
Output Building using ŒCSE

In this paper I have two aims:

1. Illustrate the ease with which you can use ŒCSE to build textual output from APL+Win.

2. Highlight some tips in transferring values into the ŒCSE environment.

I am using APL+Win version 14.1 on a Windows 7 computer that has all the .Net frameworks up to
4.5.2 installed.

 Introduction
Suppose you want to construct a message such as this one:

“Employee LastName, full name FirstName LastName started on StartDate with a salary of Salary

and on a Probation months' probationary period.

 Please advise FirstName of his company email address and employee number.”

This message has the following characteristics:

The information that is variable is shown in bold; there are five fields, namely, FirstName, LastName,

StartDate, Salary, and Probation.

There is a new line between the two sentences.

1. The field FirstName is used twice.

2. The field LastName is used twice.

3. The field Salary should show the currency sign and thousand separator—these will vary

depending on the location from which the message is generated.

4. The field StartDate will also vary depending on location.

As most of you will have constructed output such as this message, I need not mention the pitfalls in

using a pure APL solution, not least the complexity that is added when coping with culture.

 A new approach
My solution is as follows:

 ’ Z„BuildOutput R;shell

[1] © Ajay Askoolum

[2] Œcself„'zz' ŒCSE 'Init' 'System'

[3] Œcse 'ExecStmt' 'using System;'

[4] © Shell to be filled ... note reuse of filler {0}

[5] shell„GetShell R

[6]

[7] © Assignment using an APL+Win variable

[8] Œcse 'ExecStmt' 'string shell = {0};' shell

[9]

[10] © Assigning a value -- ordinal position always starts from

0, e.g. {0}

[11] © & must be

sequential

[12] © & cannot be reused

(say, to assign the same value to two variables)

[13] Œcse 'ExecStmt' 'string FirstName = {0};' 'John'

[14]

[15] © Assigning a multiple values: static STRING like LastName

or dynamic INTEGER like Salary

[16] Œcse 'ExecStmt' 'string FirstName = {0};int Salary =

{1};',(›'John'),(2×1?10000)

[17] ©

or Date like StartDate

[18] Œcse 'ExecStmt' 'DateTime StartDate = new

DateTime({0},{1},{2}); string LastName = {3};',(3†Œts),›'Doe'

[19]

[20] © Don't like the name ... I'll use my own name:

[21] © TIP: FirstName/LastName are already assigned, so their

type is known

[22] © Therefore its type may be omitted when re-assigning

[23] Œcse 'ExecStmt' 'FirstName = {0}; LastName = {1};int

Probation = {2};' 'Ajay' 'Askoolum' (?12)

[24] © Likewise for other data types

[25] Œcse 'ExecStmt' 'StartDate = new

DateTime({0},{1},{2});',3†Œts

[26]

[27] Z„Œcse 'GetValue'

'String.Format(shell,FirstName,LastName,StartDate,Salary,Probatio

n);'

 ’

 Refer to the comments for tips on assigning values in the environment from APL+Win; these

are supplementary to the examples given in APL+Win C# Script Engine Manual.pdf; this and

other references relating to ŒCSE are found at the following URL:

http://forum.apl2000.com/viewtopic.php?f=27&t=999.

 All the lines starting with ŒCSE return a result; 0 indicates success and ¯1 indicates failure.
In the event of failure, use the following code to get hints regarding the cause:

 Œcse 'GetLastError'

 Should further clarification be required, please use the forum to start a discussion.

I have deliberately coded the above function so that it assigns random values for Salary and

Probation.

The above function relies on another, namely, GetShell; I have listed this below. This function
returns three templates for the message.

Understanding placeholders
C# and ŒCSE are both using the same mechanism for placeholders, namely { followed by an ordinal
(integer) number, starting at 0 and followed by }, for example {0}.

