
©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 1 

Add a WSDL Interface to an APLNext Web Service 

 

Overview 
One of the ways to provide virtually any application system access to an APL+Win-based web service is 

to implement a WSDL interface layer on the server-side.  A WSDL interface layer provides an industry-

standard web service definition which a web service client can use to access the resources provided by 

the APL+Win-based web service. 

 

With a WSDL interface layer an authenticated client can ‘discover’ the web service resources available to 

that client with precise details about the methods supported by the web service including their 

arguments and results.  The WSDL interface provides an XML-format document to the authenticated 

client containing this information. 

 

The fundamental principle which makes this possible is that a web service client needs to have no 

knowledge of how and where a web service is implemented.  Using the technology described in this 

document, any client which can implement industry-standard WSDL tools can effectively and efficiently 

access an APL+Win-based web service. 

WSDL Interface is an option 
It is not always necessary to add a WSDL interface layer to an APL+Win-based web service.  Adding a 

WSDL interface layer is the choice of the web service designer based upon: 

 The type of clients who will be granted access to the web service 

 The type of arguments and results of the APL+Win functions exposed by the APL+Win-based web 

service 

WSDL Interface Tools 
Since APL+Win is software which runs in the Microsoft Windows operating system, a WSDL interface is 

added to an APL+Win-based web service using Microsoft tools.  These tools include: 

 Microsoft Internet Information Services (IIS) – This software is included with Windows 7, 8 and all 

server versions of Microsoft Windows 

 Microsoft Windows Communication Foundation (WCF) – Visual Studio includes  templates for WCF 

service application solutions 

 Microsoft Visual Studio  – This example uses VS2010 

 .Net programming language – This example uses C# 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 2 

Create the APL+Win workspace and function to be exposed as a web service 
Start a developer session of APL+Win and define the ‘SqRt’ function as follows.  In this example an 

APL+Win function with very simple arguments, results and calculation process is illustrated.  In a 

production environment, the APL+Win function(s) exposed as web service methods may be much more 

complex.  Save the ‘SqRt’ function in an APL+Win workspace with the name ‘WORKSPACE1.w3’ in a 

location which is accessible to the workstation. 

 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 3 

Configure the APL+Win-based web service using APLNext Application Server 
The ‘traditional’ or ‘integrated with IIS’ version of APLNext Application Server can be used for this 

purpose.   In this example the APLNext Application Server ‘desktop’ version is illustrated because it is 

very convenient when designing, implementing and testing an APL+Win based web service. 

 

After the APLNext Desktop Server software has been installed to the developer workstation, open the 

‘APLNext Desktop Server Admin’ tool and follow the configuration instructions below. 

 

Expand the ‘APLNext Desktop Server’ tree in the left panel, right click the ‘Web Servers’ node and select 

‘New Server’: 

 
 

Right client the ‘defaultwebsite’ node and select ‘Properties’: 

 
 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 4 

Complete the ‘Web Site’ tab of the ‘properties’ as follows.  Note that the address of the ‘Active log 

directory’ should be customized to the workstation.  The ‘IP Address’ field value is set to ‘localhost’ 

because the APL+Win-based web service will be tested on the workstation before it is deployed to a 

production server. 

 
 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 5 

Complete the ‘Web Site’ tab of the ‘properties’ as follows.  Note that the ‘Path’ of the ‘Home Directory’ 

should be customized to the workstation. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 6 

Complete the ‘Home Directory’ tab of the ‘properties’ as follows.  Note that the ‘Path’ of the ‘Home 

Directory’ should be customized to the workstation. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 7 

Right click the ‘APLWin web site #1 node and select ‘New Virtual Directory’. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 8 

Right click the ‘/default’ node and select ‘Rename’. 

 
 

Rename the ‘/default’ virtual path to ‘/workspace1/sqrt’. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 9 

 

 

Select the ‘wsid’ node and right click the ‘defaultworkspace’ item in the right pane and select ‘Modify’. 

 
 

Change the ‘Name’ to ‘workspace1’ and click ‘OK’. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 10 

Select the ‘function’ node, right click the ‘default’ item in the right pane and select ‘Modify’. 

