Introduction to Visual APL

	Visual APL Reference
	Primitive Scalar Operators
	Builtin Operators
	-- Operator (Visual APL Reference)
	>> Operator (Visual APL Reference)
	>= Operator (Visual APL Reference)
	== Operator (Visual APL Reference)
	<= Operator (Visual APL Reference)
	<< Operator (Visual APL Reference)
	++ Operator (Visual APL Reference)
	|| Operator (Visual APL Reference)
	| Operator (Visual APL Reference)
	^ Operator (Visual APL Reference)
	&& Operator (Visual APL Reference)
	& Operator (Visual APL Reference)
	!= Operator (Visual APL Reference)

	Visual APL Keywords
	Statement Types
	Exception Handling Statements
	throw
	try-catch
	try-finally

	Jump Statements
	Branch
	break
	continue
	goto
	return

	Selection Statements
	foreach, in
	if-else
	switch-case

	Iteration Statements
	do
	for
	while

	Exception Handling Statements
	throw
	try-catch
	try-finally

	Types
	Value Types
	Value Types Table
	void

	Built-In Types Table
	Default Values Table
	Explicit Numeric Conversions Table
	Floating-Point Types Table
	Implicit Numeric Conversions Table
	Integral Types Table
	Modifiers
	Types Reference Tables

	Access Keywords
	base
	this

	Literal Keywords
	null
	false Literal
	true Literal
	default

	Contextual Keywords
	get
	set
	value
	yield

	Namespace Keywords
	Using
	using Directive

	namespace
	prestmt (Visual APL Reference)
	refbyfile Directive
	refbyname Directive

	Operator Keywords
	as
	is
	new
	typeof

	Method Parameters
	ref
	params

	Assembly Registration Tool (Regasm.exe)

	Visual APL Programming Guide
	Arrays
	Arrays
	Single-Dimensional Arrays
	Using foreach with Arrays
	Jagged Arrays
	Multidimensional Arrays
	Arrays as Objects
	Passing Arrays as Parameters

	Events
	How to: Implement Interface Events
	How to: Raise Base Class Events in Derived Classes
	How to: Subscribe to and Unsubscribe from Events
	How to: Publish Events that Conform to .NET Framework Guidelines

	Main() and Command Line Arguments
	Main() Return Values
	How to: Display Command Line Arguments
	How to: Access Command-Line Arguments Using Foreach

	Indexers
	Indexers
	Comparison Between Properties and Indexers
	Using Indexers
	Indexers in Interfaces

	Threading
	How to: Create and Terminate Threads

	Collection Classes
	How to: Access a Collection Class with foreach (APLNext)
	How to: Use COM Interop to Create an Excel Spreadsheet (APLNext)

	Objects, Classes,and Structs
	Inheritance
	How to: Write a Copy Constructor
	Interfaces
	How to: Explicitly Implement Interface Members

	Constructors
	Static Constructors
	Instance Constructors

	Interoperability
	Example COM Class (APLNext)

	Namespaces
	Namespaces (APLNext)
	Using Namespaces (APLNext)
	How to: Use the My Namespace (APLNext)

	Statements, Expressions, and Operators
	Statements (APLNext Programming Guide)
	Expressions (APLNext)
	Operators (APLNext)

	Properties
	How to: Declare and Use Read/Write Properties (APLNext)

	Exceptions and Exception Handling
	Exceptions and Exception Handling (APLNext)
	Exception Handling (APLNext)
	Using Exceptions (APLNext)
	Creating and Throwing Exceptions (APLNext)
	Creating Custom Attributes (APLNext)
	Compiler-Generated Exceptions
	How to: Handle an Exception Using try/catch (APLNext)

	Strings
	Using Strings (APLNext)
	How to: Parse Strings Using the Split Method (APLNext)
	How to: Join Multiple Strings (APLNext)
	How to: Search Strings Using Regular Expressions (APLNext)
	How to: Search Strings Using String Methods (APLNext)

