APL WebServices, APL WebTransfer and Asychronous Requests
Synopsis:

This example is included in the ‘\framingham’ subdirectory when APL WebServices is installed.

This example illustrates using APL+Win as the client to make asynchronous requests to multiple instances of an APL+Win application running behind APL WebServices servers. This type of APL WebServer deployment is useful when a stochastic analysis model is being used. In such a case a function is repeatedly called, often millions of times, with arguments which vary according to a probability distribution. The results are consolidated into values which represent the model’s prediction of the status of the class of arguments being investigated.
If the processing time for completion of the function varies with the argument values, it is beneficial to make requests to the function in an asynchronous manner. This is especially true if the machine has multiple processors or if the volume of requests (iterations or trials) is very large. APL WebServices provides easy solutions to these issues because of its inherent asynchronous request, load balancing and scaling features. Establishing multiple instances of the APL+Win workspace on a server is simple using the APL WebServices workspace configuration min- and max-pooling feature. Scaling up the number of server machines is also easy using the APL WebServices workspace configuration ‘busyid’ feature to specify the urls of the additional server machines. Asynchronous requests are supported by the APL WebTransfer methods ASendObject and ASend.
See the ‘APLWebServices APL WebTransfer C# and WPF’ example to setup and understand the ‘framingham’ web server. The same virtual path ‘http://localhost:9002/Framingham/do_FhS_1Arg’ will be the APL WebService requested by the APL+Win client in this asynchronous requests example.

Like many models, the Framingham study heart disease model can be used for other than ad hoc requests by clients. For example, the Framingham model may be used for group underwriting of health insurance or wellness program evaluation.

In the group underwriting case, the insurer wishes to estimate the probability of cardiovascular heart disease events within 2 years for a specific population seeking health insurance in order to properly rate the group. It is often impossible to obtain the actual input parameter values for the mode from the population members, so a stochastic process is used to estimate the condition of the population.
In the wellness program evaluation case, the set of inputs to the model are varied in specific ways to estimate the benefit of modifying one or more of the input parameters to reduce the probability of cardiovascular disease events with 2 years. Varying the input parameters and evaluating the benefits as well as the cost of affecting the parameter modification in the population can be analyzed.
For purposes of this example to facilitate demonstration and testing, APL WebServices is configured so that the client machine is also the server machine. Even so, processing speed improvements may be observed if the single machine has multiple processors. Ideally, APL WebServices scaling to employ multiple server machines will provide the best performance and greatest processing speed improvement when implementing a stochastic model of this type.
In this example a few simple control functions are developed in the useframingham.w3 workspace to be used by the APL+Win client

[image: image1.png]File Edit View Objects Walk Tools Options Window Help =
©e® 6 PRED ®EaX | he Mih -
Eu»W&ge?me%wv\
[o1 CR<RUN_Framingham X;NMACHS;NTRIALS;M;URLS;;ARG;SUBMITTED;J;RES;AML Q
[11
[21 (NMACHS NTRIALS)<X
[31 X8
[a]
[51 URLS«<NMACHSpc 'http://localhost:9000"
I [6] M«GET_MACHS URLS
[71
[81 CR«0 0
| [91 A tConsolidated results
[1o01 A CRI[1]: #Trials
[111 A CRI[2]: Mean of p% EEs with CHD event within 2 years
[121

[13] I<0

[14] :WHILE NTRIALS>I<I+1

[151] ARG<GEN_ARG

[16] SUBMITTED<0

1171 :REPEAT

(181 J<0

1191 :WHILE ~SUBMITTED
| [20] :ANDIF (pM)>J«J+1

[211] Owgive 0

(221 A tRequired only if all machines are on the calling machir

1231

1241 :IF MACH_IDLE JoM

(251 A +Jth machine is now idle

[26] :IF 15RES<GET_PROC_RESULT JoM

1271 A +Jth machine has completed a process

1281 CR<CONSOLIDATE_RESULTS CR (23RES)

1291 A tCapture completed result of this trial
| [301 :ENDIF

[311] SUBMITTED<SUBMIT_PROC (J5M) ARG

1321 :ENDIF

1331 :ENDWHILE

1341 :UNTIL SUBMITTED

[351] :ENDWHILE

raci

Ready

RUN_Framingham is the simulation controller. It distributes NTRIALS requests among NMACHS web servers (which are instances of APL WebTransfer). [image: image2.png]F File Edt View Objects Walk Tools Options Window Help _|=
©e® 6 PRED ®EaX | he Mih -

