

APL+Win 2012 Conference April 22-24

 APL+Win with R

Client/Server
Integration

by

Ajay Askoolum

http://www.apl2000.com http://www.r-project.org/

This paper demonstrates the basic techniques for client/server integration of APL+Win version 11.1 and R
version 2.14.2 (32-bit) for the Windows platform.

R is a programming language for statistical computing and data visualisation. It consists of a language plus a
run-time environment with graphics, a debugger, a number of pre-defined system functions, and the ability to
run programmes stored in script files. R is also extensible via the installation of packages—read libraries; there
are many packages available from a central R repository, as well as others from commercial providers. Unlike
APL+Win, which is proprietary software, R is free software that is subject to a GNU public license.

By integration, I mean using APL+Win as a client to R as server and using R as a client to APL+Win as server.
The technology in question is that of OLE automation, that is, the OLE/COM (Object Linking and
Embedding/Component Object Model) interface. This enables one more option for collaborative application
development.

 The APL+Win developer gains access to the rich statistical analysis and data visualisation capability that R
offers.

 The R developer gains access to the ultimate ‘package’, APL+Win: it can solve or simplify solutions to
problems as yet unthought-of, including the provision of a graphical user interface for an R application.

Table of Contents
Table of Contents .. 1

1. Introduction ... 5

1.1. R Features out of the box ... 5
1.1.1. R Pathways .. 6
1.1.2. R Anything goes, if it works! ... 7

1.2. R Language structural features .. 8
1.2.1. R Session Attributes .. 9
1.2.2. Globalisation tokens ... 9
1.2.3. Environment Variables .. 9

1.3. R Developer hints .. 10
1.3.1. R Session metrics .. 11

1.3.1.1. Object type: query and coercion ... 12
1.4. R Error handling, debugging & control structures .. 12
1.5. Interaction with the filing system ... 13

1.5.1. tempdir() ... 13
1.5.2. tempfile() .. 13

1.6. Platform interface ... 14
1.6.1. Input box ... 14
1.6.2. Message box ... 14
1.6.3. Progress bar .. 14
1.6.4. Shell ... 15

Page 2 of 79

1.6.5. System ... 15
1.7. Workspace/session management ... 15

1.7.1. Active session profile .. 16
1.8. R data structures ... 17

1.8.1. Built-in structures ... 17
1.8.2. Verifying data type .. 18
1.8.3. Data type coercion .. 18

2. Using R as a Server to an APL+Win Client ... 18

2.1. What is Rserve? .. 19
2.2. R Server: Foreground or Background instance? ... 19

2.2.1. R as a foreground server ... 20
2.2.2. R as background server ... 20
2.2.3. R Server considerations .. 20
2.2.4. Managing R objects from APL+Win... 21
2.2.5. R Functions .. 22

2.2.5.1. Passing arguments from APL+Win .. 22
2.2.5.2. Functions are objects .. 22
2.2.5.3. Anonymous functions or lambda expressions .. 23
2.2.5.4. Vagaries of R Scoping Rules .. 23

2.2.5.4.1. Closure .. 24
2.2.5.5. Vagaries of R functions and argument matching .. 24

2.2.6. R Variables .. 25
2.2.6.1. String Arrays .. 25
2.2.6.2. Array collation sequence ... 26

2.2.6.2.1. What transposition? .. 27
2.2.6.2.2. Assigning variables .. 28
2.2.6.2.3. Indirect reference .. 29
2.2.6.2.4. Assigned by value .. 29

2.2.7. R Objects: Functions and variables attributes .. 29
2.2.8. R homogeneous data structures with APL+Win ... 31

2.2.8.1. Vector .. 31
2.2.8.1.1. Familiar vector operations .. 33
2.2.8.1.2. Unfamiliar vector operations .. 34

2.2.8.2. Matrix .. 34
2.2.8.2.1. Other matrices features .. 35

2.2.8.3. Array .. 37
2.2.8.4. Factor and Table .. 37

2.2.9. Homogeneous data generation .. 37
2.2.9.1. Numbers .. 38
2.2.9.2. Literals ... 38
2.2.9.3. Dates ... 38

2.2.10. Homogeneous data coercion .. 39
2.2.11. R heterogeneous data structures with APL+Win .. 40

2.2.11.1. Data Frames .. 41
2.2.11.2. Time Series .. 41

2.2.11.2.1. Time Series - yearly ... 41
2.2.11.2.2. Time Series – yearly by quarter ... 42
2.2.11.2.3. Time Series – yearly by month .. 42
2.2.11.2.4. APL+Win – sending/receiving time series data ... 42

2.2.11.3. List ... 44
2.3. Starting the Server .. 45

3. Using R as a Client to an APL+Win Server ... 45

3.1. The ‘Variable’ property of an APL+Win server ... 46
3.2. APL+Win as Server .. 46
3.3. APL+Win with keywords ... 47

Page 3 of 79

3.3.1. Using rcom .. 49
3.3.1.1. Properties .. 50

3.3.1.1.1. SysVariable .. 50
3.3.1.1.2. Variable ... 50
3.3.1.1.3. Visible .. 50
3.3.1.1.4. Methods .. 50
3.3.1.1.5. Call ... 51
3.3.1.1.6. Exec ... 51
3.3.1.1.7. SetOrphanTimeout .. 51
3.3.1.1.8. SysCall .. 51
3.3.1.1.9. SysCommand ... 51

3.3.1.2. Events .. 52
3.3.2. Advanced investigation of the Exec method .. 52

3.3.2.1. Example 1 .. 52
3.3.2.2. Example 2 .. 52
3.3.2.3. Example 3 .. 53

3.3.3. Using SWinTypeLibs .. 53
3.3.3.1. Properties .. 54

3.3.3.1.1. SysVariable .. 55
3.3.3.1.2. Variable ... 55
3.3.3.1.3. Visible .. 55

3.3.3.2. Methods .. 55
3.3.3.2.1. Call ... 55
3.3.3.2.2. Exec ... 56
3.3.3.2.3. SetOrphanTimeout .. 56
3.3.3.2.4. SysCall .. 56
3.3.3.2.5. SysCommand ... 56

3.3.3.3. Events .. 57

4. APL+Win GUI with R plots .. 57

4.1. Demonstration 1 ... 57
4.2. Demonstration 2 ... 58
4.3. Demonstration 3 ... 60

5. Saving/Loading R client and server objects ... 62

5.1. As a workspace ... 62
5.2. As a script .. 64

6. Why use R? .. 65

6.1. No room for R? ... 65

7. R on the internet .. 66

7.1. CRAN: Comprehensive R Archive Network ... 66
7.2. Who uses R? ... 67

8. Installation .. 68

8.1. RAndFriends .. 68
8.2. RExcel .. 69
8.3. SWord ... 69
8.4. statconn.NET ... 70
8.5. statconnDCOM .. 70
8.6. statconnWS ... 70
8.7. ROOo ... 70
8.8. Scilab within Excel ... 71
8.9. Creating and Deploying an Application with (R)Excel and R ... 71
8.10. Post installation verifications .. 71

8.10.1. Customizing the R shortcut ... 71

Page 4 of 79

8.10.2. R as the OLE/COM client for an APL+Win server .. 72
8.10.3. R as the OLE/COM server for an APL+Win client .. 73

8.10.3.1. R Server characteristics ... 73
8.11. R tour .. 75

9. Conclusion ... 76

9.1. Lest I forget ... 77

References .. 78

Index ... 79

Page 5 of 79

1. Introduction
R is an interactive cross-platform development environment that has robust code and data distribution

functionality. R’s expressive power enables you to do nearly anything, as long as you know how to. One of the
key reasons for R’s success is that there is a lot of goodwill1 and support freely available from the network—
http://groups.google.com/group/r-help-archive/topics—of other R users, referred to as the R mailing list.

