
Using APL+Win with Events from VisualAPL

Summary

This topic illustrates how to use APL+Win from VIsualAPL when the APL+Win ActiveX server

“Notify” or “SysNotify” events will be involved in the solution. These APL+Win events are useful

when it is necessary to provide the calling environment, in this case VisualAPL, with real-time

information about an APL+Win processing request made by the calling environment.

For example, real-time information transmitted by APL+Win using the Notify event to VIsualAPL

might be;

 Error messages due to APL+Win validation of input argument information provided by the

calling environment

 Error messages due to unanticipated errors which occur when APL+Win is satisfying the

processing request made by the calling environment

 Processing progress information made available to the calling environment while APL+Win

is satisfying the processing request made by the calling environment.

APL+Win Notify and SysNotify Event Handler Method Signatures

The APL+Win event handler syntax for the “Notify” and “SysNotify‟ events was developed

before .Net existed. The APL+Win event handler syntax for these events is of the form:

Event_handler_name(ref object Code, ref object Data, out object Result)

The .Net “standard” event handler syntax is:

Event_handler_Name(object sender, …EventArgs e)

Generally C# can properly identify and utilize the „native‟ APL+Win event handler syntax, but

VisualAPL for Visual Studio 2008 cannot because Microsoft documentation of the mechanism to

support the ref and out prefixes in the arguments of an event handler method were not available

to non-Microsoft programming language developers such as the VisualAPL team.

Joe
Oval

Joe
Oval

Joe
Oval

Joe
Oval

Joe
Oval

C# Helper .Net Assembly

Rather than modify APL+Win which would have to potential to „break‟ existing Win32 application

systems developed using APL+Win, .Net provides a convenient and powerful alternative.

This topic introduces a C# „helper‟ .Net assembly, “BSSI.APLWinNet35” which will:

 Provide new events, APLNotify and APLSysNotify, with .Net „standard‟ event handler

method signatures and with the same functionality as the native APL+Win ActiveX server

events, Notify and SysNotify. The „helper‟ .Net assembly defines the “APLNotifyEventArgs”

and “APLSysNotifyEventArgs” classes which encapsulate the APL+Win ActiveX server

„native‟ Notify and SysNotify event arguments into a .Net „standard‟ event arguments data

type.

Joe
Oval

Joe
Oval

Joe
Oval

Joe
Oval

 Fully encapsulate the use of the APL+Win ActiveX server APLW.dll COM component, so

that the calling environment projects will not have to reference the APLW.dll COM

component. This feature can benefit any .Net calling environment based on C#, VB.Net or

VisualAPL.

Joe
Line

 Provide an option to augment the APL+Win ActiveX server with additional methods,

properties and events for the convenience of the calling environment. For example the

„helper‟ .Net assembly can include methods or properties which have „friendly‟ names,

perform common operations or add validation.

 The APLWorkspaceLoad method performs a common operation and adds validation:
 public void APLWorkspaceLoad(string wsPath)
 {
 if (System.IO.File.Exists(wsPath))
 {
 wsEngine.SysCommand("LOAD " + wsPath.Substring(0,wsPath.Length-3));
 //^Remove the ".w3" suffix
 }
 else
 {
 throw new Exception("APL+Win workspace not accessible: "+wsPath);
 }

}

 The APLInextOrigin public property simplifies the calling environment‟s access of this

APL+Win system variable:
 public Int32 APLIndexOrigin
 {
 get { return (Int32) wsEngine.get_SysVariable("IO"); }
 set { wsEngine.set_SysVariable("IO", value); }
 }

Joe
Oval

Joe
Oval

VisualAPL Environment Calling APL+Win ‘Helper’ .Net Assembly:

The „business rules‟ of this application system are supported by APL+Win as an ActiveX server. This means that:

 APL+Win is registered as an ActiveX server (COM component) on the target machine
 There is an APL+Win workspace on the target machine

 That APL+Win workspace contains APL+Win functions which accept arguments and return results associated

with the application system‟s business rules.

 Notice how APL+Win reports errors to the calling environment by using the Notify event.

Joe
Oval

Joe
Line

The VisualAPL calling environment creates an instance of APL+Win as an ActiveX server indirectly using the C#

„Helper‟ .Net assembly:

The VisualAPL calling environment subscribes to the APL+Win ActiveX server Notify event indirectly by subscribing

to the C# “Helper‟ .Net assembly „APLNotify‟ event. The „APLNotify‟ event handler syntax uses .Net „standard‟ syntax

which can be consumed by VisualAPL:

Joe
Oval

Joe
Oval

Joe
Oval

Joe
Oval

The VisualAPL calling environment makes the APL+Win ActiveX server visible by using the Visible public property of

the C# “Helper‟ .Net assembly and uses the “APLWorkspaceLoad()” method of the C# „Helper‟ .Net assembly to load

the APL+Win application-specific workspace:

The VisualAPL calling environment then requests user input of an application-specific value, converts it to an

appropriate numeric value and makes a request to the APL+Win ActiveX server to process the input and return an

appropriate value or error message according to the „business rules‟ of the application system:

An analogous TestHarnessCSharp project is also included in the Visual Studio solution to illustrate the use of the C#

“Helper” .Net assembly with C# as the calling environment. Note that for purposes of this example in order to

maintain a parallel C# test harness, strong data typing was used in the VisualAPL test harness, although this is not

actually necessary.

Joe
Oval

Joe
Oval

Joe
Oval

Running the VisualAPL Sample Application:

The TestHarnessVisualAPL project should be set as the „Start Up Project‟ in the Visual Studio Solution Explorer:

Use the Visual Studio F5 keystroke to start an instance of the “TestHarnessVisualAPL project which is a simple
„console project‟ that will present the „Command Window‟ user interface:

Because this project set the Visible property of the APL+Win ActiveX server to 1, an instance of APL+Win will also be
presented:

In the “Command Window” enter a valid numeric value, e.g. 144 and click the Enter key to display the result of the
APL+Win „business rules‟ for this application system:

Next click the Enter key again to close the instance of APL+Win ActiveX server and end the debugging session.

Next follow this debugging procedure again, but this time enter an invalid numeric value into the “Command Window”
and click the Enter key to see the error condition trapped by VisualAPL:

Next click the Enter key again to close the instance of APL+Win ActiveX server and end the debugging session.

Next follow this debugging procedure again, bu this time enter a negative numeric value into the „Command Window”
and click the Enter key to see the error condition trapped by APL+Win ActiveX server and observe the response from
the VisualAPL calling environment back to APL+Win. This returned information might be used in a more
sophisticiated application system to enable APL+Win to properly recover from an error condition and maintain
application system functionality and data integrity.

Finally click the Enter to close APL+Win and end this debugging session.