 
 

Change the function name to ‘SqRt’ and click ‘OK’. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 11 

Right click the ‘rarg’ node and select ‘New Value’. 

 
 

Complete the ‘Modify Properties’ dialog as follows and click ‘OK’.  The ‘binarywrapl’ ‘type’ option is 

selected here because the WSDL Interface will use the APLNext WebTransfer ‘SendObject()’ method to 

communicate with the APL+Win-based web service.  If the ‘SendSoapObject()’ were used, the 

‘soapwrapl’ ‘type’ option would be selected here. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 12 

Select the ‘Result’ node, right click the ‘r’ item in the right pane and select ‘Modify’. 

 
 

Complete the ‘Modify Properties’ dialog as follows and click ‘OK’.  The ‘apl2binarywrapl’ ‘type’ option is 

selected here because the WSDL Interface will use the APLNext WebTransfer ‘SendObject()’ method to 

communicate with the APL+Win-based web service.  If the ‘SendSoapObject()’ were used, the 

‘apl2soapwrapl’ ‘type’ option would be selected here. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 13 

Right click the ‘Workspaces’ node and select ‘New Workspace’. 

 
 

Right click the ‘defaultworkspace’ node and select ‘Rename’. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 14 

Rename the workspace to ‘workspace1’. 

 
 

Right click the ‘wslocation’ item in the right pane and select ‘Modify’. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 15 

Set the ‘Value’ of the ‘wslocation’ using the ‘Browse’ button to the location of the ‘WORKSPACE1.w3’ 

APL+Win workspace previously created and click ‘OK’.  Note that the ‘Value’  of the workspace should be 

customized to the workstation. 

 
 

 

 

 

 

 

 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 16 

 

 

 

 

Create a Visual Studio WCF Service Application Solution 
Open Visual Studio and use the ‘File > New Project > Visual C# > WCF’ menu item to select the ‘WCF 

Service Application’ project template.  Name the project ‘WcfSvcApp’ and select a suitable location for 

the Visual Studio solution on the workstation.  

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 17 

From the Visual Studio ‘Solution Explorer’ right click the ‘References’ node of the ‘WcfSvcApp’ project 

and select ‘Add Reference’.  In the ‘Add Reference’ dialog select the ‘Browse’ tab, select the 

‘APLNext.WebTransfer.dll’ component and click ‘OK’.  This component is included with the APLNext 

Application Server license.  It provides .Net or ActiveX access to an APL+Win-based web service. 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 18 

Replace the content of the ‘IService1.cs’ file with the following source code.  The ‘[OperationContract]’ 

method has been named ‘SqRt’ to correspond to the APL+Win function name.  The ‘SqRTFault’ class has 

been defined so that exceptions can be properly provided to clients of the web service.  Two custom 

error information strings ‘AppInfo1’ and ‘AppInfo2’ have been created to provide additional details to 

the client if such an exception occurs. 

 

This file defines the interface between the client and  the web service. 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Runtime.Serialization; 
using System.ServiceModel; 
using System.ServiceModel.Web; 
using System.Text; 
 
namespace WcfSvcApp 
{ 
    [ServiceContract] 
    public interface IService1 
    { 
        [OperationContract] 
        [FaultContract(typeof(SqRtFault))] 
        double SqRt(double value); 
    } 
 
    [DataContract] 
    public class SqRtFault 
    { 
        public SqRtFault(string __AppInfo1, string __AppInfo2) 
        { 
            this.AppInfo1 = __AppInfo1; 
            this.AppInfo2 = __AppInfo2; 
        } 
        private string _AppInfo1; 
        private string _AppInfo2; 
        [DataMember] 
        public string AppInfo1 { get { return _AppInfo1; } set { _AppInfo1 = value; } } 
        [DataMember] 
        public string AppInfo2 { get { return _AppInfo2; } set { _AppInfo2 = value; } } 
    } 
} 

 



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 19 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 20 