> print(R.version.string);

[1] "R version 2.14.2 (2012-02-29)"

> print(win.version());

[1] "Windows XP (build 2600) Service Pack 3"

R is a powerful personal computing language that is highly productive in the hands of subject matter experts,
especially those involved in the analysis and visualisation of data. Its use is widespread among statisticians,
actuaries, clinical researchers, science and mathematics academics, and their students.

Like any well-loved tool, R creates its own comfort zone and tends to be used for disparate associated tasks,
such as data acquisition, generation, and cleaning, which arise routinely in the context of data analysis and
visualisation.

Although R is a self-contained environment, it is of interest to APL+Win developers because of the availability
of packages that enable it to be embedded in an APL+Win application—R can also embed APL+Win—using
DCOM/COM (Distributed/Component Object Model) technology.

1.1. R Features out of the box
By ‘out of the box’ I mean a set-up as described in Installation. In other words, the starting point is R

version 2.14.2 with libraries rcom and rscproxy already installed.

1 Nonetheless, be prepared for terse (condescending?) responses such as ?function, read the FAQ, see
reference etc.

http://groups.google.com/group/r-help-archive/topics

R Pathways

Page 6 of 79

R is a cross-platform development tool. Therefore, it also incorporates a number of features that consolidate
access to platform resources in a standard way.

 This maintains the portability of R code.

 Reduces the reliance on platform specific resources, such as Windows API calls.

My installation of R has the following:

> search()

 [1] ".GlobalEnv" "package:stats" "package:graphics"

 [4] "package:grDevices" "package:datasets" "package:rcom"

 [7] "package:rscproxy" "package:utils" "package:methods"

[10] "Autoloads" "package:base"

In all, this presents a large number of objects to investigate and assimilate.

> sum(sapply(sapply(search(),objects),length))

[1] 2449

> sapply(search(),objects) # Use this to enumerate the objects in each package

This number of objects translates into a learning curve that is simply formidable. However, R is a language of
pathways: there are many ways of achieving the same result, more or less.

 There is overlap among the objects; therefore, the objective is to find the solution that solves the problem
to hand and to investigate further only when the solution is found lacking. The learning curve is tackled on
a need to learn basis.

 The learning curve is incremental; as with APL+Win, you can start with the basics and as fluency increases,
move on to explore the power of R.

1.1.1. R Pathways
As its prime focus, R emphasises the need to accomplish rather than optimize the programming task to

hand. It is the solution rather than its speed that is of the essence. Hence, R is the ultimate personal computing
tool; it blurs the distinction between users and programmers almost completely. Users are the programmers.

R is not a ‘point and click’ environment; it has no graphical user interface building capability and there are no
commercial services whom you can lobby—or indeed pay—for features and functionality2. This explains to
some extent the emergence of overlapping packages: if it is not available, write your own albeit subject to the
constraint that you must comply with laid down standards. R packages tend to be complementary and written
for own use. Then, what better way is there to have the package debugged or enhanced than by making it
freely available?

The opposite scenario—applicable to the commercial world—is to develop packages that evolve without
overlaps with other packages; missing features are introduced on a demand-driven basis and the functionality
is re-factored in order to gain memory and speed efficiencies. R’s stance is to allow technology advances to
address such constraints. Commercial packages tend to be self contained; that is, they replace rather than
complement other packages.

R is rich in pathways—the interconnection of available objects to yield a result. Therefore, it is quite easy to
find a worked example for any given problem, if the result is all that is sought. However, pathways have
implications relating to the efficiency—measured in terms of speed and resource usage—of a given solution. R
is itself a solution and there is some disquiet relating to its speed and resource usage.

Pathways make the learning curve steeper as there are many syntax patterns to learn and they also introduce
the risk of name conflicts. Loading packages diminishes the amount of memory available for personal
computing, increases the prospects of name collisions, and generally makes the investigation of solutions more
strenuous.

An illustration of pathways: What date is today less two years?

> myDate<-Sys.Date();

> print(myDate);

2 One notable exception is Revolution Analytics, see http://www.revolutionanalytics.com/products/revolution-
enterprise.php.

http://www.revolutionanalytics.com/products/revolution-enterprise.php
http://www.revolutionanalytics.com/products/revolution-enterprise.php

R Features out of the box

Page 7 of 79

[1] "2012-02-25"

> # Pathway 1

> print(seq(myDate,length=2,by="-2 years")[2]);

[1] "2010-02-25"

> # Pathway 2

> thisDate<-as.POSIXlt(myDate);

> thisDate$year<-thisDate$year-2;

> print(thisDate);

[1] "2010-02-25 UTC"

> # Pathway 3

> library(lubridate); # load library

Overriding + and - methods for POSIXt, Date and difftime

> print(myDate-years(2));

[1] "2010-02-25"

> detach(package:lubridate); # unload library

Paradoxically, both the key strengths and weaknesses of this language arise from a single feature: the number
of pathways it offers to achieve the same end result. If anything, this aspect of the language worsens, as you
acquire greater fluency, because R is an extensible language. The addition of packages introduces new
keywords and, quite often, there are subtle differences in the end result depending on the solution’s
implementation.

Note that the result of each pathway may require some scrutiny: the first pathway requires indexing as it is the
second element of the output that is the result sought, the second has the suffix UTC (Universal Coordinated
Time) although this is meaningless without time values, and the third carries an overhead that may be
detrimental. Let me illustrate how the name conflict, alluded to earlier, arises.

> # Pathway 2 from above

> d<-as.POSIXlt(myDate);

> d$year<-d$year-2;

> print(d);

[1] "2010-02-25 UTC"

> # Pathway 3

> library(lubridate); # load library

Attaching package: ‘lubridate’

The following object(s) are masked _by_ ‘.GlobalEnv’:

 d

> print(myDate-years(2));

[1] "2010-02-25"

> detach(package:lubridate); # unload library

By simply renaming the identifier in the second pathway, I introduced a name collision. This sort of scenario
simply makes life harder as it cannot be anticipated.

R does not have facilities for producing customised graphical user interfaces. Therefore, applications are run
either from the command line or via script files without user interaction in the conventional sense.

1.1.2. R Anything goes, if it works!
A further feature of R that complicates matters is that everything is an object and there are no invalid

object names. Functions are used as arguments. In some contexts, inadvertently or by design, functions and
variables can be given names that correspond to the keywords in the language or its packages, thereby
masking the original definition.

Therefore, it is impossible to prescribe a naming convention such as Pascal case—where composite words are
used without hyphenation or punctuation and the initial letter of every word is capitalised–or Camel case—as
Pascal case but the initial letter of the first word is in lowercase. Nevertheless, with due diligence, try to use
the Pascal and Camel naming conventions for functions and other identifiers respectively. This is a short
illustration of the foregoing statements.

> # ---

> # This is a script file history.R, copied and pasted into an R session

> # Lines from the script file are shown in red, R's response are in blue

> # ---

> # Define a function named PascalCase that returns its argument squared

> PascalCase<-function(arg){

+ return (arg*2);

R Anything goes, if it works!

