
APLNext Supervisor v1.9.4.0 - Page 1 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

APLNext Supervisor Application Prototypes

Prototype APL+Win Workspace

The APL+Win workspace, ‘SUPERVISORTEST.w3’, associated with the APLNext Supervisor v1.9.4.0

includes prototype APL+Win functions that illustrate the operation of the APLNext Supervisor.

There are two ‘controlling application’ functions in this workspace so that the ‘async’ and ‘sync’ APLNext

Supervisor operation modes can be illustrated. Refer to the APL+Win v15-compatible

‘SUPERVISORTEST.ws’ for the APL+Win source code.:

 The ‘ControllingApp’ function illustrates the asynchronous mode of the APLNext Supervisor using

the ‘Start’ method.

o This function uses the global ‘ProcessCompleteResult’ variable to contain the ‘Kernel

Function’ task processing results received by the ‘ProcessCompleteCallback’ event handler

function.

o The ‘Kernel Functions’ ‘KernelDyadic’, ‘KernelMonadic’ and ‘KernelNiladic’ are used when

the ‘ControllingApp’ submits tasks using the ‘BeginCall’ method.

o The ‘ProcessAllDoneCallback’ event is subscribed in the ‘ControllingApp’ function after all

tasks have been queued using the ‘BeginCall’ method. The ‘ProcessAllDoneCallback’ event

handler function defers the Stop, Close and Delete of the APLNext Supervisor instance.

o The ‘ControllingApp’ function illustrates subscribing to the ‘onXProcessProgressCallback’

event and creating a container variable to accumulate, if desired, the information provided

by the ‘ProcessProgressCallback’ event.

o The ‘ProcessProgressCallback’ event handler function illustrates recording and displaying

the information provided by the ‘ProcessProgressCallback’ event.

o The ‘KernelDyadic’ function illustrates using the APL+Win ‘Notify’ method to trigger the

‘ProcessProgressCallback’ event. With this technique the ‘KernelDyadic’ function provides

processing status or other information to the domain of the ‘controlling application’

 The ‘ControllingAppSync’ function illustrates the synchronous mode of the APLNext Supervisor using

the ‘StartSync’ method.

o The ‘ControllingAppSync’ submits tasks using the ‘BeginCall’ method to The APLNext

Supervisor task queue.

o Since the APLNext Supervisor events are not used in ‘sync’ mode, the ‘kernel function’

persists its processing results in a data store shared between the domains of the ‘controlling

application’ and the ‘kernel function’. This sample uses a shared APL+Win colossal

component file to contain the ‘Kernel Function’ task processing results. As an alternative to

an APL+Win component file, used in this workspace as an example, a commercial database

such as Microsoft SQL Server could be used.

o When the ‘sync’ processing of all tasks is complete, the ‘controlling application’ accesses the

shared data store to consolidate and analyze the processing results.

APLNext Supervisor v1.9.4.0 - Page 2 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

ControllingApp Function using Async Mode

The ‘ControllingApp’ function in the prototype workspace illustrates how APL+Win can:

 Create an instance of the APLNext Supervisor

 Configure that instance of the APLNext Supervisor, including setting the ‘maxpool’ configuration

parameter according to the number of processors in the target workstation.

 Subscribe to the ‘ProcessCompleteCallback’ event which fires when each processing request is

satisfied by the ‘kernel’ function.

 Subscribe to the ‘ProcessProgressCallback’ event which fires when the ‘kernel’ function uses the

APL+Win ‘Notify’ method.

 Subscribe to the ‘ProcessAllDoneCallback’ event which fires when all processing requests have been

satisfied. Note that the ‘ProcessAllDoneCallback’ event should be subscribed by the

‘ControllingApp’ function only until after all tasks have been queued using the ‘BeginCall’ method.

 Submit processing requests to the APLNext Supervisor queue using the ‘BeginCall’ method.

ProcessCompleteCallback Function

Since processing requests made to the APLNext Supervisor are satisfied asynchronously using multiple

threads which the Microsoft Windows operating system assigns to multiple processors on the target

APLNext Supervisor v1.9.4.0 - Page 3 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

workstation, the ‘Controlling App’ function receives notification that a processing request has been

satisfied by subscribing to the APLNext Supervisor ‘ProcessCompleteCallBackEvent’.

