
Using APL+Win from VisualAPL 
 
 
APL+Win is exposed as an ActiveX server when APL+Win is 
registered on the workstation. Any .Net programming language, e.g. 
C#, VB.Net and VisualAPL, can access ActiveX objects such as 
APL+Win. 
 
First create an application-specific APL+Win workspace and an 
associated APL+Win function which will be called from VisualAPL. 
Make sure that the workspace name is 
“CALLAPLWINFROMVISUALAPL”. 
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Next create the VisualAPL project which will call APL+Win as an 
ActiveX server. Open an instance of Microsoft Visual Studio 2008 and 
use the File > New > Project > VisualAPL > APLNext > Console 
Application to create the a simple demonstration project illustrating 
the concept. 
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The VisualAPL Console Application template will create the following 
Program.apl source code file: 
 

 



Use the Solution Explorer tab to open the References node: 
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Right click the References node and select Add A  Reference to 
present the Add Reference dialog. Click the COM tab and select the 
APL+Win 3.0 Type Library aplwco.dll file. 
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The APL+Win 3.0 Type Library reference will now exist in the 
Solution Explorer. This means that a copy of the applicable aplwco.dll 
will be included in this VisualAPL project and the methods, properties 
and events of this library will be available for use in the VisualAPL 
project. 
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Copy the following APL+Win source code replacing the default code 
in the VisualAPL project file Program.apl. 
 
#region Using directives 
using System; 
using System.Collections.Generic; 
using System.Text; 
using APLW; 
#endregion 
 
namespace VAPLusingAPLWin{ 
 public class Program{ 
  public static void Main(){ 
  APLW.WSEngineClass apl = new APLW.WSEngineClass(); 
  apl.Visible=1; 
  Console.WriteLine("ad hoc calculation w/o workspace: 3+5: 
"+ apl.Exec("3+5").ToString()); 
  try 
        { 
            string wspath = 
System.IO.Path.GetFullPath(@"..\..\APL+WIN\CALLAPLWINFROMVISUALAPL.W3
"); 
            wspath = ¯3↓wspath; 
            apl.SysCommand("LOAD " + wspath); 
            Console.WriteLine("Enter a numeric value: "); 
            double input = Convert.ToDouble(Console.ReadLine()); 
            if (input<0) 
            { 
                throw new Exception("Input value is negative!"); 
            } 
            double result = 
Convert.ToDouble(apl.Call("SquareRoot",input,Type.Missing)); 
            Console.WriteLine("Square root of "+input.ToString()+": 
"+result.ToString()); 
        } 
        catch (Exception e) 
        { 
            Console.WriteLine(e.Message); 
        } 
  Console.WriteLine("Click the Enter key to end this 
application system"); 
  Console.ReadLine(); 
  apl.Close() 
  } 
 } 
}



The VisualAPL Program.apl source should now look like: 
 

 



In the Visual Studio Solution Explorer, right click the VisualAPL 
project name and select Add > New Folder and name it “APL+Win”. 
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In the Visual Studio Solution Explorer right click the APL+Win folder 
and select Add > Existing Item. Browse to the location of the 
APL+Win workspace created for this project and add a copy of this 
workspace file to the APL+Win folder in the VisualAPL project. 
 

 
 
Use the Visual Studio File > Save All option to save all files in this 
solution. The saved status of the solution files will be indicated in the 
status bar of the Visual Studio window. 
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Use the Visual Studio F5 key to ‘debug’ the VisualAPL solution. 
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Because this is a ‘Console Project’, the command prompt window will 
be presented: 
 

 
 
Because the VisualAPL project set the APL+Win Visible property to 
1, the APL+Win ActiveX server window will also be presented. 
 

 
 
Enter a numeric value into the command prompt window and click the 
Enter key once to cause VisualAPL to call the APL+Win ‘SquareRoot’ 
function. 
 

 
 
Click the Enter key again and the VisualAPL console project will close 
the instance of APL+Win, the command prompt window will close 
ending the debug process and the Visual Studio IDE will return to 
programming mode. 
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This simple VisualAPL application system illustrates how VisualAPL 
can use APL+Win functions to support the business rules and 
calculations of an application system. 
 
Using APL+Win in this way means that the .Net solution will not be 
fully-managed. However the technique outlined here can enhance the 
use of APL+Win especially when complex algorithms have already 
been implemented and validated in APL+Win. To create a fully-
managed .Net solution, the APL+Win source code can be converted 
to VisualAPL source code. For more information on this conversion 
process see http://forum.apl2000.com/viewtopic.php?t=455. 
 
 
 


