
Automating Microsoft Excel with VisualAPL 
 
One way to incorporate the utility of Microsoft Excel in an application system is to 
‘automate’ it with VisualAPL. Microsoft Excel is an ActiveX server, so it can be 
accessed from any .Net language including VisualAPL. 
 
Because Microsoft Excel is based on Win32, the previous generation Microsoft 
Windows application programming interface (API), a .Net solution incorporating 
Microsoft Excel will not be “fully-managed”. 
 
This document provides a brief overview of the syntax that can be used to 
manipulate Microsoft Excel from VisualAPL. It is not meant to be a 
comprehensive survey of these techniques. Ultimately the programmer must 
study the Microsoft Excel object model in order to add significant value to an 
application system by automating Microsoft Excel. 
 
For more details about the Excel object model and how it can be automated from 
a .Net language, see http://msdn.microsoft.com/en-
us/library/syyd7czh(v=VS.80).aspx. 
 
For a relatively simple example of an application system which combines 
VisualAPL, Microsoft Excel, Windows Presentation Foundation and C# see 
http://forum.apl2000.com/viewtopic.php?t=478. 
 
The remainder of this document uses the APLNext VisualAPL Cielo Explorer 
interactive session in Visual Studio 2008 to illustrate the automation of Microsoft 
Excel. Remember that any VisualAPL statements perfected in the Cielo Explorer 
may be incorporated into a compiled VisualAPL .Net assembly or a Cielo 
Explorer script. 
 
Using the Cielo Explorer makes it very easy to try various VisualAPL statements 
and see the results immediately. The Visual Studio ‘debugger’ is fully active 
within the Cielo Explorer, so a source code statement with errors will be 
immediately identified. 
 
The screen captures of the Cielo Explorer in action have incorporated VisualAPL 
comments which explain the operations involved. 



Open Visual Studio 2008 and make the Cielo Explorer window visible. Enter the 
VisualAPL statements indicated below to automate Microsoft Excel. These 
statements will be successful only if Microsoft Excel has been installed on the 
programmer’s workstation. 
 
Visual Studio ‘Intellisense’ context-sensitive documentation is available in the 
Cielo Explorer, however for certain Microsoft Excel objects, Visual Studio is not 
able to retrieve complete Intellisense information. This is why it is important for 
the programmer to study the Microsoft Excel object model to know what 
methods, properties and events are available. 
 

 



When testing an application system that is automating Excel, it is generally 
beneficial to make the instance of Excel visible. 
 

 

Joe
Line



The ‘System.Type.Missing’ object is convenient when using certain Excel 
methods which have numerous arguments, many of which need not be specified 
explicitly. Before using System.Type.Missing, check the Excel object model 
documentation to assure that these additional arguments are actually not critical 
to the application system automating Excel. 
 

 

Joe
Oval



The Excel object model incorporates many subordinate objects such as 
indexable collections for workbooks, worksheets and cells as well as properties 
like Count and methods such as Add(), set_Value() and get_Value(). 
 

 



Excel ranges may reference individual cells or arrays of cells supporting some 
array-based operations. 
 

 



Here is the Excel application after the above Excel automation operations have 
been completed. 
 

 



It is possible to abstract the data in an Excel range into a ‘data’ object. 
 

 

Joe
Oval



The data object associated with an Excel range object can be manipulated by 
getting or setting values within it. The data object can then be used to update the 
Excel range object. 
 

 

Joe
Oval



Here is the Excel application after the data object updated the range object. 
 

 



The Excel Workbook.SaveAs() method has a complex argument structure. 
Generally only certain of these arguments need to be explicitly specified. 
 

 

Joe
Line



When Excel is being automated by a .Net programming language, it is best to 
check for the successful operation of automation statements, for example using 
the System.IO.File.Exists() method after the Excel SaveAs() method is used. 
 
Failure to properly quit the Excel application can result in orphan, sometimes 
invisible, Excel instances which consume memory until the workstation is 
restarted or these instances are manually ended using the Windows ‘Task 
Manager’. 
 
The Excel Workbooks.Open() method also has a rather complex argument 
structure. 
 

 

Joe
Line

Joe
Line



The Excel object model provides alternate syntax for many statements. Here is 
an example of saving the current workbook using indexing on the Workbooks 
collection. 
 

 

Joe
Oval