Replace the content of the ‘Service1.svc.cs’ file with the following source code.  This file defines the 

implementation of the web service methods exposed by the web service interface.  The WCF web 

service interfaces with the APL+Win-based web service via the APLNext WebTransfer class. 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Runtime.Serialization; 
using System.ServiceModel; 
using System.ServiceModel.Web; 
using System.Text; 
 
namespace WcfSvcApp 
{ 
    public class Service1 : IService1 
    { 
        APLNext.Utils.WebTransfer.WebTransfer WT = new 
APLNext.Utils.WebTransfer.WebTransfer(); 
        SqRtFault f; 
        public double SqRt(double v) 
        { 
            double sqRt = 0; 
            if (v < 0) 
            { 
                f = new SqRtFault("Imaginary numbers not supported: Argument < 0!", 
"AppInfo2 message"); 
                throw new FaultException<SqRtFault>(f, new FaultReason("Reason message"), 
new FaultCode("ArgumentError")); 
            } 
            else 
            { 
                string url = @"http://localhost:15200"; 
                object[] res = WT.Open(url); 
                if (0 != (Int32)res[0]) 
                { 
                    f = new SqRtFault("Cannot open: " + url + ": " + res[1].ToString(), 
"AppInfo2 message"); 
                    throw new FaultException<SqRtFault>(f, new FaultReason("Reason 
message"), new FaultCode("ConnectionOpenError")); 
                } 
                else 
                { 
                    res = WT.SendObject(@"workspace1/sqrt", v); 
                    if (0 != (Int32)res[0]) 
                    { 
                        f = new SqRtFault("APLWin reports: " + res[1].ToString(), 
"AppInfo2 message"); 
                        throw new FaultException<SqRtFault>(f, new FaultReason("Reason 
message"), new FaultCode("APLServiceError")); 
                    } 
                    else 
                    { 
                        sqRt = (double)res[1]; 
                        return sqRt; 
                    } 
                } 
            } 
        } 



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 21 

    } 
} 

 

 
  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 22 

Create a test client for the WSDL-enabled, APL+Win-based web service 
In this example a C# test client is defined which resides on the same workstation as the server.  This is a 

convenient arrangement for designing, developing and testing a WSDL-enabled, APL+Win-based web 

service.  In a production environment the APLNext Application Server and the WCF service would be 

deployed to a product web server and the service client would be deployed on suitable clients who need 

the features of the web service, such as client workstations, mobile devices (phones, tablets, laptops) or 

other servers. 

Use the Visual Studio ‘File > Add > New Project > Windows’ menu item to select the ‘Console 

Application’ project template.  Name the new project ‘TestHarness1’. 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 23 

From the Visual Studio ‘Solution Explorer’ right click the ‘References’ node of the ‘TestHarness1’ project 

and select ‘Add Reference’.  From the ‘Add Reference’ dialog select the ‘System.ServiceModel’ 

component and click ‘OK’. 

 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 24 

From the Visual Studio ‘Solution Explorer’ right click the ‘References’ node of the ‘TestHarness1’ project 

and select ‘Add Service Reference’.  On the ‘Add Service Reference’ dialog, click the ‘Discover’ button, 

select the ‘Service1.svc’ and click the ‘OK’ button.  During the testing phase of this project the service url 

is ‘localhost:59615/Service1.svc’, but in a production environment the service url will be the production 

server’s IP address. 

In this step Visual Studio implicitly uses the WSDL document exposed by the WCF service to ‘discover’ 

the web service method available, i.e. ‘SqRt()’ and its arguments and results. 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 25 

Replace the content of the ‘Program.cs’ file with the following source code. 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.ServiceModel; 
 
