
Using APL+Win from VisualAPL

APL+Win is exposed as an ActiveX server when APL+Win is
registered on the workstation. Any .Net programming language, e.g.
C#, VB.Net and VisualAPL, can access ActiveX objects such as
APL+Win.

First create an application-specific APL+Win workspace and an
associated APL+Win function which will be called from VisualAPL.
Make sure that the workspace name is
“CALLAPLWINFROMVISUALAPL”.

Joe
Oval

Next create the VisualAPL project which will call APL+Win as an
ActiveX server. Open an instance of Microsoft Visual Studio 2008 and
use the File > New > Project > VisualAPL > APLNext > Console
Application to create the a simple demonstration project illustrating
the concept.

Joe
Oval

Joe
Oval

Joe
Oval

The VisualAPL Console Application template will create the following
Program.apl source code file:

Use the Solution Explorer tab to open the References node:

Joe
Oval

Right click the References node and select Add A Reference to
present the Add Reference dialog. Click the COM tab and select the
APL+Win 3.0 Type Library aplwco.dll file.

Joe
Oval

Joe
Oval

The APL+Win 3.0 Type Library reference will now exist in the
Solution Explorer. This means that a copy of the applicable aplwco.dll
will be included in this VisualAPL project and the methods, properties
and events of this library will be available for use in the VisualAPL
project.

Joe
Oval

Copy the following APL+Win source code replacing the default code
in the VisualAPL project file Program.apl.

#region Using directives
using System;
using System.Collections.Generic;
using System.Text;
using APLW;
#endregion

namespace VAPLusingAPLWin{
 public class Program{
 public static void Main(){
 APLW.WSEngineClass apl = new APLW.WSEngineClass();
 apl.Visible=1;
 Console.WriteLine("ad hoc calculation w/o workspace: 3+5:
"+ apl.Exec("3+5").ToString());
 try
 {
 string wspath =
System.IO.Path.GetFullPath(@"..\..\APL+WIN\CALLAPLWINFROMVISUALAPL.W3
");
 wspath = ¯3↓wspath;
 apl.SysCommand("LOAD " + wspath);
 Console.WriteLine("Enter a numeric value: ");
 double input = Convert.ToDouble(Console.ReadLine());
 if (input<0)
 {
 throw new Exception("Input value is negative!");
 }
 double result =
Convert.ToDouble(apl.Call("SquareRoot",input,Type.Missing));
 Console.WriteLine("Square root of "+input.ToString()+":
"+result.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
 Console.WriteLine("Click the Enter key to end this
application system");
 Console.ReadLine();
 apl.Close()
 }
 }
}

The VisualAPL Program.apl source should now look like:

In the Visual Studio Solution Explorer, right click the VisualAPL
project name and select Add > New Folder and name it “APL+Win”.

Joe
Oval

In the Visual Studio Solution Explorer right click the APL+Win folder
and select Add > Existing Item. Browse to the location of the
APL+Win workspace created for this project and add a copy of this
workspace file to the APL+Win folder in the VisualAPL project.

Use the Visual Studio File > Save All option to save all files in this
solution. The saved status of the solution files will be indicated in the
status bar of the Visual Studio window.

Joe
Oval

Joe
Oval

Use the Visual Studio F5 key to ‘debug’ the VisualAPL solution.

Joe
Oval

Because this is a ‘Console Project’, the command prompt window will
be presented:

Because the VisualAPL project set the APL+Win Visible property to
1, the APL+Win ActiveX server window will also be presented.

Enter a numeric value into the command prompt window and click the
Enter key once to cause VisualAPL to call the APL+Win ‘SquareRoot’
function.

Click the Enter key again and the VisualAPL console project will close
the instance of APL+Win, the command prompt window will close
ending the debug process and the Visual Studio IDE will return to
programming mode.

Joe
Oval

Joe
Oval

This simple VisualAPL application system illustrates how VisualAPL
can use APL+Win functions to support the business rules and
calculations of an application system.

Using APL+Win in this way means that the .Net solution will not be
fully-managed. However the technique outlined here can enhance the
use of APL+Win especially when complex algorithms have already
been implemented and validated in APL+Win. To create a fully-
managed .Net solution, the APL+Win source code can be converted
to VisualAPL source code. For more information on this conversion
process see http://forum.apl2000.com/viewtopic.php?t=455.

