
©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 1

APL64 Project Details

Contents
Overview of the APL64 Project ... 4

Primary APL64 Project Goals .. 4

APL64 Project Comparison with APL+Win .. 5

Feasibility Phase of the APL64 Project is completed .. 6

Customer Phase of the APL64 Project .. 6

Transition to 64-bit Environment ... 6

Features and Enhancements Based upon Customer Feedback .. 7

Some Important APL64 Project Features .. 8

Access to All Available Workstation Memory ... 8

Workspace Size Limited Only by the Available Workstation Memory ... 8

Variables can use All Available Workstation Memory .. 8

Virtually all APL+Win features will be available in the APL64 Project .. 11

Transparent Bridge to APL+Win 32-bit □WI and □WCALL .. 11

Easy Transition from APL+Win to the APL64 Project:)WLOAD & Run an APL+Win Workspace 11

Native and APL Component File Compatibility ... 12

Wrapl/UnWrapl Compatibility .. 12

Multi-Threaded APL Primitive Function Execution ... 13

APL ‘Programmer Session’ .. 13

Selecting the Session History Pane Format... 14

Document-style APL Session Format .. 14

Document-style APL Session Format: Selecting Linear or Rectilinear Text Blocks 15

Row Style: Input and Results In-Line Format .. 16

Row Style: Input and Results In-Line Format: Selecting Text ... 16

Row Style: Input & Scrollable Results In-Line Format ... 17

Row Style: Input & Scrollable Results Separated Format ... 18

Accessing the Session History Pane Text .. 19

Syntax Coloring in the Session Command Line and Session History Pane .. 19

Background Color varies with APL Statement Type in Row style Skins .. 21

Session View Scale .. 21

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 2

Statement Numbers in the Session History Pane ... 22

Session Command Line is separate from the Session History Pane ... 23

Enter Keystroke executes the APL statements in the Session Command Line 23

Session > Session Command Line Maximum Height... 23

Continuation Lines in the Session Command Line .. 24

Interpreter Execution State Indicator ... 24

Multi-row APL Executable Statements in the Programmer Session ... 25

Execute the Selected Part of an APL statement in the Session History Pane 27

Execution Injection.. 27

Colors Dialogue Enhanced .. 30

Native and APL Component File Functions ... 31

APL Variable Editor: Unified editing of all APL64 Project variable types .. 32

Microsoft .Net Implementation .. 35

Cross-platform APL64 Project Interpreter .. 35

APL64 Project Interpreter is a .Net Assembly ... 35

.Net Very Large Objects Supported .. 35

Automatic Encoding of Character Data to most compact form ... 35

Simplified □UTF Conversions .. 35

Transparent Unicode Support in Arrays and Scalars .. 35

New APL String Data Type... 35

String Definition .. 35

Defining a String Variable in the APL64 Project .. 35

Handling Special Characters in a String Variable .. 36

String Variables support Unicode Character Elements ... 36

Conversion between String and Character Variables ... 37

String Substitution .. 37

Execution of User-defined Extension Methods .. 37

Access Win32 Methods in Unmanaged C++ DLLs ... 38

Access C# Methods in .Net Assemblies ... 38

Replacements for Deprecated APL System Functions .. 40

User-defined APL Functions .. 41

Local Inner Functions .. 41

Continuation Lines .. 41

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 3

Function Header Enhancements ... 42

Selection of Linear or Rectilinear Text Blocks in Function Source Code ... 42

Extended State Indicator □SIX .. 44

High-resolution Timer ... 46

Enhanced System Commands: .. 47

Regex Wildcard Filters for)VARS,)NAMES,)FNS,)COPY,)PCOPY System Commands 47

Peek into Saved Workspaces for Variables, Functions and Object Names... 47

)STORE &)PSTORE System Commands are Inverses of)COPY &)PCOPY ... 47

Potential APL64 Project Features ... 49

Microsoft .Net Features .. 49

Multi-threaded Primitive Function Execution .. 49

APL Component Files .. 49

APL ‘Programmer Session’ .. 49

Improved User Command Support ... 49

Object-Oriented Features ... 49

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 4

Overview of the APL64 Project
APL2000 is developing the APL64 Project for the 64-bit hardware and operating system environment. The

APL64 Project will incorporate virtually all the features of APL+Win. The project was conceived in August

2015 and has continued until the present with significant results. Major investment by APL2000 of

resources and team members’ efforts has enabled the APL64 Project progress thus far achieved.

Continue reading to learn about the significant results achieved by the APL64 Project team and

understand that the continuation of the APL64 Project will depend upon the level of interest from

APL2000 customers. In this document the name ‘APL64 Project’ emphasizes the role of APL2000

customers in determining if the APL64 Project will become an APL2000 product.

Primary APL64 Project Goals
● Design for 64-bit hardware and operating systems

● Provide a seamless, high-compatibility transition from APL+Win to the APL64 Project

● Establish level of customer interest to determine project continuation and direction

● Create an interpreter compatible with Windows, Android, iOS and Linux

● Improve the productivity and ease-of-use for customers and APL64 Project developers

● Develop the APL64 Project using current, best-of-breed programming tools

● Increase the potential for future enhancements of the APL64 Project

● Improve quality control

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 5

APL64 Project Comparison with APL+Win
Comparison APL+Win APL64 Project

Maximum

Workspace Size

Less than 3.7 GB Up to available workstation memory

permitting the creation and processing of

multiple large APL variables

Maximum

Homogeneous

Variable Size

Less than 2 GiB and in practice 500 Mib or

less

Up to 2,146,435,071 elements in a variable.

