
Parallel Processing in APL+Win 
 
The implementation of parallel processing capabilities in APL+Win is a ‘work in progress’.   The focus is 
to make it possible for the APL+Win application system programmer to directly use available hardware 
for parallel processing when it is deemed appropriate by that programmer without negatively impacting 
the performance of the APL+Win product for other users. 
 
The ability of an APL+Win application system programmer to use parallel processing by allocating 
application system level ‘work’ (i.e. processing covered by an APL+Win user-defined function) to 
multiple machines or multiple CPUs is currently well supported by APLNext WebServices and APLNext 
Supervisor respectively.  These ‘out of process’ implementations have many benefits including: 
 
• Selective application of up-to-date technology based on application programmer choice 
• No ill effects on existing application systems that do not benefit from the technology, because the 

feature is not imposed upon all programmers using APL+Win 
• Superior flexibility and control options for the application system programmer, such as identification 

and allocation of hardware resources (e.g. min/max pool of machines or cores),  process 
termination, exception handling and processing status feedback 

• More memory and other machine resources simultaneously available to the parent APL+Win 
process 

• Use of current technology inherently available in the operating system instead of ‘re-inventing the 
wheel’ in APL, for example in the APLNext Supervisor implementation the operating system 
manages the assignment of the processing done by multiple threads to the number of programmer-
selected CPUs. 

• Extremely high performance ‘out of process’ interfaces exist in APL+Win such as the ActiveX 
interface 

 
The next step in this effort will be to expose the mathematical and logical processing potential of 
graphics processing units (GPUs) to APL+Win application system programmers. This implementation has 
design objectives analogous to the APLNext WebServices and APLNext Supervisor components.  Since 
GPUs generally support important basic operations, the use of multiple GPUs or CPUs has potential 
application to the ‘primitive’ APL functions and operators. 
 
Consistent with previous implementations of parallel processing technology in APL+Win, this next step 
will use an ‘out of process’ methodology.  The ‘out of process’ implementation means that the APL+Win 
application programmer must specifically invoke the tool instead of the APL+Win interpreter ‘deciding’ 
where the tool should be used.  Initially, in order to achieve significant performance improvements, the 
technology will probably need to be applied to the application system as part of an APL2000 training and 
consultation process. 
 
The initial ‘out of process’ implementation of multi-CPU/GPU processing for the ‘primitive’ APL functions 
and operators does not anticipate ‘an automatic benefit in performance without requiring any APL re-
coding’.  Some reasons for this condition include: 
 
• To maintain programmer choice in the use of the technology, the programmer must incorporate 

indicators in the application-level code when parallel processing is to be considered.   



• Automatic performance benefits cannot be assured because specifying parallel processing globally is 
unlikely to yield overall performance improvements since low-level functions and operators may act 
upon arguments of varying characteristics. 

• Incorporating selection criteria into existing low-level functions and operators of APL+Win to 
determine if parallel or serial processing should be used may significantly disadvantage those 
application systems which could not benefit from parallel processing.  In order to ‘do no harm’ to 
the APL+Win product performance, it is important to avoid the intrusion of such switches and tests 
‘inside of the interpreter execution loop’ whenever possible. 

• Criteria to select parallel or serial processing have not been well established for low-level functions 
and operators.  The best available method has been to ‘try it both ways’ which suggests that 
application system level programmers are best suited to this type of performance ‘tuning’ rather 
than hard-coded analysis added to low-level functions and operators in the APL interpreter. 

• Customers have provided limited information to APL2000 about which (and how many) existing 
APL+Win application systems might benefit from parallel processing 

• Overall application system performance is often more dependent on the high-level way the 
application process was programmed rather than on individual, low-level function and operator 
performance. 

• Parallel processing CPU/GPU toolkits for the Windows operating system environment are now 
available with a proven record of performance benefits and these tool sets are inherently ‘out of 
process’ with respect to APL+Win. 

• APL+Win is a general purpose programming language, whereas research performed by the IT 
community indicates that parallel processing performance benefits are applicable only to carefully 
selected application systems designed in an appropriate manner. 

o Operations processing data sets (e.g. arrays) that are not sufficiently large yield poor parallel 
performance results because the overhead in invoking parallel processing, even before data 
is marshaled to a CPU/GPU, is not justified by the work to be done on a small data set. 

o Operations processing data sets which are too large yield poor parallel performance results 
due to inevitable memory limitations. 

o Operations which do too little processing ‘work’ for each invocation yield poor parallel 
processing results because data marshaling costs between the main processing thread and 
the multiple CPUs/GPUs will exceed performance gains.  This issue is of significant design 
importance, because it yields the conclusion, backed by practical experimentation, that 
applying parallel processing technology to individual primitive operations (e.g. APL 
reduction, inner/outer product, etc.) may not be generally productive.  Instead, to achieve 
significant performance improvements, groups of such ‘primitive’ operations need to be 
combined and performed in parallel without intervening data marshaling. This issue is the 
origin of the probable need to reconfigure the application system code to replace blocks of 
APL primitive functions and operations with an ‘out of process’ module which performs 
multiple ‘primitive’ operations in parallel with data marshaling between the main process 
and the CPUs/GPUs occurring only at the beginning and end of this module rather than 
between each ‘primitive’ operation.  This issue is also the origin of the probable need to 
involve an APL2000 training and consulting effort because the creation of such a module to 
perform multiple ‘primitive’ operations in parallel entirely within the CPU/GPU will involve 
programming techniques that may not be familiar to APL+Win application system 
programmers. 

 



APLNext is currently performing practical research as described above.  It is anticipated that 
demonstrations of this technology will be given at selected venues possibly starting as early as April 
2013.  Subsequently the technology will be made accessible in test versions of the APL+Win product, 
potentially in combination with a seminar illustrating the use of the features. 
 
APL+Win customers can take part in this research.  APL+Win application system programmers are 
encouraged to investigate their in-production application systems to record performance, identify areas 
with significant processing times and report their findings in this APL2000 forum topic.  The APL+Win 
monitor function (□MF) is useful for that purpose as is recording of function and operator frequency of 
use, function argument characteristics such as shape and rank and hardware and operating system 
details.  Some programmers may want to compare performance in selected areas of their application 
system with and without multi-core parallel processing using the APLNext Supervisor and report that 
information in the Supervisor forum. 
 
Information from customers that would be useful includes how many in-production application systems: 
• Have performance which is bound by mathematical or logical calculations as compared to flow 

control, memory limits, or data input/output? 
• Have repetitive processes without side effects that are suitable for parallel processing? 
• Perform mathematical operations on arrays with relatively many elements? 
• Are amenable to reconfiguration to take advantage of parallel processing technology? 
 
More information on parallel processing: http://en.wikipedia.org/wiki/Parallel_computing 
 
Contact sales@apl2000.com to learn how APL2000 consultants can analyze your application system and 
either suggest or implement modifications to improve its performance. 

http://en.wikipedia.org/wiki/Parallel_computing
mailto:sales@apl2000.com

