Text File —

APLNextSupervisor - Processing Gains

August 6, 2014

What is Multithreading?

A computer’s central processing unit (CPU) can only execute one instruction at a time. As processors
become faster, each instruction takes less time. To speed up a process, either the CPU needs to make
calculations faster, or the process needs to contain less calculations (simplify code).

However, when running a process that must repeat the same calculation repeatedly, multithreading can
also be used to increase speed. Most modern CPUs have multiple “cores” and sometimes multiple
“threads” per core. If a computer has four threads, the computer can pass instructions to each thread
independently to make calculations. Therefore, if the same calculation must be repeated one hundred
times, each thread only needs to complete 25.

This results in less processing time since the CPU effectively processes four calculations simultaneously.

Example Where Multithreading Speeds Processing

When an insurance company changes their prices, they are interested in the impact of the change on
each of their individual policyholders. Some may have an increase while others may have a decrease. To
quantify the price change to each of these policyholders, the insurance company may use a computer
program to re-rate each policy at the prior rate and again at the new rate. This involves a loop with
many calculations through the application that has the potential to execute hundreds of thousands of
times, leading to long processing times.

Let the input to the application be a text file with one row for each policy that must be rated. The APL
application has to loop through each line, read in characteristics, and then processes them to find
premium amounts. If the application is run on two threads, the text file can be split in half. Each thread
now only has half of the text file to go through. The processing time is effectively cut in half (a relatively
small amount of extra time will be needed to create the multithreading process in the beginning and to
compile the results from each thread together at the end). If more threads are available, the text file can
be split further, causing each individual thread to have to process fewer rows.

Figure 1: The input text file is split according to the number of threads selected.

One Thread Two Threads Three Threads

Thread 1

Thread 1

Thread 2

Thread 2

Thread 3

Processing Time Gains
To illustrate the realized time gains multithreading provides, an application similar to the one described

above was run multiple times, each using a different number of threads. The process on one thread took

3 hours and 25 minutes to complete using one thread. The data has been extrapolated to a 24 hour

process to see the gains of using multithreading on a more time consuming process or larger dataset.

Figure 2: Table showing incremental time savings from using multithreading.

Extrapolated to 24 Hour Process Tested 3 Hr 25 Min Process
RunTime in Incremental | Incremental | Cumulative | Cumulative | Run Time in Incremental | Incremental | Cumulative | Cumulative
Hours and |Extrapolated| Time Saving | Time Saving | Time Saving | Time Saving | Hoursand | Actual Test | Time Saving | Time Saving | Time Saving | Time Saving
Threads Minutes (24 HR) (Minutes) (Percent) (Minutes) (Percent) Minutes (3HR) (Minutes) (Percent) (Minutes) (Percent)
1 24 Hr 0 Min 1,440 3 hr25min 205
2 13 Hr 7 Min 787 653 45% 653 45% 1hr52 min 112 93 45% 93 45%
4 10 Hr 11 Min 611 176 22% 829 58% 1hr27 min 87 25 22% 118 58%
8 8 Hr47 Min 527 84 14% 913 63% 1 Hour 15 min| 75 12 14% 130 63%
12 6 Hr 26 Min 386 140 27% 1054 73% 55 Min 55 20 27% 150 73%
16 5Hr 16 Min 316 70 18% 1124 78% 45 Min 45 10 18% 160 78%
20 4 Hr 27 Min 267 49 16% 1173 81% 38 Min 38 7 16% 167 81%
24 3 Hr 59 Min 239 28 11% 1201 83% 34 Min 34 4 11% 171 83%
Figure 3: Chart showing the time savings from multithreading.
Multithreading Performance Gains
1,600
1,400
(%]
(%]
]
o
2 1,200
[J]
urt
Q@
g— 1,000
o
O
o
+ 800
(%]
]
et
=]
=
s 600
o
o
p
& 400
€
=]
=2
200 \
ﬂ; l
0 o — — O
1 2 4 8 12 16 20 24
Number of Threads Used
=@=CExtrapolated (24 HR) ==@==Actual Test (3HR)

Conclusion

Multithreading in APL2000 is a useful tool that can greatly decrease the time it takes to run a program.
However, to use multithreading, the instructions sent to each thread must be independent; processing
on each thread must not rely on the results of another. The example program is very insurance specific,
but any process in which the work can be broken up into multiple pieces has the potential to be
multithreaded and benefit.