Nested arrays may recursively contain up to

this number of elements at each nesting level.

Type Max GiB

Boolean 2

Integer 8

Double 16

Unicode Char 4

APL+Win Char 2

Native Execution mode 32-bit 64-bit

APL Programmer Session

Enhancements

n/a Multiple user-selected Session formats to

display APL statements and results.

Editing of APL variables Limited editing support for non-nested,

homogeneous variables of rank 2 or less

with separate editor for numeric and text

variable structures.

Unified APL variable editor transparently

handling homogeneous, heterogeneous and

nested variable structures.

Compatibility with APL+Win Excellent – virtually all APL+Win features

available

Multi-row APL executable

statements

n/a Facilitate entering APL ‘scripts’ in the APL

Programmer Session

Multi-threaded primitive

function operation

n/a Programmer-controlled using □TL

APL64 Project built from

inception using test-driven

development protocols

n/a Assures that initial implementations and

subsequent modifications will produce

correct results

APL User-Defined Function

Enhancements

n/a New Control Structures, Header options,

‘inner functions’, …

Installation Target Not in Program Files (x86) Not limited

See here for the definition of ‘GiB’ and here for the definition of ‘GB’.

https://en.wikipedia.org/wiki/Gibibyte
https://en.wikipedia.org/wiki/Gigabyte

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 6

Feasibility Phase of the APL64 Project is completed
The initial phase of the project determined that it was possible to develop the APL64 Project using

currently-available programming tools. Some elements of the APL+Win product were developed using

programming tools which have been deprecated by Microsoft, so current programming tools have been

identified which are applicable to the APL64 Project.

Programming styles and design criteria for complex software have significantly changed since APL+Win

was created, so the APL64 Project incorporates the best design elements of APL+Win and combines that

with up-to-date technology, years of APL2000 developer experience and customer input.

The interpreter portion of the APL64 Project was constructed using Microsoft .Net, which is supported on

Windows, Android, iOS and Linux. The APL ‘programmer session’ or programmer graphical user interface

(GUI) was constructed using Microsoft .Net and Microsoft Windows Presentation Foundation (WPF) for

the Windows environment.

In this completed feasibility phase the Primary Project Goals have been accomplished:

● A new APL64 Project parser, tokenizer and interpreter were created based on those elements of

APL+Win.

● Substantial new and expanded developer documentation was incorporated into the interpreter

source code to improve subsequent maintenance by APL2000.

● Interfaces from the 64-bit to the 32-bit environment were developed for compatibility with native 32-

bit, APL+Win components such as □WI, □WCALL and the APL+Win Grid Control.

● The system was built using Test Driven Development (TDD) protocols and as such includes an

extensive unit test component to enhance the verification of results.

● Many APL functions, operators and system functions were implemented in the APL64 Project to

establish the pattern for this work.

● The enhanced APL programmer GUI was implemented providing several ‘skins’.

Customer Phase of the APL64 Project
As part of the announcement of the APL64 Project, APL2000 customers are requested to provide feedback

on their level of interest in and need for the APL64 Project features. Customer input over many years has

already been used to design and implement APL2000 products, but the response of current APL2000

customers will determine the future of the APL64 Project.

Transition to 64-bit Environment
Although virtually all new computer hardware available today incorporates 64-bit hardware and operating

system, it is recognized that APL2000 customers may not have completed the transition from the 32-bit

environment to the 64-bit environment. The APL+Win [32-bit] product will remain available and

maintained during the development of the APL64 Project and while a significant APL+Win subscriber base

continues to exist. If current APL2000 customer input indicates that the APL64 Project should be

continued to completion, that project will receive a high priority.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 7

Features and Enhancements Based upon Customer Feedback
The APL64 Project features and enhancements are derived from years of customer experience and

constructive customer feedback. The APL64 Project is designed to be highly-compatible with APL+Win,

adds many new features and enhancements which are not feasible in APL+Win and resolves some

limitations of APL+Win.

The APL64 Project’s look and feel will be very familiar to existing APL+Win users because it uses the same

workspace, programmer session, function and variable metaphors as APL+Win. The APL64 Project is an

interpreted rather than compiled language, which uses its own built-in APL-oriented editors, and does not

require installation of third party keyboard drivers or compiler software such as Microsoft Visual Studio.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 8

Some Important APL64 Project Features
Implemented features and potential features are indicated separately. Not all APL64 Project features are

described here. Features illustrated are subject to subsequent enhancement and modification.

Access to All Available Workstation Memory
The APL64 Project is designed for the 64-bit operating system environment which supports much larger

memory allocations to applications running on a workstation.

Workspace Size Limited Only by the Available Workstation Memory
The available workstation memory is available to be used by data and functions in an APL64 Project

workspace. In the 64-bit operating system environment the available workstation memory, exclusive of

the memory required by the operating system, may be allocated to an application running on that

workstation.

Variables can use All Available Workstation Memory
There is no restriction other than workstation memory on the combined size of all homogeneous variables

and nested arrays that contain large homogeneous elements. Homogeneous variables (such as integer,

double and char arrays) are constrained by element count limits, as outlined in an earlier table.