The ‘ProcessCompleteCallBack’ function in the prototype workspace illustrates:

 Receiving the □wevent information which contains ‘ProcessCompleteCallBackEvent’

 Receiving the □warg information which contains the information about the completed APLNext

Supervisor processing request:

o The ‘processId’ is the integer value which the ‘Controlling App’ provided to the APLNext

Supervisor ‘BeginCall’ method when this processing request was submitted to the APLNext

Supervisor processing request queue.

o The ‘errorCode’ is the integer value which the APLNext Supervisor provides when a

processing request is satisfied with 0 indicating no error.

o The ‘resultData’ is the APL+Win variable containing the result of the execution of the

‘kernel’ function, if any. The ‘ProcessCompleteCallback’ function uses this data to augment

the application-specific result, e.g. adding it to other processing request results.

Kernel Functions

Processing requests made to the APLNext Supervisor generally involve repeatedly executing a ‘kernel’

function with different arguments.

The ‘KernelMonadic’ function in the prototype workspace illustrates the function syntax required if a

processing request made to the APLNext Supervisor will use a monadic APL+Win function. The APL+Win

□dl system function is used to simulate processing work done by a ‘kernel’ function and is not required

when a production ‘kernel’ function is used in an APL+Win application system. The ‘KernelDyadic’ and

‘KernelNiladic’ functions are analogous to the ‘KernelMonadic’ function.

The ‘KernelDyadic’ function uses the APL+Win ‘Notify’ event to trigger the APLNext Supervisor

‘ProcessProgressCallback’. This event is useful if information from the domain of the ‘kernel’ function is

to be passed to the domain of the ‘controlling application’ before the ‘kernel’ function has completed

processing of the task. The ‘KernelDyadic’ function provides the programmer-specified ‘code’ and ‘data’

objects to the domain of the ‘controlling application’ where it is processed by the

‘ProcessProgressCallback’ event handler function..

ProcessAllDoneCallback Function

When all processing requests have been submitted to the APLNext Supervisor queue and all such

queued processing request have been satisfied, the APLNext Supervisor ProcessAllDoneCallback event

will fire if it has been subscribed by the ‘ControllingApp’ function.

When the ‘ProcessAllDoneCallback’ event handler function runs, it:

 Prepares the final result of the application system because at this point all the processing requests

have been satisfied

APLNext Supervisor v1.9.4.0 - Page 4 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

 Stops, closes and deletes the APLNext Supervisor instance which was used by the application system

Running the ControllingApp Function

To execute the APL+Win ‘ControllingApp’ function:

 Put the ‘SUPERVISORTEST’ workspace into an accessible location on the target workstation, e.g.

c:\APLNext\APLNextSupervisor\.

 Register APL+Win ActiveX engine (v15.0.1.0 or subsequent) on the target workstation

 Install the APLNext Supervisor .Net component using the ‘APLNextSupervisorSetup_v1.9.1.msi’ or

subsequent version.

 Open the APL+Win developer session

 Load the‘SUPERVISORTEST’ workspace

 Execute the ‘ControllingApp’ function

The output from this execution should be similar to the abbreviated output illustrated below:

APLNext Supervisor v1.9.4.0 - Page 5 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

In the above example the 30 processing requests were submitted to the APLNext Supervisor queue

using the ‘BeginCall’ method in numerical order (#1 – 30), but those processing requests were satisfied

and reported to the ‘ProcessCompleteCallback’ function in the order in which processing was

completed, since processing was done asynchronously using independent APL+Win ActiveX engine

instances started by the APLNext Supervisor.

The ‘ProcessProgressCallback’ event handler function displayed data provided by the ‘kernel’ function

via the ‘Notify’ method.

The ‘ProcessCompleteSorted variable contains the list of tasks which were processed in the order

submitted. Sorting is possible due to the special formatting of the results of the sample ‘kernel’

function.

APLNext Supervisor v1.9.4.0 - Page 6 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

The ‘ProcessComplete’ variable contains the list of tasks where were processed in the order that their

processing was completed.