namespace TestHarness1 
{ 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            do 
            { 
                ServiceReference1.Service1Client client = null; 
                try 
                { 
                    client = new ServiceReference1.Service1Client(); 
                    Console.WriteLine("Calculate Square Root"); 
                    Console.Write("Enter double value: "); 
                    double d = Convert.ToDouble(Console.ReadLine().Trim()); 
                    double s = client.SqRt(d); 
                    Console.WriteLine("Square Root: " + s.ToString()); 
                } 
                catch (FaultException<ServiceReference1.SqRtFault> fe) 
                { 
                    StringBuilder sb = new StringBuilder(); 
                    sb.AppendLine("SqRt1Fault caught"); 
                    sb.AppendLine("Code.Name      : " + fe.Code.Name); 
                    sb.AppendLine("Message        : " + fe.Message); 
                    sb.AppendLine("Reason         : " + fe.Reason.ToString()); 
                    sb.AppendLine("Detail.AppInfo1: " + fe.Detail.AppInfo1); 
                    sb.AppendLine("Detail.AppInfo2: " + fe.Detail.AppInfo2); 
                    Console.WriteLine(sb.ToString()); 
                } 
                catch (Exception ex) 
                { 
                    Console.WriteLine("Error in web client: " + ex.Message); 
                } 
                finally 
                { 
                    if (client != null) 
                    { 
                        client.Close(); 
                    } 
                } 
                Console.WriteLine(); 
            } while (0 == 0); 
        } 
    } 
} 

 

 



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 26 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 27 

Start the APL+Win- and WCF-based web services 
 

Start the APLNext Application Server ‘aplwin web site #1’ server: 

 
 

Start the APLNext Application Server ‘WebServers’: 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 28 

Start the WCF-based web service supporting the WSDL interface layer. From the Visual Studio ‘Solution 

Explorer’ right click the ‘Service1.svc’ node and select ‘View in Browser’. 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 29 

To view th WSDL document for the WCF web service which exposes the APL+Win-based web service 

‘SqRt’ method, click the ‘svcutil.exe http://...’ link on the ‘Service1 Service’ web page. 

 

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 30 

Test the WSDL interface layer 
In Visual Studio use the ‘Debug > Start Debugging’ menu item to start up the ‘TestHarness1’ test client 

for the web service.  Enter selected values into the ‘Command Prompt’ dialog presented by this ‘Console 

Project’. 

 

When an exception occurs, the exception information is reported to the client in an industry-standard 

manner. 

  

  



©APLNext LLC.  All Rights Reserved. 2/14/2014 Page 31 

More WSDL Information 
 Several web service features are possible to implement in an APL+Win-based web service, but the 

details of such implementations are beyond the scope of this document. 

o The web service client for the WSDL-enabled, APL+Win-based web service in this example 

illustrates how a Windows operating system-based client can be developed.  Developing a 

web service client for other operating systems is possible using the WSDL interface layer. 

o This example illustrates synchronous web service calls, but it is possible to implement 

asynchronous web service calls for an APL+Win-based web service, including client feedback 

indicating processing status and performance. 

o It is possible to incorporate security into a web service at both the APLNext Application 

Server level and at the WCF level. 

o In this example for testing convenience the WCF web service supporting the WSDL interface 

layer and the APLNext Application Server supporting the APL+Win-based web service are 

deployed on the same workstation, however they may be deployed on different production 

servers if desired. 

o In this example web service scalability is not illustrated, but it may be implemented on the 

WCF and the APLNext Application server levels if desired. 

o Deploying the APL+Win-based web service and the associated WCF-based web service 

which provides the WSDL interface layer to a production server can be done using 

‘publishing’ tools in Visual Studio. 

 Wikipedia WSDL 

 W3.org WSDL 

 Microsoft WSDL Overview 

 Contact APL2000 for assistance with a specific web services project. 

 Detailed information about deploying the APLNext Application Server and creating an APL+Win-

based web service is available on the APL2000 Forum for Web Services.  A limited-time 

demonstration/evaluation version of APLNext Application Server or APLNext Desktop Server is 

available. 

http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://www.w3.org/TR/wsdl
http://msdn.microsoft.com/en-us/library/ms996486.aspx
mailto:sales@apl2000.com
http://forum.apl2000.com/viewforum.php?f=5&sid=5904ff7a93f1fe7bf3942506b882f7c5

	Overview
	WSDL Interface is an option
	WSDL Interface Tools
	Create the APL+Win workspace and function to be exposed as a web service
	Configure the APL+Win-based web service using APLNext Application Server
	Create a Visual Studio WCF Service Application Solution
	Create a test client for the WSDL-enabled, APL+Win-based web service
	Start the APL+Win- and WCF-based web services
	Test the WSDL interface layer
	More WSDL Information