Page 8 of 79

+ }

> # Define an identifier named camelCase as a vector

> camelCase<-c(8,2.3);

> # See the value of camelCase

> camelCase

[1] 8.0 2.3

> #Call PascalCase with argument camelCase

> PascalCase(camelCase)

[1] 16.0 4.6

> # Any name for an identifier – note the quotes

> '123'<-c(7,2,3);

> # see its value

> get('123') # Must use the keyword get

[1] 7 2 3

> # else use backquote (`)

> `123`<-c(7,2,3);

> `123`+10;

[1] 17 12 13

> # Any name for a function – beginning with a digit

> '15f'<-function(arg){

+ return(arg+pi);

+ }

> '15f'(10.0); # expect 10 plus constant pi as the result

[1] 13.14159

> # Demonstration - a function as an argument to another function (sapply)

> sapply(c(1,2,3),FUN='15f') # Expect pi plus vector 1 2 3

[1] 4.141593 5.141593 6.141593

> # Demonstration - a function as an argument to another function (sapply)

> sapply(90,FUN='PascalCase'); # Expect 90 times 2

[1] 180

> # c is a keyword - it returns a vector having concatenated its arguments

> # Example – all integers between 1 and 10 inclusive

> c(1:10);

 [1] 1 2 3 4 5 6 7 8 9 10

> # Let's re-define c as a variable

> c=9.34;

> # See its value

> c

[1] 9.34

> # What happened to Concatenate?

> c(1:10);

 [1] 1 2 3 4 5 6 7 8 9 10

> # Confused?

> ls(); # List of user-defined objects in current session.

[1] "123" "15f" "c" "camelCase" "d"

[6] "myDate" "PascalCase" "thisDate"

> # Like-named functions can be confusing e.g.

> # c and C for concatenate and Contrasts (of a factor)

> # I (often used as a counter variable) is a function, stands for AsIs

> # T and F are predefined variables having the expected values of TRUE and FALSE

> # Therefore, T can be used in place of TRUE and F in place of FALSE ... but

> T<-FALSE;

> F<-TRUE;

> # The meanings are now reversed!

1.2. R Language structural features
From the foregoing short demonstration of some of R’s peculiarities—which you should avoid—some

structural features of R become obvious; they provide a bare bone guideline for R programming.

 R is an interpreted language; it supports environments—read ‘scope’ or ‘namespaces’ depending on
context—and can save its sessions as workspaces.

 R is case sensitive.

 It uses index origin 1 for indexing; there is no other option.

 Single-quote (‘) and double-quote (“) can be used interchangeably

 <- and = can be used interchangeably for assignment; comparison is == (equal to) or != (not equal to). The
keyword identical(arg1,arg2) is the direct equivalent of APL+Win match (Ξ). Take care to enclose negative
numbers in round brackets for comparison e.g. R < (-3); otherwise the code becomes ambiguous. One
exception is when calling a function with named arguments; then, you must use = and not <-.

 # marks the start of an in-line comment

R Language structural features

Page 9 of 79

 By convention, { must be the last character on a line; it marks the beginning of a scope. I prefer the C#
convention where the opening and closing double brace characters appear on a line by themselves; this
makes for clearer indentation of code.

 By convention,} must also be the last character on a line; it marks the end of a scope.

 All identifiers between {} are local in so far as it is not possible to define a global variable within a function;
however, with lexical scoping, an identifier in the global scope can be used.

 Semi-colon (;) marks the end of a statement; although it is optional, it is advisable to use it always for the
sake of clarity.

 The keyword return is optional. By default, an R function will return the last value assigned in its scope. It is
advisable to use the keyword always for clarity.

 In command line mode, + denotes a continuation line. R statements can span several lines: the interpreter
senses when a statement is complete or accepts the end of statement marker.. Press Esc to abort the
prompt for completing an expression.

 \ denotes the start of an escape sequence; use / or \\ where \ is required, as in a path name. \r denotes
carriage return, \n denotes new line, \t denotes tab etc. Try cat("This\nis\nan\nexample.") to see the
effect.

 R evaluates complete statements and returns their results, if any, immediately; an error is returned when a
statement is complete but invalid. In other words, it works exactly like APL+Win in interactive mode.

 > is the default command line prompt.

 + is the prompt for continuation lines.

 Press the ESC key to exit the line continuation prompt, where necessary.

1.2.1. R Session Attributes
A number of features of the R interface can be customised. The following enumerates the list of

features:

as.matrix(options(),ncol=2)

Options are queried using

> getOption("digits") # Equivalent of print precision

[1] 7

> options()["width"] # Print width

 [1] 80

> options()$papersize # PDF or Postscript output

[1] "a4"

And, they can be set thus:

> options(digits=9)

The theme of pathways continues: another way to query an option attribute is:

> getOption("digits") # Equivalent of print precision

[1] 9

1.2.2. Globalisation tokens
There are token gestures to globalization, see below, but dates are expected in yyyy-mm-dd format by

default.

> options("OutDec") # Decimal ... Globalisation token

 [1] "."

> Sys.getlocale()

[1] "LC_COLLATE=English_United Kingdom.1252;LC_CTYPE=English_United

Kingdom.1252;LC_MONETARY=English_United Kingdom.1252;LC_NUMERIC=C;LC_TIME=English_United

Kingdom.1252"

> Sys.timezone()

[1] "GMT"

1.2.3. Environment Variables
R has access to Windows environment variables.

> Sys.setenv(newAjay="c:/temp/") # Create a new variable

> Sys.getenv("newAjay") # Get its value

Environment Variables

Page 10 of 79

[1] "c:/temp/"

> Sys.setenv(newAjay="") # Delete an existing environment variable

> Sys.getenv("windir") # Get the system directory

[1] "C:\\WINDOWS"

1.3. R Developer hints
Developers accustomed to Integrated Development Environments (IDE) that have auto completion or

intellisense—a feature that provide hints about the construction of the current line of code—may find the R
command line rather intimidating at first. However, R provides a number of features that eases the pain.

\ The backslash character denotes the start of an escape sequence; use / or \\
instead and R will interpret it correctly. However, the APL+Win server will
not: it will need to change it to \.

str() Fully describes R Objects. For example:

> a<-as.matrix(c(seq(1:10),dim(c(2,5))))

> comment(a)<-"An arbitrary variable"

> str(a)

 int [1:10, 1] 1 2 3 4 5 6 7 8 9 10

 - attr(*, "comment")= chr "An arbitrary variable"

search() Enumerates the list of packages already loaded.

> search()

 [1] ".GlobalEnv" "package:stats" "package:graphics"

 [4] "package:grDevices" "package:datasets" "package:rcom"

 [7] "package:rscproxy" "package:utils" "package:methods"

[10] "Autoloads" "package:base"

xxx{tab} {tab} Lists the keywords available that begin with xxx.

> as.character

as.character as.character.condition

as.character.Date as.character.default

as.character.error as.character.factor

as.character.hexmode as.character.numeric_version

as.character.octmode as.character.POSIXt

as.character.srcref

?keyword or help(keyword) Invokes the help available on keyword in a separate window.

?data.frame or help(data.frame)

Function Typing a function name without () lists that function. A large number of R

functions are defined in R itself.
> rownames

function (x, do.NULL = TRUE, prefix = "row")

{

 dn <- dimnames(x)

 if (!is.null(dn[[1L]]))

 dn[[1L]]

 else {

 nr <- NROW(x)

 if (do.NULL)

 NULL

 else if (nr > 0L)

 paste(prefix, seq_len(nr), sep = "")

 else character()

 }

}

<bytecode: 02336AE8>

<environment: namespace:base>

ls() Enumerates the contents of the current session.