EIEEE I T IRl
[331 :ENDWHILE o
[341 :UNTIL SUBMITTED
[351 :ENDWHILE

| [361

[37] AMI<(pM)pO
[38] A tAMI: All machines idle
[391 :REPEAT

[401] :FOR J :IN (~AMI)/1pM
[411] Owgive 0
| 421 A tRequired only if all machines are on the calling machir
[431
[441] :IF MACH_IDLE JoM
[45] A +Jth machine is now idle
[46] :IF 15RES<GET_PROC_RESULT JoM L
[471 A +Jth machine has completed a process O
1481 CR<CONSOLIDATE_RESULTS CR (23RES)
1491 A tCapture completed result of this trial
[501 :ENDIF
[511] AMI[J]<1
[521] :ENDIF
[531 :ENDFOR
[54] :UNTIL A/AMI
[551
[56] DEL_MACHS M u
Cy=|

Reacly fis s [[Num

GET_ARG: For the underwriting case, the possible argument values generated by this function would be selected from those typical of the population to be insured. For the wellness effectiveness analysis case, the possible argument values generated by this function would be varied to simulate improvements in the indicators for cardiovascular heart disease. The current version of GET_ARG assumes a simple model in which the possible argument values generated by this function are equally likely. Other distributions for the value of these arguments can be easily prepared and used in this function.
[image: image3.png]awn el T e R s L

File Edit View Objects Walk Tools Options Window Help _J=]x
Ben S DEED BmaX i BEl#in 1]
=N A A \
o] ARG+GEN_ARG; AGE ; AGEs ; SBP ; SBPs ; SBP_TREATED ; CIG;DIA; TC; TCs; HDLC; HDLCs -
[1] @ Framingham Male o
[21
[31 AGE«(?PAGEs)oAGEs«17+165
41 SBP«(?pSBPs)2SBPs«0 110 115 125 135 145 155 165 185 215
[51 SBP_TREATED«~ 14?22
(8] CIG«—1+22
[71 DIA<~1+22
(8] TC«(?PTCs)>TCs+160 170 180 190 200 210 220 230 240 250 260 270 280 230 300
[91 HDLC«+(?PHDLCs)2HDLCs+«25 30 35 40 45 50 55 60 65 70 75 80
[10]
[11] ARG«AGE SBP SBP_TREATED CIG DIA TC HDLC
= v
= e —— /4

The GET_MACHS function instantiates a specified number of instances of the WebTransfer class, so that asynchronous submission of requests can be made to multiple servers.
[image: image4.png]AT A

% File Edit View Objects Walk Tools Options Window Help HEBR
Ben S DEED BmaX i BEl#in 1]
=N A A \
o] M«GET_MACHS URLS;N;I;X 4
[11 A URL: Url's of the web-server-based machines (]
[21 a N #machines
31 A M APL+Win object names associated with the web-server-based machines
41
[s1] N«1tpURLS
(8]
[71 MeNpc''
[£:3] :FOR I :IN 1N
[91 M[Ilec('wt',¥I) Owi 'Create' 'APL2000.WebTransfer'
[101] X«(IoM) Owi 'XOpen' (ISURLS)
[11] :ENDFOR
< v
[Ready oo [[[[num)

The MACH_IDLE function determines if an instance of the WebTransfer class is idle and available to obtain a previously-requested result or submit an additional request.
[image: image5.png]T/ APL+Win - [MACH_IDLE <F>] . T
% Fle Edit View Objects Walk Tools Options Window Help

©e® 6 PRED ®EaX | he Mih -
EIMREE A T IR
o] Z+MACH_IDLE M A
1] @
[21 Z+«~M Owi 'xinProcess'

= v
Readly _ O N

The DEL_MACHS function cleans up the instances of the WebTransfer class after the simulation is completed.