	Collection Classes
	Collection Classes (APLNext)

	Native File Access
	Append To File
	Create File
	Erase File
	Tied File Names
	Tied File Numbers
	Read File
	Rename File
	Replace File
	Resize File
	Size of File
	Untie File
	Tie a File
	Copy a File
	Check Existence of a File
	NStream

	Cielo Explorer
	Session Commands
)cd
)classes
)clear
)edit
)fns
)load
)off
)run
)runf
)scripts
)vars
)xload
)xmlout

	Menu Reference

	Code Flow Control
	Selection Statements
	:IF :ELSE
	:select :case

	Iteration Statements
	:while
	:repeat :until
	:for :in

	Jump Statements
	Label Syntax
	Branch
	:goto :return

	Legacy Keyword Indicator

	Syntax Characters
	# Number sign
	: Label separator, switch case separator and legacy keyword
	; Axis Separator
	; Statement Separator
	_ Underscore
	¯ High Minus
	Comment
	Del
	Delta
	Delta underscore
	Statement Separator

	System Functions, Constants, and Variables
	General System Function Reference
	Account Information
	Atomic Vector
	Command Window
	Comparison Tolerance
	Data Representation
	Divide By Zero
	Dyadic
	Dynamically Referencing Assemblies
	Expunge
	Index Origin
	Monadic
	Name Class
	Name List
	Number Format Info
	Print String Representation
	Random Link
	System Identification
	System Version
	Text to Numeric
	Time Stamp
	Universal Character Set
	User ID
	Verify Delimited Numeric
	Format
	Composite Formatting
	Standard DateTime Format Strings
	Standard DateTime Format Strings Output Examples
	Standard Numeric Format Strings

	FMT

	Primitive Scalar Operators
	[] Index
	Assignment By Value and = Assign By Reference
	Execute
	Zilde
	Pattern format, Format

	Component File Access
	Allocate Components
	Append Component
	Catenate to a Component
	Drop Components
	Erase a Component File
	Create a Component File
	Index Component Read
	Index Component Replace
	Tied Component Names
	Component Tie Numbers
	Read Component
	Replace Component
	Component File Size Information
	Release Unused Library Space
	Release Unused Share File Space
	Remove A Component
	Retrieve File Stream
	Share Tie Component File
	Untie Component File
	File Library
	File in File Library
	File in File Library Share Information
	File in File Library Share Control
	File Library Directory

	!SSL!\Microsoft_HTML_Help\Visual_APL_Grammar.chm
	Visual APL Operators
	Operators
	Add
	And
	Axis
	Binomial
	Bracket Index
	Catenate
	Ceiling
	Compress Replicate
	Depth
	Disclose (Build Array From)
	Divide
	Drop
	Each (For-Each data iteration)
	Enclose
	Enlist (Flatten Array)
	Equality (Approximately Equal)
	Execute
	Expand (Pad)
	Exponential (Exp)
	Factorial
	Find
	First
	Floor
	Format
	From Base 10 (Encode)
	Grade Down
	Grade Up
	Greater Than (Gt)
	Greater Than or Equal (Gte)
	Index Of
	Inner Product
	Interval
	Laminate
	Less Than (Lt)
	Less Than or Equal (Lte)
	Logarithm (Log)
	Magnitude (Absolute Value) (Abs)
	Match (Identity)
	Matrix Divide
	Matrix Inverse
	Maximum (Max)
	Member (Is Element Of)
	Minimum (Min)
	Multiply
	Nand
	Natural Logarithm (NatLog)
	Negative (Negate)
	Nor
	Not
	Not Equality (Not Approximately Equal)
	Or
	Outer Product
	Partition (Pattern Enclose)
	Pi Times
	Pick
	Power
	Ravel
	Reciprocal
	Reduce (Reduction)
	Reshape
	Residue
	Roll and Deal
	Rotate and Reverse
	Scan
	Shape
	Sign
	Squad Index
	Subtract
	Take
	To Base 10 (Decode)
	Transpose
	Trigonometric Functions
	Without