> ls()

[1] "a"

rm() or remove() Expunges the arguments from the current session; raises a warning if any of

the arguments does not exist.
> rm(a,b)

R Developer hints

Page 11 of 79

apropos() Finds all objects which contain the argument as a substring.

> apropos("union")

[1] ".__C__ClassUnionRepresentation" "isClassUnion"

[3] "setClassUnion" "ts.union"

[5] "union"

comment() Adds an arbitrary comment to any object.

> comment(a)<-"An arbitrary variable"

Profile of a function using
several primitives.

Querying attributes of functions.
> aoc<-function(radius=5){return(pi * radius^2);}

> comment(aoc)<-"Calculate area of a circle given its radius"

> formals(aoc)

$radius

[1] 5

> names(formals(aoc))

[1] "radius"

> args(aoc);

function (radius = 5)

> body(aoc); # Note position of double braces.

{

 return(pi * radius^2)

}

> str(aoc);

function (radius = 5)

 - attr(*, "srcref")=Class 'srcref' atomic [1:8] 1 6 1 47 6 47

1 1

 - attr(*, "srcfile")=Classes 'srcfilecopy', 'srcfile'

<environment: 0x01cce2e8>

 - attr(*, "comment")= chr "Calculate area of a circle given its

radius"

> aoc()

[1] 78.53982

1.3.1. R Session metrics
A number of metrics are necessary for managing R optimally.

Memory
> memory.limit() # Query available memory

[1] 1535

> memory.limit(2000) # Allocate 2000 MB

[1] 2000

> memory.limit() # Check Allocation

[1] 2000

> gc() # Force garbage Collection

 used (Mb) gc trigger (Mb) max used (Mb)

Ncells 186466 5.0 407500 10.9 350000 9.4

Vcells 174328 1.4 905753 7.0 786254 6.0

> memory.size() # Memory currently in use (MB)

[1] 13.63

Object Class
> as.matrix((sapply(.GlobalEnv, typeof)),ncol=1) # Object Class

 [,1]

as "double"

allObjects "closure"

abc "integer"

Object Size
> as.matrix(sapply(sapply(ls(.GlobalEnv),get),object.size),ncol=1) # Object Bytes

 [,1]

abc 424

allObjects 2828

as 56

Timing
> data(mtcars)

> system.time(capture.output(mtcars)) # Timing for capture.output(mtcars)

 user system elapsed

 0.02 0.00 0.07

Object
Exists

> exists("abc")

[1] TRUE

R Session metrics

Page 12 of 79

1.3.1.1. Object type: query and coercion

R has a large number of functions for querying and coercing its variables/data structures in its default
Installation as described below. The prefix * in a name indicates that both the ‘is’ and ‘as’ counterparts to the
function name exists; otherwise the actual prefix is shown. It is probably advisable to explore this set of
functions on a ‘need-to’3 basis since they relate to either very advanced R usage or its interfacing with other
languages like C or FORTRAN.

*.array as.array.default *.call

*.character as.character.condition as.character.Date

as.character.default as.character.error as.character.factor

as.character.hexmode as.character.numeric_version as.character.octmode

as.character.POSIXt as.character.srcref *.complex

*.data.frame as.data.frame.array as.data.frame.AsIs

as.data.frame.character as.data.frame.complex as.data.frame.data.frame

as.data.frame.Date as.data.frame.default as.data.frame.difftime

as.data.frame.factor as.data.frame.integer as.data.frame.list

as.data.frame.logical as.data.frame.matrix as.data.frame.model.matrix

as.data.frame.numeric as.data.frame.numeric_version as.data.frame.ordered

as.data.frame.POSIXct as.data.frame.POSIXlt as.data.frame.raw

as.data.frame.rcomdata as.data.frame.table as.data.frame.ts

as.data.frame.vector as.dendrogram as.difftime

as.dist *.double as.double.difftime

as.double.POSIXlt *.environment *.expression

as.expression.default *.factor as.formula

*.function as.function.default as.graphicsAnnot

as.hclust as.hexmode *.integer

*.list as.list.data.frame as.list.Date

as.list.default as.list.environment as.list.factor

as.list.function as.list.numeric_version as.list.POSIXct

*.logical as.logical.factor *.matrix

*.name *.null as.null.default

*.numeric *.numeric_version as.octmode

*.ordered *.package_version *.pairlist

as.person as.personList *.raster

*.raw *.real *.relistable

as.roman *.single as.single.default

*.stepfun *.symbol *.table

as.table.default *.ts as.vector

as.Date as.POSIX

You can also query various other characteristics of the active session, especially when

debugging a stubborn bug:

> sessionInfo()

R version 2.14.2 (2012-02-29)

Platform: i386-pc-mingw32/i386 (32-bit)

locale:

[1] LC_COLLATE=English_United Kingdom.1252

[2] LC_CTYPE=English_United Kingdom.1252

[3] LC_MONETARY=English_United Kingdom.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_United Kingdom.1252

attached base packages:

[1] stats graphics grDevices datasets utils methods base

other attached packages:

[1] rcom_2.2-3.1.1 rscproxy_1.3-1

loaded via a namespace (and not attached):

[1] tools_2.14.2

1.4. R Error handling, debugging & control structures
R has some error handling and debugging capability and has control structures like any other language.

Refer to the language manuals for details: these topics are perhaps best approached on a #need-to’ basis.

3 Usually, when debugging code.

Interaction with the filing system

Page 13 of 79

1.5. Interaction with the filing system
R has a full range of file manipulation functions. In order to query the mode and options of usage, use:

> ?file.[function];

Note that these functions promote platform independence; they rely on low level calls into the operating
system to deliver code that behaved uniformly across platforms.

file.access(file) Returns the file access matrix.
file.append(file1, file2) Concatenates files.
file.choose() Displays a file open dialogue. This command is highly configurable for filtering of

files by name or extension.
file.create(file) Creates the file or truncates it if it exists already.
file.edit(file) Opens the file in a new R window for editing.
file.exists(file) Returns TRUE or FALSE depending on whether the file exists.
file.info(file) Provides information on the file.

> file.info("c:/boot.ini")$isdir;

FALSE

file.link(from, to)
file.path(…,fsep) Assembles a file name.

> file.path("c:","ajay","RSTATS","SCRIPTS","AJAY.R",

fsep=.Platform$file.sep)

[1] "c:/ajay/RSTATS/SCRIPTS/AJAY.R"

file.remove(file) Delete the file.
file.rename (from, to) Self-explanatory.
file.show(file) Opens the file in a new R window.
file.symlink

1.5.1. tempdir()
This function returns the fully qualified temporary directory path; the result can be used directly for

processes in R—note the double\\ --but for APL+Win. Also, you need to add the trailing \\.