Machine configuration example: 32 GB memory

APL64 Project: Execute a multi-row APL statement to create four homogeneous variables, each with

‘size’ greater than 2 GB:

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 9

In this example the APL64 Project workspace memory is entirely contained in the workstation memory,

without disk caching required:

A ‘very large’ APL homogeneous variable may be manipulated using APL primitive functions, user-defined

functions, etc., just like any other APL variable. In this example a multi-row APL statement is executed to

modify a ‘large’ APL homogeneous variable.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 10

Comparison to APL+Win:

APL+Win workspace size is limited to approximately 3.7 GB. Homogeneous variables are limited to less

than 2 GiB each. In APL+Win, if a variable is created which approaches the 2 GiB limit, it is unlikely that

any processing can be done on it as there would not be sufficient space for a result of the same dimension,

other than a boolean result. In practice, the maximum usable variable size in APL+Win is much smaller

than 2 GiB, e.g., 1 GiB – 512 MiB.

The APL64 Project and APL+Win both support non-homogeneous and nested variables.

A non-homogeneous APL variable may be considered an ordered collection of homogeneous variables.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 11

APL64 Project Compatibility with APL+Win

Virtually all APL+Win features will be available in the APL64 Project
APL primitive functions, APL system variables, APL operators, legacy Win32 features and virtually all APL

system functions will be available in the APL64 Project.

Transparent Bridge to APL+Win 32-bit □WI and □WCALL

A transparent bridge to APL+Win 32-bit features has been implemented in the interpreter for seamless

and fully-compatible access to □WI for APL+Win-style user interfaces, □WCALL for access to Win32 APIs,

APL+Win Grid Control, APL+Win ActiveX Engines and other custom ActiveX assemblies using the □WCALL

and □WI ActiveX interface.

Easy Transition from APL+Win to the APL64 Project:)WLOAD & Run an APL+Win Workspace
To make the user transition as simple as possible, it is designed so that an APL+Win workspace may be

loaded into the APL64 Project and run in the 64-bit Windows environment with little or no modification.

In this example the new ‘)WLOAD’ system command loads the ‘APL+Win workspace #1.w3’ workspace

into the APL64 Project environment. The ‘SampleForm’ APL function is executed and the □WI-based form

is displayed. When the user clicks the ‘Click Me’ button the form is updated and the programmer session

displays the event handler results sent to the session by the BClickEH button click event handler function.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 12

Native and APL Component File Compatibility

The □N…, □XN…, □F…, □XF… and □CF… file functions can compatibly read and write data between

APL+Win and the APL64 Project.

Wrapl/UnWrapl Compatibility
The APL64 Project wrapl and unwrapl serialization and the APL+Win analogues are fully compatible.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 13

Multi-Threaded APL Primitive Function Execution

The APL64 Project □TL system variable supports multi-threaded execution in the work session to enhance

performance. Once the APL programmer sets the arguments to □TL, the APL64 Project interpreter will

apply multi-threaded execution to the APL application without further effort by the APL programmer.

The APL programmer, using □TL, can determine the array size and number of threads which will be used

when executing scalar primitive functions, such as plus, minus, times, divide, etc., on arrays. Once □TL is

programmer-specified for multi-threading, the APL64 Project interpreter automatically distributes the

scalar primitive function execution on arrays to multiple threads.

□TL may be specified as a two-element vector or a multi-row, two-column matrix. The first element or

column specifies the threshold number of array elements and the second element or column specifies the

number of threads to be used for the calculations on the specified arrays. When □TL is specified as a

matrix with more than one row, the first column should contain increasing values.

Example: □TL←10000 2 means that one thread should be used unless the number of elements of the

array is greater than or equal to 10000.

Example: □TL←2 2⍴10000 2 20000 4 means that one thread should be used for arrays with less than

10000 elements, two threads for arrays with 10000 to 19999 elements and four threads for arrays with

20000 or more elements.

Thread allocation to the physical hardware processors is performed by the operating system. Multi-

threaded primitive function execution is disabled by default. An empty vector or matrix (the default)

specifies that single threading should be used throughout the work session.

APL ‘Programmer Session’
The graphical user interface [GUI] for the ‘programmer session’, used when the APL64 Project is used in a

command-line style, has been significantly enhanced.

● The programmer session and the interpreter now run in separate execution threads.

● The programmer session accesses the interpreter asynchronously so that the APL programmer may

continuously-enter executable statements without waiting for the prior executable statement to

complete execution or for output to be displayed in the session history pane.

● The ‘Pause’ and ‘Stop’ session options will now have a reliable and virtually-immediate effect on the

interpreter. The programmer session display is arranged in panes, e.g., command line, session history,

debugger, state indicator, function and variable editing instances.

● The programmer session panes may be separately and independently docked or floated in locations

on single or multiple monitors.

● Several ‘skins’ are supported in the programmer session. The user-preferred session ‘skin’ may be

selected at any time during an APL64 Project session. This selection affects the display and

organization of previously-executed APL statements and interpreter output in the Session History

Pane.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 14

● The APL ‘document-style’ skin is analogous to the APL+Win ‘programmer session’ GUI. The session

history pane contains APL executed statements and interpreter output displayed in the order received

from the interpreter as a continuously flowing text with new line separators.

● For each session skin the session history pane includes a tooltip describing the user operations

available for that skin.

● The row-oriented skins display the session history pane as a grid.

o Each APL executable statement is a ‘row’ in the session history pane.

o Each ‘row’ has a ‘row header’ on the left which may be used to select the entire APL

executable statement associated with that row.

o Each interpreter result, e.g., from execution of an APL executable statement or a function

callback is a ‘row’ in the session history pane.

o Options for the display of interpreter results order in the session history pane.

▪ In the order received from the interpreter.

▪ In a scrollable list following the applicable APL executable statement.

▪ In a separate list which may be docked or floated on any workstation display.