APLNext Supervisor v1.9.4.0 - Page 7 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

ControllingAppSync Function using Sync Mode

The workspace contains the ‘ControllingAppSync’ function which uses the APLNext Supervisor in sync

mode. The APLNext Supervisor ‘StartSync’ method is used instead of the ‘Start’ method. This means

that the processing of the tasks submitted by the ‘ControllingAppSync’ function using the ‘BeginCall’

method will not commence until the ‘ControllingAppSync’ function uses the ‘ExecuteAPL’ method.

Since in sync mode the APLNext Supervisor events do not fire, the kernel function(s), KernelDyadicSync’,

‘KernelMonadicSync’ and ‘KernelNiladicSync’, save their task processing results to a shared repository, in

this case an APL+Win colossal component file.

The execution of the ‘ControllingAppSync’ function is suspended after the ‘ExecuteAPL’ method is used

and resumes after all the queued tasks have been processed.

APLNext Supervisor v1.9.4.0 - Page 8 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

When the ‘ControllingAppSync’ function is run the output should be similar to:

After all the queued tasks are processed the contents of the shared result repository, i.e. an APL+Win

colossal component file, can be examined to see the results of the processing:

APLNext Supervisor v1.9.4.0 - Page 9 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

APLNext Supervisor v1.9.4.0 - Page 10 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

C# as the Controlling App in Async Mode

The Visual Studio 2013 ‘APLNext.SCS’ solution contains the ‘APLNext.SCS’ project which illustrates how

C# can be used as the ‘ControllingApp’ in ‘async’ mode. In this scenario:

 The ‘ControllingApp’ is the C# Main() method in the ‘APLNext.SCA’ console project in the solution

 The event handler for the APLNext Supervisor ‘ProcessCompleteCallback’ event is the C#

S_ProcessCompleteCallback() method

 The event handler for the APLNext Supervisor ‘ProcessAllCompleteCallback’ event is the C#

S_ProcessAllDoneCallback() method

 The APL+Win ‘SUPERVISORTEST’ workspace, assumed to be in the ‘c:\APLNext\APLNextSupervisor\

folder on the target workstation, contains the APL+Win ‘kernel’ function, ‘KernelMonadic’, which

will be used to satisfy the processing requests submitted to the APLNext Supervisor instance by the

C# ‘Controlling App’ using the ‘BeginCall’ method.

 The C# Main() method makes the instances of the APL+Win ActiveX engine visible while the project

is running. This illustrates that even though C# is the ‘Controlling App’, it is possible to debug the

APL+Win ‘kernel’ function from with a familiar APL+Win developer session.

When the ‘APLNext.SCA’ project is run the output should be similar to:

When all the queued tasks are processed the ‘S_ProcessAllDoneCallback()’ method runs and displays the

accumulated results of the processing of the tasks.

During the processing the queued tasks, instances of APL+Win ActiveX Engine will be visible. For a

production deployment, these can be hidden and the runtime version of APL+Win would be used. For

example:

APLNext Supervisor v1.9.4.0 - Page 11 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

When the ProcessProgressCallback event fires information from the ‘kernel’ function is displayed:

APLNext Supervisor v1.9.4.0 - Page 12 - 4/26/2015 - ©APLNext LLC. All Rights Reserved.

C# as the Controlling App in Sync Mode

The ‘APLNext.SCS’ solution contains the ‘APLNext.SCSsync’ project which illustrates a C# ‘Controlling

App’ method which uses the APLNext Supervisor in sync mode.

The APLNext Supervisor events are not used in ‘sync’ mode, i.e. the ‘Controlling App’ using the APLNext

Supervisor ‘StartSync’ and ‘ExecuteAPL’ methods. Instead the execution of the ‘Controlling App’ is

suspended by the APLNextSupervisor after the ‘ExecuteAPL’ method is used until all the queued tasks

have been processed. In this case the processing results are saved by the kernel function to a shared

result repository. In this example an APL+Win colossal component file is used, however a commercial

database such as Microsoft SQL Server can also be used as the shared repository for kernel function

results.

When the ‘APLNext.SCSsync’ project is run the output should be similar to:

	Prototype APL+Win Workspace
	ControllingApp Function using Async Mode
	ProcessCompleteCallback Function
	Kernel Functions
	ProcessAllDoneCallback Function
	Running the ControllingApp Function
	ControllingAppSync Function using Sync Mode
	C# as the Controlling App in Async Mode
	C# as the Controlling App in Sync Mode