[image: image6.png]7 Ao -peMacs T

% File Edit View Objects Walk Tools Options Window Help
©e® 6 PRED ®EaX | he Mih -
EIEE I T IRl

PEL_MACHS 1M;1

:FOR I :IN 11tpM
(IoM)Owi 'XClose'
(IoM)Owi 'Delete’

:ENDFOR

P [[Ny

The CONSOLIDATE_RESULTS function updates the consolidated results of the simulation using the prior consolidated results and the current trial result. In this case a simple consolidation is performed to obtain the mean value of the probability% of a cardiovascular heart disease event in the next 2 years.
[image: image7.png]Edit View Objects Walk Tools Options Window Help

ﬁ\é\@@@D\BfuaanﬁE%E\MRTH?L

R T TR

bR‘CONSOLIDATE,RESULTS X;RES;CR

CR: Consolidated results
CR[1]: #Trials

CR[2
RES: Current result

A
)
)
A

(CR RES)«X
K

1 CR[2]«(RES+x/CR)+CR[1]«1+CR[1]

Mean of p% EEs with CHD event within 2 years

b [[N

The GET_PROC_RESULT function obtains the next available trial result, if any. This is the return value of the web-server-based function ‘DO_FRAMINGHAM_MALE_2YEAR_PROB’.
[image: image8.png]File Edt View Objects Walk Tools Options Window Help _=]x
©e® 6 PRED ®EaX | he Mih -

EIEEE I T IRl
Z+GET_PROC_RESULT M A
@
A M Machine name

A Zl1
A zZl2

Machine has completed a process: O/N 1/Y
: Process result, if any

ZeM Dwi 'xreturnedObject'
A lst elt: 0/0k 1/Fail
@ 2nd elt: (''/no result or result available)/Ok ErrMsg/Fail

:IF 122
OERROR 'xreturnedObject failed'
:ELSE
(IF '
7+0
:ELSE
Z<1 (222)
:ENDIF
:ENDIF

NN e N e S p e wh - o)
e e e fuiuidud ettt e

The TIME_Framingham function in the useframingham.w3 workspace will illustrate the results comparing the number of simulations asynchronously requested among 1, 2, 5 and 10 instances of WebTransfer.

[image: image9.png]% Fle Edit View Objects Walk Tools Options Window Help
©e® 6 PRED ®EaX | he Mih -
SR R AR AR A I \
FIME_Framingham;i;Y

X<l Omf 'TIME_Framingham'o
TIME_Framinghamo

X<Omf 'TIME Framingham'o
0 Omf 'TIME Framingham'o
X o

L100xX[13 15 17 19;2

2pDDDD

[13;21

EY

100 trials with 1, 2, 5, 10 web servers

%<RUN_Framingham 1 100
Ougive 0 A Required only if web server
%<RUN_Framingham 2 100
Ougive 0 A Required only if web server
%<RUN_Framingham 5 100
Ougive 0 A Required only if web server
%<RUN_Framingham 10 100

test machine

test machine

test machine

RN E N e U p g e W o)
R r ek o =t

[Ready ol I I Y

Results are illustrated below for this example in which the web servers are on the same machine as the control machine and there are dual processors. For the two simulations results illustrated below, increasing the number of web servers yielded average processing times of (0.5 x 63 80 80 + 107 96 93) = 85%(2 web servers) 88%(5 web servers) 86.5%(10 web servers) as a percent of the processing times for a single web server. These results are machine and algorithm specific.
[image: image10.png]| APL-Win - [C) =

b File Edit View Objects Walk Tools Options Window Help _=]x
B S DEER B Eax L B AR
EIREE A T IR
v (] z
0 00
0 00
0 00
0 00
0 00
o 00 @
0 00
656558498 6240 1
21460348 21460348 1
| esresizes aeman
9714094 9714094 1
looseazssT 4392 1
11592074 11592074 1
973738501 4392 1
100 63 80 80
¢ %c1 Onf 'TDME_Framingham'o TIME_Framinghame XeOnf 'TIME_Framingham'o ¥e0 Ot
9256701909 520 1
o 00
0 00
0 00
0 00
0 00
0 00
0 00
0 00 I
0 00
0 00
0 00
3579081935 4329 1
2637050 2637050 1
2474556162 4641 1
3569543 3569343 1
2152403422 4173 1
5304353 5904353 1
1038537383 4056 1
100 107 96 93
< v
Ready Bk [[[

APL+Win for Client Interaction

APL WebTransfer ActiveX protocol

APL WebTransfer ActiveX protocol

APL WebTransfer ActiveX protocol

APL Web Services (URL1)

Scalable (Use URL2)

Load Balancing

Request Queueing

Stateless or Stateful

Active X

APL+Win

Active X

APL+Win

Active X

Active X

APL+Win

APL+Win

APL Web Services (URL2)

Scalable

Load Balancing

Request Queueing

Stateless or Stateful