Selecting the Session History Pane Format
In the APL64 Project the 'APL Statements Display Format' menu item in the 'Session Options' menu

provides the option to select a GUI skin without restarting the programmer session.

Document-style APL Session Format
The APL+Win programmer session graphical user interface is available in the APL64 Project. It is called

the 'Document Style: Input & Results In-Line' skin. The scrollable portion of the session history pane

illustrates the APL executable statements and the APL result statements in the order as emitted by the

interpreter.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 15

Document-style APL Session Format: Selecting Linear or Rectilinear Text Blocks
The 'Document Style: Input & Results In-Line' skin supports two selection modes:

The 'Selection Start and Selection Length' mode is the document-style APL format enabled using the Shift

+ cursor movement keystrokes or pointer operations. A contiguous portion of the text in the session

history pane may be selected.

The ‘Columnar Selection’ mode is enabled using the Shift + Alt + cursor movement keystrokes or pointer

operations. A rectilinear portion of the text in the session history pane may be selected, deleted, pasted

in and copied.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 16

Row Style: Input and Results In-Line Format
The text in the session history pane is composed of rows for APL executable statements and interpreter

results. Statements are illustrated in the order executed or emitted by the interpreter.

Row Style: Input and Results In-Line Format: Selecting Text
Two selection modes are supported.

The entire contents of one or more, possibly non-contiguous, rows may be selected using the Ctrl + Click

key stroke on the applicable row headers.

All or part of one row may be selected using the Shift + cursor movement keystrokes or pointer operations

within the APL statement column of the applicable row.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 17

Row Style: Input & Scrollable Results In-Line Format
The APL executable statements or callback statements are displayed in the session history pane in the

order executed. Interpreter results are displayed in a scrollable grid immediately following the associated

APL executable or callback statement. As the interpreter emits a result it is appended to the scrollable

list below the associated APL statement.

A benefit of this format is that the interpreter output for APL statements which would generate many

rows of output is scrolled and the session history pane is not scrolled, keeping the associated APL

executable or callback statement which caused the interpreter output to remain visible.

The height of the scrollable list of interpreter results before vertical scrolling is available is user-controlled:

The selection options for the 'Row Style: Input & Scrollable Results In-Line' skin are the same as those for

the 'Row Style: Input & Results In-Line' skin.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 18

Row Style: Input & Scrollable Results Separated Format
This format displays the APL executable or callback statements in a grid with the interpreter results for a

selected statement in a separate grid which can be independently docked or floated on any workstation

display. An APL statement is selected by left clicking on the row header of the desired statement.

The selection options for the 'Row Style: Input & Scrollable Results Separated' skin are the same as those

for the 'Row Style: Input & Results In-Line' skin.

When the results grid is docked to the main session window, the vertical or horizontal splitter bar can be

used to modify the relative space consumed by the two panes of this skin.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 19

Accessing the Session History Pane Text
Selected text in the session history pane may be copied to the Windows Clipboard using Ctrl + C or the

right-click context menu options.

Selected text may be executed by using the Enter keystroke.

Selected text may be copied to the Session Command Line by using the Shift + Enter keystroke.

If there is no selected text, the contents of the row containing the cursor will be the ‘effective’ selection.

The content of the session history pane is not editable. It may be cleared using the Session > Clear Session

History menu item.

Syntax Coloring in the Session Command Line and Session History Pane
Syntax coloring is applied to the APL executable statements in the Session Command Line and Session

History Pane. The APL executable statements include APL programmer-generated statements and

interpreter-generated callback statements. All Session skins support this syntax coloring.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 20

Syntax coloring in the Session Command Line:

Syntax Coloring of APL programmer-generated statements in the Session History Pane:

Syntax Coloring of callback statements in the Session History Pane:

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 21

Background Color varies with APL Statement Type in Row style Skins
For the Row style skins, the background color of the Session History Pane rows differentiates between

result type APL statements and other, e.g., input or callback, APL statements.

a

Session View Scale
The scale of the session panes is user-controlled via the Ctrl + mouse wheel or the Session > View Scale

menu item.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 22

Statement Numbers in the Session History Pane
An option is provided to display statement numbers in the session history pane. For team programming

in the APL64 Project, this feature improves group code review sessions.

In the document-style’ session skin:

In the ‘row-style’ session skin with scrollable results in ‘master/detail’ format:

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 23

Session Command Line is separate from the Session History Pane
The Session Command Line is separated from and displayed at the bottom of the Session History Pane.

Enter Keystroke executes the APL statements in the Session Command Line
When the cursor is on the Session Command Line the Enter keystroke will execute the APL executable

statement(s) in the Session Command Line.

Session > Session Command Line Maximum Height
The height of the Session Command Line before vertical scrolling is enabled is user-controlled via the

Session menu. This feature applies when a multi-row APL executable statement is entered or pasted into

the Session Command Line.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 24

Continuation Lines in the Session Command Line
APL executable statements may be continued across multiple lines in the Session Command Line by

entering & as the last non-comment character of the line(s) to be continued. Continuation lines are also

supported in user-defined functions.

Interpreter Execution State Indicator
The interpreter execution state is indicated to the left of the session command line.

Interpreter Execution State Input Possible Glyph Unicode (Hex) Background Color

Ready Yes ▽ u25BD Light Green

Running User Input Yes, Injected Execution ▷ u25B7 Yellow

Running Callback Yes, Injected Execution ◁ u25C1 Yellow

Suspended Yes ▽ u25BD Red

Suspended in Debugger Yes ▤ u25A4 Red

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 25

Multi-row APL Executable Statements in the Programmer Session
Often it is convenient to associate multiple APL executable statements into a ‘script’ which is executed en

masse in the Programmer Session. Separating the statements in such a ‘script’ using a ‘new line’

character, □TCNL, improves readability.