However, there are differences:

With ŒCSE the ordinal always starts at 0 on every line or statement and it cannot be repeated
within the same statement.

http://forum.apl2000.com/viewtopic.php?f=27&t=999

With C# the ordinal number also starts at 0; however, it can be repeated and supplementary
information may be specified. For example {0:C0} relates to the first infill item and the
supplementary information is specified with the semi-colon. In this case, the supplementary
information means show the currency symbol, the thousands separator, and truncate the number to
an integer. For further information refer to:

http://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx

The message
I’ll demonstrate the usage of the C# placeholder using three messages.

Example 1

 GetShell 1

Employee {1}, full name {0} {1} started on {2} with a salary of

{3} and on a {4} months' probationary period.\r\n Please advise

{0} of his company email address and employee number.

This version is using simple placeholders without supplementary information. However:

 Note the sequence \r\n which indicates a carriage return and linefeed.

 Also, note the re-use of the some placeholders.

 BuildOutput 1

0

0

0

0

0

0

0

Employee Askoolum, full name Ajay Askoolum started on 20/09/2014

00:00:00 with a salary of 1974 and on a 8 months' probationary

period.

Please advise Ajay of his company email address and employee

number.

In this version:

 The StartDate field is showing a timestamp—the time information is superfluous.

 The StartDate field is defaulting to my culture – I am in the UK. If you run function with the
same signature, the order of day, month, and year will be different.

 The Salary field is not showing neither the currency symbol nor the thousand separator.

As mentioned, the zeros indicate the result of each ŒCSE statement: 0 indicates success and ¯1

indicates failure.

Example 2

I will use supplementary information—shown in bold—to change the Salary information.

http://msdn.microsoft.com/en-us/library/system.string.format(v=vs.110).aspx

 GetShell 2

Employee {1}, full name {0} {1} started on {2} with a salary of

{3:C0} and on a {4} months' probationary period.\r\nPlease advise

{0} of his company email address and employee number.

 BuildOutput 2

0

0

0

0

0

0

0

Employee Askoolum, full name Ajay Askoolum started on 20/09/2014

00:00:00 with a salary of ú11,214 and on a 10 months'

probationary period.

Please advise Ajay of his company email address and employee

number.

In this version:

 The currency symbol is shown but
corrupted by the APL+Win character
setl see the picture on the right, from
C#.

 As previously mentioned, the Salary field contains a random number; the intention is that
you should see a different number every time you execute the function.

Example 3

In this final example, I’ll correct the anomalous StartDate field, and eliminate the time and make it
culture sensitive. I will not see the format change but if you are using a regional setting other than
mine, you will see the difference.

 GetShell 3

Employee {1}, full name {0} {1} started on {2:d} with a salary of

{3:C0} and on a {4} months' probationary period.\r\ n Please

advise {0} of his company email address and employee number.

 BuildOutput 3

0

0

0

0

0

0

0

Employee Askoolum, full name Ajay Askoolum started on 20/09/2014

with a salary of ú6,222 and on a 9 months' probationary period.

Please advise Ajay of his company email address and employee

number.

In this version:

 The StartDate is truncated and shown in the UK format.

Conclusion
This worked example is also attached to the message in the forum. Therefore, it should be easy for
you to try it out. I have chosen a practical example to discuss and illustrate the techniques; C# has
the potential for dramatically changing your coding style for the better.

If you encounter difficulties, raise the issues in the forum in order that any shortcomings may be
addressed.

If you succeed in running the functions, I’d be delighted to hear from you, especially if you can
confirm that the culture related information is being shown correctly for your culture.

Ajay Askoolum
September 2014.

.. Lest I forget

 ’ Z„GetShell R

[1] :select R

[2] :case 1

[3] Z„"Employee {1}, full name {0} {1} started on {2}

with a salary of {3} and on a {4} months' probationar

 y period.\r\n Please advise {0} of his company email

address and employee number."

[4] :case 2

[5] Z„"Employee {1}, full name {0} {1} started on {2}

with a salary of {3:C0} and on a {4} months' probatio

 nary period.\r\n Please advise {0} of his company email

address and employee number."

[6] :else

[7] Z„"Employee {1}, full name {0} {1} started on {2:d}

with a salary of {3:C0} and on a {4} months' probat

 ionary period.\r\n Please advise {0} of his company email

address and employee number."

[8] :endselect

 ’