> tempdir()

[1] "C:\\DOCUME~1\\AJAYAS~1\\LOCALS~1\\Temp\\Rtmp2f270T"

For R:

> paste(tempdir(),"\\","myfile.txt",sep="");

[1] "C:\\DOCUME~1\\AJAYAS~1\\LOCALS~1\\Temp\\Rtmp2f270T\\myfile.txt"

> gsub("\\\\","/",filename)

[1] "C:/DOCUME~1/AJAYAS~1/LOCALS~1/Temp/Rtmp2f270T/filebcc3ad439e0.log"

For APL+Win a simple expression can change the R path separator into a conventional one:

 R„'C:\\DOCUME~1\\AJAYAS~1\\LOCALS~1\\Temp\\Rtmp2f270T\\myfile.txt'

 r„'C:/DOCUME~1/AJAYAS~1/LOCALS~1/Temp/Rtmp2f270T/myfile.txt'

 ¯1‡¹((('\/'¼R)=2+Œio)›R),¨'\'

C:\DOCUME~1\AJAYAS~1\LOCALS~1\Temp\Rtmp2f270T\myfile.txt

 ¯1‡¹((('\/'¼r)=2+Œio)›r),¨'\'

C:\DOCUME~1\AJAYAS~1\LOCALS~1\Temp\Rtmp2f270T\myfile.txt

1.5.2. tempfile()
This function returns the fully qualified name of a temporary file, suitable for R syntax.

> filename<-tempfile(,fileext=".log"); # Default location

> filename

[1] "C:\\DOCUME~1\\AJAYAS~1\\LOCALS~1\\Temp\\Rtmp2f270T\\filebcc3ad439e0.log"

Such a file can be used for, say, logging progress:

> connection<-file(filename,"w"); # option = r|w|a|rb|wb|ab i.e read|write|append [binary]

> writeLines("arbitrary text",connection);

> close(connection);

Until you close the handle or connection, it remains available for writing to the file from anywhere within your
script.

Progress bar

Page 14 of 79

1.6. Platform interface
The Windows version of R4 provides a number of standard graphical dialogues. These dialogues are

especially handy when you are running scripts that are time-consuming.

 Use the input box for introducing run time values into your script.

 Use the message box for managing pathways in your script depending on the options at runtime.

 Use the progress bar to provide visual feedback on progress.

1.6.1. Input box

This is similar to the Windows InputBox
dialogue. This always returns a value: either
the content of the edit box or NULL is
returned depending on whether OK or Cancel
is clicked.

Use one of the coercion functions to change
the type of the returned value, e.g.

> pValue<-winDialogString("ID","0");

> as.numeric(pValue);

[1] 1902

1.6.2. Message box
Use this dialogue to provide feedback and to prompt for interaction with the user.

> winDialog("yesno",'options:\r\n "ok"|"okcancel"|"yesno"|"yesnocancel"');

[1] "YES"

This dialogue returns the caption of the key that is clicked,
in capitals.

Refer to the message shown in the picture: the options for
the first argument. The choice of the first argument
determines the caption of the dialogue.

1.6.3. Progress bar
This dialogue provides visual verification of progress; it is useful for processes that take a very long

time. The initial picture shows the start of the process and the second picture updates to indicate progress in
terms of percentage.

Copy and paste the following code to re-create the demonstration.

pBar<-winProgressBar("Transaction", " Feedback %",0,100,50)

Sys.sleep(4)# Delay - change to a higher number if required

for(i in c(0, sort(runif(20, 0 ,100)), 100)) {

 Sys.sleep(0.1)

 info <- sprintf("%d%% done", round(i))

 setWinProgressBar(pBar, i, sprintf("Rolling back changes (%s)", info), info)

}

Sys.sleep(0.5); # Delay

close(pBar); # Close

4 R does not have access to Win32 API calls.

Workspace/session management

Page 15 of 79

The script closes the dialogue automatically at the end.

1.6.4. Shell
This function allows an operating system command to be executed. For full details of this command,

see:

> ?shell

For example, in order to obtain a directory listing, the command is:

> a<-shell("dir",translate=TRUE,intern=TRUE);

Note the assignment of the results to an R variable: specifying intern=TRUE pipes the results into an R object in
the R session.

1.6.5. System
This function allows an operating system command or platform application to be launched. For full

details of this command, see:

> ?system

For example, in order to launch APL+Win, the command is:

> system('"C:/Program

Files/APLWINV11/aplw.exe"',minimized=FALSE,intern=FALSE,wait=FALSE,invisible=FALSE);

Note that the file specification needs to use / instead \ and that it is enclosed in both single and double quotes.
R requires the command to be enclosed in quotes—the single quote—and Windows requires any path that has
embedded spaces to be enclosed in quotes—the double quote.

This corresponds directly with the APL+Win Œcmd system function.

1.7. Workspace/session management
By default, R and APL+Win both use workspaces, a binary dump of the active session; workspaces are

archived to and re-created from files. There are similarities in the languages’ management of their respective
workspaces.

 APL+Win R
5

Default file extension .W3 .RDATA
Default file location This is the Start In property of the shortcut of each language.
Drop workspace)DROP filename

6
 unlink(filename)

Clear workspace)CLEAR rm(list=ls(all=TRUE)
Clear Session Ctrl+A | Delete Ctrl+L
Save workspace)SAVE filename save.image(filename)
 Or
 save(object1,object2,..object3,file=filename)

save.image()
Load workspace)LOAD filename load(filename,[environment]7)

5
 R commands are case-sensitive.

6The file name must be fully qualified. Use double \ or single / to separate the path tree.
7 The optional environment argument specifies a namespace which is the global one by default.

Active session profile

Page 16 of 79

 APL+Win R5

View contents of workspace ⎕nl 2 3

And
'#' ⎕wi 'children'

ls.str()
Or
objects();

Copy all executable lines CTRL+A | CTRL+Shift+G history(Inf)

 This copies the executable

lines to the clipboard.
This opens a script editor session which contains
all the lines executed in the current session.

Note:

 APL+Win and R workspaces are not interchangeable or usable by each other; this is very likely a blessing in
disguise!

 APL+Win can copy a custom list of objects from a workspace file, that is from disk, but cannot save such a
list to a workspace file. The reverse applies to R.

 Query and change the default file location using Œchdir '' and Œchdir existingPath with APL+Win
and getwd() and setwd(existingPath) with R. When changing paths, they must already exist otherwise an
error occurs. The Start In property of shortcuts promotes a sound mechanism for keeping projects in
distinct locations—this implies that you should setup different shortcuts for each project.

 APL+Win workspaces may have a latent expression that is sometimes used to configure the session
automatically by reading additional objects from other workspace, component files, or databases. R
workspaces do not have latent expressions; R workspaces can be configured via script file(s) which may
load workspaces cumulatively and fix functions and variables from the script file(s).

 Workspaces provide a very convenient mechanism for making ready the APL+Win and R sessions either for
interactive use or for use as COM servers or COM clients.

 I am not going to use namespaces or code snippets that involve complex numbers: APL+Win has neither of
them.

1.7.1. Active session profile
APL+Win has a rich set of primitive functions that query selective aspects of the active session. R has

similar features.

> # Clean session

> rm(list=ls());

> #Create a numeric matrix

> nMatrix<-matrix(c(1,2.3,5,4),ncol=2);

> # Get a predefined data structure

> data(mtcars);

> #Create a character vector

> cVector<- strsplit("this is a sentence"," ");

> # Define a function

> AllObjects<-function(oopType="class"){

+ return(as.matrix((sapply(.GlobalEnv, FUN=oopType)),ncol=1))

+ }

> AllObjects(); # Will query "class"

 [,1]

AllObjects "function"

nMatrix "matrix"

cVector "list"

mtcars "data.frame"

> AllObjects("typeof"); # query "typeof"

 [,1]

AllObjects "closure"

nMatrix "double"

cVector "list"

mtcars "list"

> AllObjects("mode"); # query "mode"

 [,1]

AllObjects "function"

nMatrix "numeric"

cVector "list"

mtcars "list"

> AllObjects("is"); # query list of classes

 [,1]

R data structures

Page 17 of 79

AllObjects Character,3

nMatrix Character,4

cVector Character,2

mtcars Character,4

> #Result gives the type of elements and number of elements e.g.