Multi-row APL executable statements may be manually-entered or pasted into the APL64 Project Session

Command Line. Shift + Cursor keystrokes will select a contiguous, linear block of text in the Session

Command Line. Alt + Shift + Cursor keystrokes will select a contiguous, rectilinear block of text in the

Session Command Line.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 26

Additional rows in the statement may be created using the ‘New Row’ button to the right of the Session

Command Line, the Ctrl + Enter keystroke, or pressing the down arrow on the last row:

To execute a multi-row APL statement in the Session Command Line, use the Enter keystroke. Once

executed, multi-row APL executable statements are identified in the Session History pane using an

enlarged row height in the row style skins and by an extended ‘APL executable statement glyph’ in the

document style skin.

Enlarged row height in a row style skin for a multi-row APL statement:

Extended ‘APL executable statement glyph’ in the document style skin for a multi-row statement:

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 27

The APL ‘diamond’ statement separator continues to be supported in the APL64 Project.

Execute the Selected Part of an APL statement in the Session History Pane
Example:

Enter and execute some APL statements which are the illustrated in the session history pane. Select a

portion of an APL statement in the session history pane.

Click the Enter button to execute the selected portion of the applicable APL statement:

Execution Injection
The APL64 Project interpreter supports 'execution injection' so that the programmer may enter additional

APL executable statements in the session. The execution of these additional APL statements is 'injected'

into the processing sequence of the interpreter. Since interpreter output from previous APL executable

statements may be streaming to the programmer session GUI, to facilitate the programmer entry of

additional APL executable statements the session 'command line' is a separate entry field positioned at

the bottom edge of the session history pane.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 28

A programmer 'injected' APL executable statement will cause the interpreter to stop processing prior APL

executable statements until the most recent 'injected' APL statement processing is completed by the

interpreter. Interpreter processing of prior APL statements will resume thereafter in the order of the

'injection' of those prior APL statements.

Example: The Document Style session skin is illustrated

The user executes: 10 LongRunningFunction ‘One’ and the Session History Pane illustrates the interpreter

output of the execution of the 10 LongRunningFunction ‘One’ statement.

Before that output is complete, the user executes: 10 LongRunningFunction ‘Two’ and the interpreter

suspends the execution of the 10 LongRunningFunction ‘One’ statement and commences the execution

of the ‘injected’ 10 LongRunningFunction ‘Two’ statement. The Session History Pane illustrates the

interpreter output of the 10 LongRunningFunction ‘Two’ statement.

Before that output is complete, the user executes: 10 LongRunningFunction ‘Three’ and the interpreter

suspends the execution of the 10 LongRunningFunction ‘Two’ statement and commences the execution

of the ‘injected’ 10 LongRunningFunction ‘Three’ statement. The Session History Pane illustrates the

interpreter output of the 10 LongRunningFunction ‘Three’ statement.

When the interpreter output of the 10 LongRunningFunction ‘Three’ statement is complete, the

interpreter resumes the execution of the 10 LongRunningFunction ‘Two’ statement and the Session

History Pane illustrates the remainder of the output of the 10 LongRunningFunction ‘Two’ statement.

When the interpreter output of the 10 LongRunningFunction ‘Two’ statement is complete, the interpreter

resumes the execution of the 10 LongRunningFunction ‘One’ statement and the Session History Pane

illustrates the remainder of the output of the 10 LongRunningFunction ‘One’ statement.

Because the Document Style session skin is selected, the interpreter output is illustrated in the session

history pane in the order emitted.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 29

If the Row Style: Input & Scrollable Results In-Line session skin had been selected, the scrollable results

detail grids for each APL executable statement would be updated as interpreter output was emitted:

If 'execution injection' processing by the interpreter is underway, the interpreter output will be displayed

differently depending on the session 'skin' currently visible.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 30

Skin Description

Interpreter Output
Display Order in Session

Interpreter Output
In Scrolling List

Row Style: Input & Results In-Line Emitted Order N
Row Style: Input & Scrollable Results In-Line Associated with APL Stmt Y
Row Style: Input & Scrollable Results Separated Associated with APL Stmt Y
Document Style: Input & Results In-Line Emitted Order N

Colors Dialogue Enhanced
The Colors dialogue provides foreground and background color options within the Session History Pane,

the Session Command Line, instances of user-defined function or APL variable editors and the debugger.

In the APL64 Project the dialogue for the APL programmer to select these color options has been

enhanced:

• Multiple color sets are supported

• All color selections are simultaneously visible

• Color sets may be cloned

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 31

Native and APL Component File Functions
The file functions in the APL64 Project are fully compatible with their analogues in APL+Win. Component

files created in APL+Win or the APL64 Project can be read and modified in the APL64 Project or APL+Win.

The number of native and component files which can be simultaneously tied in the APL64 Project has

been increased.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 32

APL Variable Editor: Unified editing of all APL64 Project variable types
The APL variable editor, accessed via the ‘)edit’ system command unifies browsing and editing of any

APL64 Project variable including homogeneous, non-homogeneous and nested variables with unlimited

redo and undo of user edits. An instance of the APL variable editor is contained within its own pane which

can be independently docked or floated on any workstation monitor.

The variable elements and characteristics are displayed in an instance of the APL variable editor pane.