	Book: Visual Studio .NET Tips and Tricks
	Visual Studio .NET Tips and Tricks
	Chapters
	Introduction
	Chapter 1: Editing Code
	1.0 - Inserting Comment Tokens (Ctrl-K,Ctrl-H)
	1.1 - Commenting Code Blocks (Ctrl-K, Ctrl-C)
	1.2 -Creating Regions
	1.3 -Hiding Selection by Using Temporary Regions (Ctrl-M,Ctrl-H)
	1.4 -Selecting a Single Word (Ctrl+W)
	1.5 -Placing Code into the Toolbox (Ctrl-Alt-X)
	1.6 - Using the Clipboard Ring (Ctrl-Shift-V)
	1.7 - Transposing a Single Character or Word (Ctrl-T or
	1.8 - Cutting, Copying, Deleting, and Transposing a Single Line
	1.9 - Formatting Entire Blocks (Ctrl-K, Ctrl-F or Ctrl-K,Ctrl-D)
	1.10 - Toggling Word-Wrapping (Ctrl-R,Ctrl-R)
	1.11 - Creating GUIDs
	1.12 - Creating Rectangular Selections
	1.13 - Switching Between Views (F7)
	1.14 - Going to a Line Number (Ctrl-G)
	1.15 - Searching for a Word
	1.16 - Performing an Incremental Search (Ctrl-I)
	1.17 - Searching or Replacing with Regular Expressions or
	1.18 - Global Search or Replace (Ctrl-Shift-F or Ctrl-Shift-H)
	1.19 - Using Bookmarks
	1.20 - Using Browser-Like Navigation (Ctrl -, Ctrl Shift -)
	1.21 - Inserting External Text File

	Chapter 2: Exploring the IDE
	2.0 - Setting Project Dependencies
	2.1 - Embedding Files As Resources
	2.2 - Changing the Font Size of IDE Windows for Demos
	2.3 - Dragging Files to Obtain a Full Path
	2.4 - Moving Any Window Around
	2.5 - Creating Split Screens in the Same File
	2.6 - Customizing the VS.NET Menu and Toolbars
	2.7 - Dragging Files from Windows Explorer into VS.NET
	2.8 - Using Full-Screen Mode (Ctrl – Shift – Enter)
	2.9 - Copying the Fully Qualified Name of a Class
	2.10 - Changing Properties of Several Controls
	2.11 - Locking Controls
	2.12 - Toggling the Description in the Properties Window
	2.13 - Change Drop-Down List Values in the Properties Window
	2.14 - Adding and Removing Event Handlers Through the IDE
	2.15 - Selecting Control Through a Drop-Down List

	Chapter 3: Compiling, Debugging, and Deploying
	3.0 - Setting the Default Namespace and Assembly Name
	3.1 - Generating Compiler Warnings Through the Obsolete
	3.2 - Setting the Assembly Output Path
	3.3 - Setting the .NET Framework Version for Your Assembly
	3.4 - Moving the Next Statement During Debugging
	3.5 - Changing Variable Values in the Watch Window
	3.6 - Executing SQL Procedures Through the Server Explorer
	3.7 - Customizing the Call Stack
	3.8 - Attaching VS.NET to an Already Running Process
	3.9 - Debugging Several Projects Inside the Solution
	3.10 - Breaking Only for Certain Exception Types
	3.11 - Breaking Only When Certain Conditions Apply (Ctrl – Alt
	3.12 - Saving Any Output Window
	3.13 - Aligning UI Elements Automatically
	3.14 - Adding a Standard Menu Strip
	3.15 - Setting the Tab Order of Controls
	3.16 - Importing and Exporting IDE Settings
	3.17 - Closing All Other Windows
	3.18 - Showing Shortcuts for All Buttons