> is(AllObjects);

[1] "function" "OptionalFunction" "PossibleMethod"

> # Define another function

> ObjectSize<-function(){

+ return(as.matrix(sapply(sapply(ls(.GlobalEnv),get),object.size),ncol=1))

+ }

> ObjectSize(); # Size of active session objects in bytes

 [,1]

AllObjects 2892

cVector 208

mtcars 5336

nMatrix 144

ObjectSize 2884

> # Memory

> memory.size() # reports the current or maximum memory allocation of the malloc function

used in this version of R.

[1] 12.88

> memory.limit() # reports or increases the limit in force on the total allocation.

[1] 1535

> # memory.limit(100) # allocates 100MB

All the facilities illustrated should be familiar to an APL+Win developer with one possible exception, namely,
the reference to .GlobalEnv: this is the name of the default namespace. The R primitive ls() defaults in scope to
its environment—in this case the function in which it is used—and it is necessary to specify the default
namespace to obtain session rather than scope items or values.

1.8. R data structures
A basic understanding of R data structures is critical for two reasons.

 First, the data structures underpin the statistical and data visualisation facilities that R offers; therefore,
some fluency with the data structures is a pre-requisite to exploring R.

 Second, it is necessary to understand how to manage data acquisition and transfer between R and
APL+Win—in a COM client/server coupling context—to be able to draw on the R and APL+Win respective
features.

The natural data structure in R is a vector--every other structure is a vector with appropriate attributes; for
example, a matrix is a vector with a dimensions attribute. The key primitive function in defining any data
structure is concatenation, for example, c(1,2,3) is a vector of three elements. Note that elements are always
separated by comma, unlike APL+Win, which also allows space as the separator.

1.8.1. Built-in structures
A matrix is a subset of the array class; it always has two dimensions. A vector is also a subset of the

array class; it always has one dimension. Scalars do not exist; a scalar is simply a vector of length one. Each of
these contain homogeneous data of type numeric, character, complex, or logical with or without missing
values—designated as NA.

 Structure Dimensions Type Verification
Homogeneous

 vector 1 Numeric | Character | Complex | Logical is.vector(obj| value)
 array n Numeric | Character | Complex | Logical is.array(obj| value)
 matrix 2 Numeric | Character | Complex | Logical is.matrix(obj| value)
 factor 1 Numeric | Character is.factor(obj| value)
 table 2 Numeric Is.table(obj)
Heterogeneous

8

8 These data structures have a pre-defined format; in other words, they are not free-form as APL+Win nested
variables.

Data type coercion

Page 18 of 79

 data.frame Numeric, Character, Complex, Logical is.data.frame(obj)
 ts Numeric, Character, Complex, Logical Is.ts(obj)
 list Numeric, Character, Complex, Logical, Function,

Expression, Formula
is.list(obj)

 APL+Win does not support the complex data type—except in user-defined code—so it will remain out of
scope of this article.

 R missing values, NA, do not have an equivalent in APL+Win; this will also remain out of scope.

1.8.2. Verifying data type
Unlike strongly typed languages such as C#, R, like APL+Win, does not permit the type of variables to be

declared prior to assignment of values. Variables come into existence upon assignment and their type is
inferred within context. Also, like APL+Win variables, R permits its objects to be re-assigned data of the same
or different type.

It is interesting to note that there is no ‘is.Date’ function—you need to use install another package for this or
write your own function.

The ‘as.Date’ function takes a number (days elapsed from the origin) as its first argument and a date origin as
the second.

> as.Date(23.2333,origin="2000-01-01") # Ignores the fractional part

[1] "2000-01-24"

> as.Date(23.2333,origin="1970-01-01") # Ignores the fractional part

[1] "1970-01-24"

For intensive date arithmetic, it might be better to use APL+Win than R, if only because with API calls, you can
cope with not only locale but also time, that is, with time stamps.

The following table summarises the common method for querying the type of an object.

Type Syntax Result
Numeric is.numeric(obj | value) TRUE | FALSE
Character is.character(obj | value) TRUE | FALSE
Complex is.complex(obj | value) TRUE | FALSE
Logical is.logical(obj | value) TRUE | FALSE
Function is.function(obj) TRUE | FALSE
Expression is.expression(obj | value) TRUE | FALSE
Formula - -

1.8.3. Data type coercion
Where objects (that is variables) are conformable, R has built-in functions for converting one type of data to
another; failure raises an error and if the result is assigned to a variable, the value is NA

9
.

 as.numeric (obj | value) coerces its argument to numbers.

 as.character(obj|value) coerces its argument to character.

 as.complex(obj|value) coerces its argument to complex.

 as.logical(obj|value) coerces its argument to logical; the two states are TRUE and FALSE.

2. Using R as a Server to an APL+Win Client
I have found three ways of deploying R as a server to an APL+Win client.

1. Rserve – a TCP/IP server. APL+Win can use Œni; however, it is not that simple.
2. R as a background server.
3. R as a foreground server.

9 The value NA corresponds to NULL values: a NULL value is not equal to any other value, including another
NULL value.

R Server: Foreground or Background instance?

Page 19 of 79

2.1. What is Rserve?
The Rserve homepage, http://www.rforge.net/Rserve/index.html, answers this question as follows:

"Rserve is a TCP/IP server which allows other programs to use facilities of R (see www.r-project.org) from
various languages without the need to initialize R or link against R library. Every connection has a separate
workspace and working directory. Client-side implementations are available for popular languages such as
C/C++, PHP and Java. Rserve supports remote connection, authentication and file transfer. Typical use is to
integrate R backend for computation of statistical models, plots etc. in other applications. "

A pre-requisite to using Rserve is a client; see http://www.rforge.net/Rserve/dev.html for the specification. A
client implemented in C# is at http://sourceforge.net/projects/rservelink/files/. For other documentation, see
http://www.rforge.net/Rserve/.

This offers another means of APL+Win and R client/server coupling. There are several options, including
writing a client in APL+Win using Œni, writing a COM interface using C# that will act between Rserve and
APL+Win etc.

At this stage, this is still very much research in progress; it offers another option for using R as a Server with an
APL+Win client.

2.2. R Server: Foreground or Background instance?
R can act either as an in-process server, that is, in the background and invisible or as an out-of-process

server, that is, in the foreground and visible.

In deployment, the preferred mode must be to use R in the background as this promotes a more robust
arrangement—nothing can make changes to the session except the client and this mode may be the faster of
the two.

 During application development, either mode will work fine but a foreground server may be more desirable.

 Interaction with the R server is possible: you can examine and make changes in its session.

 The full functionality of the R server is available from its console: you can switch to it and execute
commands or invoke help on R primitives etc.

 Initially, code construction and debugging is much easier from the server’s console than from APL+Win’s
interactive mode simply because you eliminate the overhead of translating R code into APL+Win code.

My own preference is to use the background server with debugged scripts and the foreground server to
construct the scripts. The R expression history(Inf) captures all lines executed in the current session, including
itself, into an unnamed script file that is shown in a window.

The script may be edited as
required; usually, you should add a
comment relating to the creation
date and purpose of the file.