The elements of the variable are contained in the cells of a grid with rows and columns representing the

shape of the variable.

Value types, i.e. the basic APL64 Project data types of char, string, Int32 and double are directly editable

in the containing cell of the APL variable editor.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 33

For enclosed elements of a nested variable the user can drill-down into the cells to the level of a value

type which can then be directly edited.

In simple cases, clicking on the enclosed cell, X[1;4] in the example, will expose the contained value type:

For more complex enclosed cells, the drill-down tool bar or clicking on the cell may be used to expose the

next level of nesting, e.g., X[1;5] in the example:

Value types can be modified to a different type within the APL variable editor, e.g., changing an integer to

a double.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 34

Edit menu provides options to insert or delete columns or rows of the variable.

The tool bar provides options to drill-down to or return from a nested element, modify the shape of the

array or its elements, enclose or disclose the array or an element, rotate the display of the variable values,

execute APL functions on the variable, view selected planes of a variable with rank greater than two and

use a selected text editor when appropriate for a variable.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 35

Microsoft .Net Implementation

Cross-platform APL64 Project Interpreter
The APL64 Project interpreter is compatible with Microsoft .Net Core which enables a cross-platform APL

interpreter.

APL64 Project Interpreter is a .Net Assembly
The APL64 Project interpreter is packaged as a .Net assembly so it may be directly integrated into other

.Net solutions.

.Net Very Large Objects Supported
The interpreter is compiled in C# using the ‘gcAllowVeryLargeObjects’ switch which vastly increases

available workspace memory.

Automatic Encoding of Character Data to most compact form
Character data is automatically encoded in compact 1-byte (classic APL+Win), standard 2-byte (UTF-16),

or extended 4-byte (UTF-32) formats

Simplified □UTF Conversions

Simplified and easy to understand conversion between APL and external character encoding formats

via □UTF

Transparent Unicode Support in Arrays and Scalars
Transparent support for Unicode characters in character scalars, vectors, matrices and arrays.

New APL String Data Type

String Definition
An APL string is an ordered group of characters treated as a scalar, with delimiters «…».

Defining a String Variable in the APL64 Project
The ‘chevron’ string delimiters are available on the APL64 Project physical and virtual keyboards as

Shift + Alt + < for « and Shift + Alt + > for ».

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 36

Handling Special Characters in a String Variable
Special characters (such as newlines, tabs) in Strings can be ‘escaped, e.g., «123\t456\r» rather

than requiring concatenation, e.g., ("123",□TCHT,"456",□TCNL).

● The ‘chevrons’ may be included in a string by using either double enclosing ‘chevrons’ or escaping the

included ‘chevrons’.

● Paths which contain backslash characters can be done without escaping the backslash if double

enclosing ‘chevrons’ are used.

String Variables support Unicode Character Elements

• Unicode characters may be entered and are visible in the APL64 Project session, functions and arrays.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 37

● Unicode characters may be entered using their hex codes via the \uHHHH sequence or \xHH for 2-hex

digit codes.

Conversion between String and Character Variables
Conversion between string and character objects via the EnString, monadic >, and DeString, monadic <,

operators:

String Substitution
String substitution to simplify text formatting, e.g.

Execution of User-defined Extension Methods
The APL64 Project □na system function may be used to associate an APL function name with a method in

an external, dynamic-linked library (dll) so that external method may be used directly from the APL64

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 38

Project. This technology is sometimes used to access proprietary commercial methods and performance-

enhanced methods. In the APL64 Project this technology is the alternative to the legacy □CALL which is

not supported in .Net.

Access Win32 Methods in Unmanaged C++ DLLs

The ‘DLL …MethodName’ □NA ‘APLFnName’ syntax is used if the external dll is available in APL+Win and

the APL64 Project, e.g., based on unmanaged C++ and Win32.

Example: Access the Win32 Kernel.32 dll directly from the APL64 Project:

Access C# Methods in .Net Assemblies
In the APL64 Project □na has been enhanced to support the ‘EXT …MethodName’ □NA ‘APLFnName’

syntax so that methods in an external .Net assembly using C#, VB.Net or Managed C++ may be used

directly from the APL64 Project. This syntax can also be used to access an unmanaged C++ method which

the APL programmer has exposed within a managed C++ method.

Any .Net programming language, e.g., C#, VisualBasic, Python, etc., may be used in the external .Net

assembly.

Example: Access a user-defined C# assembly method directly from the APL64 Project:

A user-defined C# assembly containing the Where() method which returns the indices of the location of

non-zero elements of a numeric or Boolean array of rank less than 2.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 39

In this example the user-defined .Net assembly has a reference to the .Net APLNow.Data assembly as a

cloud-based Nuget package which is a component of the APL64 Project so that the appropriate

APLNow.Data.IExtContext can be incorporated into the arguments of the method to be exposed as a user-

defined function in the APL64 Project. The compiled user-defined C# assembly DLL has been placed in the

same folder as the APLNow.Data.dll.

Example: Access a user-defined C# assembly method directly from the APL64 Project:

A user-defined C# assembly containing the Uppercase() method which returns input values in uppercase.

This user-defined .Net assembly has a reference to the .Net APLNow.Data assembly as a cloud-based

Nuget package which is a component of the APL64 Project so that the appropriate

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 40

APLNow.Data.IExtContext can be incorporated into the arguments of the method to be exposed as a user-

defined function in the APL64 Project workspace. The compiled user-defined C# assembly DLL has been

placed in the same folder as the APLNow.Data.dll. This method handles heterogeneous, nested APL64

Project variables.

