
Debugging an Application System using the APLNext Supervisor 
 
Halt/Step Debugging Tool 
APL+Win application system programmers are familiar with the ‘halt/step’ method of 
debugging APL+Win application system program code. The method is ideal for isolating the area 
of application system code which needs modification or correction. This ‘halt/step’ technique 
continues to be available when an application system incorporates the APLNext Supervisor. 
 
APLNext Supervisor Implementation Background 
The APLNext Supervisor can be implemented by an application system programmer with all 
APL+Win code or a mixture of C# and APL+Win code. The ‘Controlling Application’ portion can 
be written in APL+Win or C# (or any other .Net language). The ‘Kernel’ portion of the 
application system is written in APL+Win. The purpose of the APLNext Supervisor is to facilitate 
the running of APL+Win ‘Kernel’ code in multi-threaded mode. The APLNext Supervisor 
documentation, installed along with the tool, describes this arrangement in greater detail. 
 
Debugging the ‘Controlling Application’ 
If the ‘Controlling Application’ is written in APL+Win, one can ‘step through’ this portion line-by-
line using the APL+Win session containing the ‘Controlling Application’. If the ‘Controlling 
Application’ is written in C#, one can ‘step through’ this portion line by line using Microsoft 
Visual Studio in debug mode. The required keystrokes are similar. The application system 
programmer will place a program stop in the appropriate region of the ‘Controlling Application’ 
source code. 
 
Debugging the ‘Kernel’ 
Since the ‘Kernel’ portion of the application system is written in APL+Win, the APL+Win session 
containing a running instance of the ‘Kernel’ workspace can be debugged within that APL+Win 
session. The ‘Kernel’ workspace functions are executed within an instance of APL+Win as an 
ActiveX server, so it is necessary to register the APL+Win ‘developer’ version on the machine 
used for debugging the ‘Kernel’ source code. 
 
In order to conveniently debug the APL+Win ‘Kernel’ source code, the running instance of the 
‘Kernel’ workspace must be made persistent and visible and an appropriate program stop must 
be placed within an application-programmer-selected function in the ‘Kernel’ workspace. 
 
The running instance of the ‘Kernel’ workspace is made persistent and visible by using existing 
APLNext Supervisor XML-format configuration text options. Setting the value of the ‘debug’ tag 
‘1’ will prevent the ‘timeout’ tag value from applying to the execution of the ‘Kernel’ workspace 
instances. Setting the value of the ‘visible’ tag to ‘1’ will make the instances of the ‘Kernel’ 
workspace visible. These values can be set when the ‘Controlling Application’ using the APLNext 
Supervisor ‘OpenConfigFromFile’ or ‘OpenConfigFromText’ methods. In production mode, these 
values should generally be reverted to ‘0’. 
 



It may also be helpful during application system debugging of the ‘Kernel’ workspace to set the 
‘minpool’ and ‘maxpool’ tag values to ‘1’. 
 
When the application system is run in this debug mode, the instances of the APL+Win-based 
‘Kernel’ workspace will be visible and they will persist until the processing they perform is 
complete or they are closed by the application system programmer. If the ‘Kernel’ workspace 
has been saved with an appropriate program stop or if the application programmer has added a 
line of APL+Win code which creates the appropriate program stop at run-time, the debugging 
operation can begin from that point on in the execution of the ‘Kernel’ workspace. 