The script may be re-executed
with the following expression:

source("C:/AJAY/RSTATS/SCRIPTS/
versions.R")

From the user interface, use File |
Source R Code …

http://www.rforge.net/Rserve/index.html
http://www.r-project.org/
http://www.rforge.net/Rserve/dev.html
http://sourceforge.net/projects/rservelink/files/
http://www.rforge.net/Rserve/

R Server considerations

Page 20 of 79

 Save a script with extension R using File | Save; note that the file is a plain text file.

 One script file may execute other script files using their respective fully qualified name; however,
history(Inf) will show the reference to these other files rather than their respective contents.

2.2.1. R as a foreground server
In order to use R as an out-of-process or foreground server, R must be running. It is convenient to

launch R from APL+Win using the following function.

 ’ RFServer;Œelx

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Œelx„'…Œlc'

[3] :if 0=Ÿ/×Œwcall ¨(››'FindWindow'),¨0,¨›¨'R Console' 'R Console with APL+Win

 COM Client'

[4] © Start R & wait until an R session has started.

[5] 0 0½ŒWCALL 'WinExec' 'C:\Program Files\R\R-2.14.2\bin\i386\Rgui.exe' 'SW

 _SHOWMINIMIZED'

[6] :endif

[7] Œwself„'‘rfs' Œwi 'Create' 'RCOMServerLib.StatConnector'

[8] Œwi 'XInit' 'R'

[9] Œwi 'XEvaluateNoReturn' 'utils::setWindowTitle("with APL+Win COM Client")'

[10] © '‘rfs' Œwi 'Create' '{3660C348-DF59-4CA2-83E8-3A913A9FBC77}' © Using clsid

[11] 0 0½Œwcall 'ShowWindow' ('#' Œwi 'hwndmain') 'SW_SHOWNORMAL'

[12] '#' Œwi 'caption' "APL+Win using R as COM Server"

 ’

On line [5], specify the fully qualified name of the R executable; this is easily found in the target box of the R
desktop shortcut.

I am using the standard R graphical user interface (GUI), R Console: if you opt for another interface, the name
of the executable will differ.

Starting the R server may take a variable length of time with the consequence that line [7] may occasionally
fail. In order to circumvent this, line [2] establishes an error handler that causes line [7] to be re-executed. Be
warned that if you do not have a working version of R, this function will execute indefinitely.

In order to provide a means of visually identifying the server and client, both their captions are changed in
lines [9] and [12] respectively.

2.2.2. R as background server
Creating an in-process or background instance of R server does not affect any running R sessions. The

following function creates an in-process instance of R as a server.

 ’ RBServer

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Œwself„'‘rbs' Œwi 'Create' 'StatConnectorSrv.StatConnector'

[3] Œwi 'XInit' 'R'

[4] Œwi 'XEvaluateNoReturn' 'utils::setWindowTitle("R with APL+Win COM Client")'

[5] © Or '‘rbs' Œwi 'Create' "{18C8B662-81A2-11D3-9254-00E09812F727}" © using clsid

[6] '#' Œwi 'caption' "APL+Win using R as COM Server"

 ’

Note that the background instance can be created regardless of whether there is a visible R session; a new
instance is created always.

2.2.3. R Server considerations
Irrespective of whether you choose to use an in-process or an out-of-process server, it is advisable to

close all existing R sessions before creating the server instance. This eliminates the risk of confusion—you
know exactly which instance of R is acting as the server—and ensures that machine resources are available for
the R server session.

As a further visual verification, lines [9] and [4] of RFServer and RBServer, respectively, modify the caption of
the R session, although the instance created by RBServer is never visible.

Neither type of server exposes a ‘Visible’ property so the decision as to which type of instance is preferable is a
foregone conclusion as soon as you decide whether you want a visible or invisible session. Both instances
expose the same set of methods and neither exposes any properties or events.

R Server: Foreground or Background instance?

Page 21 of 79

2.2.4. Managing R objects from APL+Win
If you need user-defined functions or variables in R, the most expedient approach is to define and

debug the functions in R and then save the definition either as a script or you can save the R workspace.
APL+Win can then run the script or load the R workspace programmatically. This ensures that the R instance
contains bug free code and variables.

Saving the R Workspace

setwd("c:/temp") # Set the default location

save.image("file.rdata") # Extension is RDATA. Save the workspace

load(“file.rdata”) # Load the workspace from the default location

save.image("c:/temp/file2.rdata) # Saving with fully qualified name

load("c:/temp/file2.rdata) # Loading with fully qualified name

Saving the workspace saves all the contents in the active session. A workspace can be saved or loaded from
within APL+Win.

 Œwi 'XEvaluateNoReturn' 'save.image("c:/temp/ajay.rdata")' © Save the active WS

 Œwi 'XEvaluateNoReturn' 'load("c:/temp/ajay.rdata")' © Load an R WS

In order to select a
workspace or file under
programme control, the
following command invokes
a graphical interface for file
selection:

> file.choose();

The dialogue returns the name of the file; if it is a workspace, it may be opened by the following APL+Win
function.

. ’ LoadRWS;Œelx;file

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Choose a workspace using a GUI and load it.

[3] Œelx„'…Œlc+1'

[4] file„Ð

[5] file„Œwi 'XEvaluate' 'file.choose()'

[6] :if 0¬½file

[7] Œwi 'XEvaluateNoReturn' ('load(#)' InLineExpression file)

[8] :endif

 ’

In order to load a script—this can contain multiple variables and functions—into the active R session, use the
following expression.

 Œwi 'XEvaluateNoReturn' 'source("C:\\AJAY\\RSTATS\\SCRIPTS\\AreaofCircle.R")'

 Œwi 'XEvaluateNoReturn' ('source("")' InLineExpression file)

The argument file specifies either a file name retrieved from the file.choose() dialogue or is hardcoded.

The configuration of the R server session using either a workspace or a script file is faster and less error prone
than achieving the same task from APL+Win.

R Functions

Page 22 of 79

2.2.5. R Functions
It is possible to create functions and variables programmatically from the APL+Win client; it is

imperative that you use a fail-safe naming convention for your identifiers as the penalty may be a locked
APL+Win session. The APL+Win naming convention—without any APL characters—is fail-safe within R.

R functions are a simple string vector: an APL+Win string of rank 1. Edit and define function definitions as
follows:

 fnDef„' '

)edit fnDef

 fnDef © Examine the contents

aoc<-function (radius = 0)

{

 radius[is.na(radius)] <- 0;

 return(pi * radius^2);

}

 ½fnDef

92

 Œwi 'XEvaluateNoReturn' (fnDef~Œtcnl)

 © Call the function

 Œwi 'XEvaluate' 'aoc(6)'

113.0973355

 Œwi 'XEvaluate' 'aoc()' © Default value will be used

0

 Functions need to be fairly robust; this function defaults its single argument to 0, and treats missing values
as 0.

 R functions naturally extend to take any suitable R data structure as arguments. In this case, the function is
defined with a scalar argument. However, it will cope with arguments of other data structures.

 Œwi 'XEvaluate' 'aoc(c(2,NA,4.5))'

12.56637061 0 63.61725124

2.2.5.1. Passing arguments from APL+Win

An alternative to creating the argument in R or embedding the arguments is to use the following syntax:

 Œwi 'XEvaluate' ('aoc(c())' InLineExpression 'c(9,10,10)')

254.4690049 314.1592654 314.1592654

The function InLineExpression combines the function name and its arguments and returns it as a string; this
avoids having to create a variable in R to hold the arguments and the function call is completed in a single step.