Replacements for Deprecated APL System Functions

Assembler functions accessed via □CALL and □ARBIN are not supported but can be easily and efficiently

replaced by 64-bit □NA extension functions.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 41

User-defined APL Functions

Local Inner Functions
Local (Inner) functions can be defined inside of ‘outer’ functions via the new :DEF control structure

declaration. While the outer function is executing, it can make calls to the inner function. Unlike using

□DEF to dynamically define a local function inside another function, the :DEF control structure does not

have any execution overhead associated with it.

● The inner function is statically defined once, when the outer function is defined and doesn’t incur any

execution overhead to redefine the inner function each time it is needed. When □DEF is used to

define a local function, there is a substantial execution cost incurred each time the function is defined,

even before it is first executed.

● The :DEF control statement is easier to read and easier to code than functions specified using □DEF

or □FX since quoted strings are not needed.

● The :DEF control statement supports setting of stop and trace lines via the session manager editor,

just like in non-inner functions.

● Functions declared via :DEF are local to the functions they are defined within and don’t “pollute” the

global workspace with specialized functions that are only applicable to the context of the containing

function where they are defined.

Example:

Continuation Lines
APL statements can be continued across multiple lines by coding an & as the last non-comment

character of the line(s) to be continued such as shown below. In this case, lines [1], [2], [3], and [4] are

treated as a single statement.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 42

Function Header Enhancements
● Optionally use space, instead of semi-colon between local variables in a function header, e.g.,

larg Foo rarg;local1 local2 local3…

● Suffixed or multiple, sequential semi-colons permitted in a function header to avoid parsing warnings

when editing a function header, e.g.

larg Foo arg;local1;;;local2 local3;

● Suffixed comment permitted in a function header, e.g.,

larg Foo rarg… ⍝Fn header comment

Selection of Linear or Rectilinear Text Blocks in Function Source Code
The Shift + Cursor keystrokes select a contiguous, linear block of text in the source code of a function

being edited. The Alt + Shift + Cursor keystrokes select a contiguous, rectilinear block of test in the

source code of a function. Selected text may be deleted, pasted-in or copied.

Example:

Select a rectilinear block of function source code text:

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 43

Delete the selected block of text from the function source code:

Select a new location in the function source for the text in the Windows Clipboard:

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 44

Paste the block of text in the Windows Clipboard in the function source code at the selected location:

Extended State Indicator □SIX

The □SIX system function provides extended state indicator information controlled by its right argument.

The □SIX system function output includes the statement that is being executed at each level of the state

indicator with the [Imm] prefix or the ellipsis if there is more state indicator information that is not being
displayed.

□SIX Right Arguments □SIX Output Description

‘L’ List local variable names and value tips that show the values of the
locals, like the APL+Win crash dump file content

‘S’ List local variable names and value tips for the current and shadowed
values of locals

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 45

‘G’ List global variable names and value tips for any globals that are not
shadowed by locals on the state indicator

1st Numeric Arg # rows of state indicator to skip

2nd Numeric Arg # rows of state indicator to display; default 0 indicates all rows

3rd Numeric Arg # columns of value tip information to display; default 100

□SIX system function can be useful when the □SI stack is very deeply-nested and the important portion

of the stack is one or a few levels back from the current state. Using □SIX the APL programmer has

precise control over what portion of the state indicator is returned.

Example: The ‘foo’ function will recursively build up the state indicator stack so that the results of

□SIX can be illustrated.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 46

High-resolution Timer

● □AI[2] has been enhanced to use the .Net Stopwatch class when available

● □TT returns the number of timer ticks since the APL+Win session started

● □TF returns the number of timer ticks per second, which for most workstations will be 1E7.

Example which illustrates the use of □TT and □TF which eliminate the overhead of computing the other

elements of □AI or the need to index to obtain □AI[2].

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 47

Enhanced System Commands:

Regex Wildcard Filters for)VARS,)NAMES,)FNS,)COPY,)PCOPY System Commands
Improved wildcard options with regex filters for)NAMES,)COPY,)FNS and)VARS system command

arguments.

Peek into Saved Workspaces for Variables, Functions and Object Names
Peek into saved workspaces for variables, functions and names by adding @wsname as the last argument

element

)STORE &)PSTORE System Commands are Inverses of)COPY &)PCOPY
)STORE and)PSTORE commands are inverses of)COPY and)PCOPY. Rather than copying objects from the

argument workspace into the active workspace, they store objects from the active workspace into the

argument workspace.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 48

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 49

Potential APL64 Project Features
The APL64 Project development design significantly facilitates APL2000’s implementation of

enhancements in the interpreter including new and improved APL primitive functions with new glyphs

and new components to improve customer’s productivity and ease-of-use.

Microsoft .Net Features
● APL64 Project syntax could be extended to directly access .Net objects using object oriented [OOP]

syntax, e.g., obj1.prop1, obj1.method1, including the APLNext Supervisor, the APLNext C# Script

Engine and custom .Net assemblies.

● APL64 Project syntax could be extended to support APL libraries, e.g., namespaces and classes, based

on the ‘:DEF’ local function mechanism which has been implemented in the APL64 Project.

● The APL64 Project could be extended to support additional .Net data types such as decimal, uint, etc.

● The APL64 Project could be extended to export Microsoft Common Intermediate Language (MSIL) so

that APL64 Project .Net assemblies would be interoperable with other .Net languages.

