APL WebServices, APL WebTransfer and Asychronous Requests
Synopsis:

This example is included in the ‘\framingham’ subdirectory when APL WebServices is installed.

This example illustrates using APL+Win as the client to make asynchronous requests to multiple instances of an APL+Win application running behind APL WebServices servers. This type of APL WebServer deployment is useful when a stochastic analysis model is being used. In such a case a function is repeatedly called, often millions of times, with arguments which vary according to a probability distribution. The results are consolidated into values which represent the model’s prediction of the status of the class of arguments being investigated.
If the processing time for completion of the function varies with the argument values, it is beneficial to make requests to the function in an asynchronous manner. This is especially true if the machine has multiple processors or if the volume of requests (iterations or trials) is very large. APL WebServices provides easy solutions to these issues because of its inherent asynchronous request, load balancing and scaling features. Establishing multiple instances of the APL+Win workspace on a server is simple using the APL WebServices workspace configuration min- and max-pooling feature. Scaling up the number of server machines is also easy using the APL WebServices workspace configuration ‘busyid’ feature to specify the urls of the additional server machines. Asynchronous requests are supported by the APL WebTransfer methods ASendObject and ASend.
See the ‘APLWebServices APL WebTransfer C# and WPF’ example to setup and understand the ‘framingham’ web server. The same virtual path ‘http://localhost:9002/Framingham/do_FhS_1Arg’ will be the APL WebService requested by the APL+Win client in this asynchronous requests example.

Like many models, the Framingham study heart disease model can be used for other than ad hoc requests by clients. For example, the Framingham model may be used for group underwriting of health insurance or wellness program evaluation.

In the group underwriting case, the insurer wishes to estimate the probability of cardiovascular heart disease events within 2 years for a specific population seeking health insurance in order to properly rate the group. It is often impossible to obtain the actual input parameter values for the mode from the population members, so a stochastic process is used to estimate the condition of the population.
In the wellness program evaluation case, the set of inputs to the model are varied in specific ways to estimate the benefit of modifying one or more of the input parameters to reduce the probability of cardiovascular disease events with 2 years. Varying the input parameters and evaluating the benefits as well as the cost of affecting the parameter modification in the population can be analyzed.
For purposes of this example to facilitate demonstration and testing, APL WebServices is configured so that the client machine is also the server machine. Even so, processing speed improvements may be observed if the single machine has multiple processors. Ideally, APL WebServices scaling to employ multiple server machines will provide the best performance and greatest processing speed improvement when implementing a stochastic model of this type.
In this example a few simple control functions are developed in the useframingham.w3 workspace to be used by the APL+Win client

[image: image1.png]
RUN_Framingham is the simulation controller. It distributes NTRIALS requests among NMACHS web servers (which are instances of APL WebTransfer). [image: image2.png]
GET_ARG: For the underwriting case, the possible argument values generated by this function would be selected from those typical of the population to be insured. For the wellness effectiveness analysis case, the possible argument values generated by this function would be varied to simulate improvements in the indicators for cardiovascular heart disease. The current version of GET_ARG assumes a simple model in which the possible argument values generated by this function are equally likely. Other distributions for the value of these arguments can be easily prepared and used in this function.
[image: image3.png]
The GET_MACHS function instantiates a specified number of instances of the WebTransfer class, so that asynchronous submission of requests can be made to multiple servers.
[image: image4.png]
The MACH_IDLE function determines if an instance of the WebTransfer class is idle and available to obtain a previously-requested result or submit an additional request.
[image: image5.png]
The DEL_MACHS function cleans up the instances of the WebTransfer class after the simulation is completed.

[image: image6.png]
The CONSOLIDATE_RESULTS function updates the consolidated results of the simulation using the prior consolidated results and the current trial result. In this case a simple consolidation is performed to obtain the mean value of the probability% of a cardiovascular heart disease event in the next 2 years.
[image: image7.png]
The GET_PROC_RESULT function obtains the next available trial result, if any. This is the return value of the web-server-based function ‘DO_FRAMINGHAM_MALE_2YEAR_PROB’.
[image: image8.png]
The TIME_Framingham function in the useframingham.w3 workspace will illustrate the results comparing the number of simulations asynchronously requested among 1, 2, 5 and 10 instances of WebTransfer.

[image: image9.png]
Results are illustrated below for this example in which the web servers are on the same machine as the control machine and there are dual processors. For the two simulations results illustrated below, increasing the number of web servers yielded average processing times of (0.5 x 63 80 80 + 107 96 93) = 85%(2 web servers) 88%(5 web servers) 86.5%(10 web servers) as a percent of the processing times for a single web server. These results are machine and algorithm specific.
[image: image10.png]
APL+Win for Client Interaction

APL WebTransfer ActiveX protocol

APL WebTransfer ActiveX protocol

APL WebTransfer ActiveX protocol

APL Web Services (URL1)

Scalable (Use URL2)

Load Balancing

Request Queueing

Stateless or Stateful

Active X

APL+Win

Active X

APL+Win

Active X

Active X

APL+Win

APL+Win

APL Web Services (URL2)

Scalable

Load Balancing

Request Queueing

Stateless or Stateful