● The APL64 Project could be extended to optionally save workspaces in xml-format source code for

use in contemporary and powerful source code control tools like Git. GitHub is a commercial

implementation of Git.

● APL Variable Editor

● The APL variable editor “)EDIT” could be extended to browse an APL component file.

● The APL variable editor “)EDIT” could be configured for use in customer-developed applications.

Multi-threaded Primitive Function Execution

The action of □TL could be extended to other APL64 Project primitives such as iota, reshape, take, drop,

etc., whereby sections of the resulting arrays would be filled by different threads.

APL Component Files
APL component files will be enhanced to store Unicode text, with an appropriate indication that such files

would not be compatible with APL+Win.

APL ‘Programmer Session’
● The APL ‘programmer session’ can be configured, with appropriate security considerations, to run on

a local workstation to access an APL64 Project interpreter running on a remote workstation.

● Code completion features, e.g., ‘intellisense’, can be implemented.

Improved User Command Support
The APL64 Project could be extended to support reflective developer tools, so that with appropriate

security considerations, external APL64 Project code running on a separate thread could interact with the

current active workspace to eliminate limitations of APL+Win user commands such as object shadowing

and intertwined execution states.

Object-Oriented Features
New control structures for declaring user-defined classes, properties, enumerations, etc., will be

implemented. The specifications for this feature are being reviewed, so the examples below provide a

general indication of the implementation direction of object-oriented control structures in the APL64

Project environment.

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 50

The WeightedAverage class is defined and an instance of it is created. First three values are added (each

equally weighted by a factor of 1) and the ‘Average’ is queried. Next a new value with 10,000 times weighting

is added, and the 'Average’ is queried again:

Class definition:

Add values: 1 10 15 to the c.values property of the instance of the WeightedAverage class, c. For each of

these values the corresponding c.counts property elements are default to 1. The class instance variables

(counts, values, and bias) are maintained separately for each instance of the WeightedAverage class. After

using the c.Average method, another value, 10,000 x 100 is added to the c.values and c.count properties

and the c.Average method is again used:

©APLNow LLC – All Rights Reserved - 9/17/2018 - Page: 51

	Overview of the APL64 Project
	Primary APL64 Project Goals
	APL64 Project Comparison with APL+Win
	Feasibility Phase of the APL64 Project is completed
	Customer Phase of the APL64 Project
	Transition to 64-bit Environment
	Features and Enhancements Based upon Customer Feedback
	Some Important APL64 Project Features
	Access to All Available Workstation Memory
	Workspace Size Limited Only by the Available Workstation Memory
	Variables can use All Available Workstation Memory
	Virtually all APL+Win features will be available in the APL64 Project
	Transparent Bridge to APL+Win 32-bit □WI and □WCALL
	Easy Transition from APL+Win to the APL64 Project:)WLOAD & Run an APL+Win Workspace
	Native and APL Component File Compatibility
	Wrapl/UnWrapl Compatibility

	Multi-Threaded APL Primitive Function Execution
	APL ‘Programmer Session’
	Selecting the Session History Pane Format
	Document-style APL Session Format
	Document-style APL Session Format: Selecting Linear or Rectilinear Text Blocks
	Row Style: Input and Results In-Line Format
	Row Style: Input and Results In-Line Format: Selecting Text
	Row Style: Input & Scrollable Results In-Line Format
	Row Style: Input & Scrollable Results Separated Format
	Accessing the Session History Pane Text
	Syntax Coloring in the Session Command Line and Session History Pane
	Background Color varies with APL Statement Type in Row style Skins
	Session View Scale
	Statement Numbers in the Session History Pane
	Session Command Line is separate from the Session History Pane
	Enter Keystroke executes the APL statements in the Session Command Line
	Session > Session Command Line Maximum Height
	Continuation Lines in the Session Command Line
	Interpreter Execution State Indicator
	Multi-row APL Executable Statements in the Programmer Session
	Execute the Selected Part of an APL statement in the Session History Pane
	Execution Injection
	Colors Dialogue Enhanced

	Native and APL Component File Functions
	APL Variable Editor: Unified editing of all APL64 Project variable types
	Microsoft .Net Implementation
	Cross-platform APL64 Project Interpreter
	APL64 Project Interpreter is a .Net Assembly
	.Net Very Large Objects Supported
	Automatic Encoding of Character Data to most compact form
	Simplified □UTF Conversions
	Transparent Unicode Support in Arrays and Scalars

	New APL String Data Type
	String Definition
	Defining a String Variable in the APL64 Project
	Handling Special Characters in a String Variable
	String Variables support Unicode Character Elements
	Conversion between String and Character Variables
	String Substitution

	Execution of User-defined Extension Methods
	Access Win32 Methods in Unmanaged C++ DLLs
	Access C# Methods in .Net Assemblies
	Replacements for Deprecated APL System Functions

	User-defined APL Functions
	Local Inner Functions
	Continuation Lines
	Function Header Enhancements
	Selection of Linear or Rectilinear Text Blocks in Function Source Code
	Extended State Indicator □SIX
	High-resolution Timer

	Enhanced System Commands:
	Regex Wildcard Filters for)VARS,)NAMES,)FNS,)COPY,)PCOPY System Commands
	Peek into Saved Workspaces for Variables, Functions and Object Names
)STORE &)PSTORE System Commands are Inverses of)COPY &)PCOPY

	Potential APL64 Project Features
	Microsoft .Net Features
	Multi-threaded Primitive Function Execution
	APL Component Files
	APL ‘Programmer Session’
	Improved User Command Support
	Object-Oriented Features