It is a little cumbersome to embed the arguments of a function: the XEvaluate method takes only one
argument. A suitable workaround is to define the argument(s) of any function as variables in the R session and
then to call the R function.

 Œwi 'XSetSymbol' 'rad' (2 3½2 4 0 12 1.5 5)

 Œwi 'XEvaluate' 'aoc(rad)'

 12.56637061 50.26548246 0

 452.3893421 7.068583471 78.53981634

Although it is much more convenient to pass an APL+Win variable as the value of an R variable, sometimes it is
expedient to code the values manually; for instance, if you want to include an R value type line NA.

 Œwi 'XEvaluateNoReturn' 'rad2<-c(2,4,NA,12,1.5,5);'

 Œwi 'XEvaluate' 'aoc(rad2)'

12.56637061 50.26548246 0 452.3893421 7.068583471 78.53981634

2.2.5.2. Functions are objects

R functions are objects; therefore, they pass their attributes to another object when assigned.

 Œwi 'XEvaluateNoReturn' 'f<-get("aoc",mode="function");'

 Œwi 'XEvaluate' 'f(c(1:5));'

3.141592654 12.56637061 28.27433388 50.26548246 78.53981634

It is also possible to execute the function using the following syntax:

 Œwi 'XEvaluate' 'do.call("aoc",list(c(1:5)));'

3.141592654 12.56637061 28.27433388 50.26548246 78.53981634

Note that when executed this way, the arguments must be specified as a list.

R Server: Foreground or Background instance?

Page 23 of 79

2.2.5.3. Anonymous functions or lambda expressions

R permits function definitions without name, that is, lambda expressions. Such functions are defined
and executed all at once. An example:

> AreaOfRectangle<-function(x,y){

+ z<-(function(x,y){return(x*y);})(x,y); # Lambda Expression

+ return(z);

+ }

> x<-sample(1:10,4); # 4 random numbers between 1 and 10

> y<-sample(1:10,8); # 8 random numbers between 1 and 10

> y

[1] 3 6 5 10 2 8 1 4

> y

[1] 3 6 5 10 2 8 1 4

> AreaOfRectangle(x,y);

[1] 9 42 10 60 6 56 2 24

2.2.5.4. Vagaries of R Scoping Rules

R has the concept of environment. In an R session, the environment is .GlobalEnv. and can be seen as a
namespace. However, R user-defined functions create their own environment or scope. This can cause some
nasty surprises simply because the source code—where the variable is declared—may fail to provide any clues
about the scope of variable.

R uses lexical scoping: that means that if an identifier is referenced within the scope of a function (between
double braces), the value of that identifier is sought within that local scope and if not found it will be sought in
the environment scope. If the environment does not have that identifier, an error occurs. The scope of a
calling function is never examined to determine if that identifier existed therein. The following example
illustrates this point.

> envSV<-100; # This identifier has environment scope

> Func1<-function(){

+ envSV<-200.175; # This has function scope ... it will never be used by func2()

+ return(Func2(20.78));

+ }

> Func2<-function(arg){

+ return(arg+envSV);

+ }

> # call func1 which in turn calls func2

> Func1()

[1] 120.78

> # Environment Value(100) plus 20.78

> # Erase the Environment Value ... func1() should fail

> rm(envSV); # or remove(envSV)

> Func1()

Error in func2(20.78) : object 'envSV' not found

APL+Win uses Dynamic Scoping.

 A calling function passes all it local variables to the called function.

 Any variable localised in the calling function masks that variable: a variable of the same name in the global
scope is inaccessible.

The corresponding APL+Win code and difference in behaviour is illustrated below.

 envSV„200

 Œvr ¨ 'Func1' 'Func2'

 ’ Z„func1;envSV

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] envSV„200

[3] Z„Func2 20.78

 ’

 ’ Z„Func2 R

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Z„R+envSV

 ’

 Func1

220.78

)erase envSV

 Func1

220.78

R Functions

Page 24 of 79

 © Func2 used envSV that is local to its calling function Func2 AND not its global

instance

2.2.5.4.1. Closure

Like many languages, R has the concept of ‘Closure’; this does not exist in APL+Win. Essentially, this has
a critical bearing on understanding the scope of R objects. Refer to these links for an explanation of what this
means.

http://www.lemnica.com/esotericR/Introducing-Closures/ R Language
http://www.codethinked.com/c-closures-explained C# Language

2.2.5.5. Vagaries of R functions and argument matching

APL+Win functions are either niladic (no argument), monadic (one arguments, always as the right-hand
argument), dyadic (two arguments, one left and one right- hand arguments), or ambivalent (as dyadic, except
that the left-hand argument is optional). Moreover, by default, the conventional APL+Sin function signature
does not permit argument matching by position.

All R functions are ambivalent and polyadic irrespective of the way they are coded, their arguments can have
default values, and arguments can be passed by name or by position.

> # No error trapping

> RFuncVer1<-function(R,L){

+ return(L+R);

+ }

> RFuncVer1();

Error in L + R : 'L' is missing

> #Incomplete error trapping

> RFuncVer2<-function(R,L){

+ if (missing(L)){

+ L<-10;

+ }

+ return(L+R);

+ }

> RFuncVer2();

Error in L + R : 'R' is missing

> # Better signature verification

> RFuncVer3<-function(R,L){

+ if (missing(L)){

+ L<-10;

+ }

+ if (missing(R)){

+ R<-10;

+ }

+ return(L+R);

+ }

> RFuncVer3();

[1] 20

> # Much simpler approach to cope with ambivalence

> RFuncVerAlt<-function(R=10,L=10){

+ return(L+R);

+ }

> RFuncVerAlt();

[1] 20

> # NOTE: There is still no verification for the type of L and R

> RFuncVerAlt(,9); # Argument by position

[1] 19

> RFuncVerAlt(1,9); # Argument by position

[1] 10

> RFuncVerAlt(R=9);# Argument by Name

[1] 19

R has a further subtlety in matching arguments. Consider the following function.

> ArgMatch<-function(sideFirst=1,sideFinal=10){

+ return(sideFirst+sideFinal);

+ }

> ArgMatch(sideFi=10,5); # Does not resolve uniquely

Error in ArgMatch(sideFi = 10, 5) :

 argument 1 matches multiple formal arguments

> ArgMatch(sideFin=10,5); # By PARTIAL name & position

[1] 15

http://www.lemnica.com/esotericR/Introducing-Closures/
http://www.codethinked.com/c-closures-explained

R Server: Foreground or Background instance?

Page 25 of 79

The foregoing example illustrates the following:

 Arguments can be passed using name and position simultaneously; this may re-order the sequence in
which the arguments are specified.

 Arguments by name can be passed by specifying an abbreviation of the argument name that resolves
uniquely.

 Remember to use = and not <- to pass arguments by name; in other contexts, = and <- are interchangeable.

2.2.6. R Variables
Experience of APL+Win COM automation teaches two valuable lessons.

First, when the server expects values of type decimal and it cannot coerce passed-in values to decimal
seamlessly, any attempt to pass such values from APL+Win fails as APL+Win cannot pass such values outright.
You would need to workaround this problem. However, R, like APL+Win is a type-inferred language. Therefore,
this is not an issue.

Second, when the server accepts arrays, APL+Win is well-placed for sending and receiving such values subject
to two overriding issues.

 The shape of simple string array variables in APL+Win returns the number of rows and columns and
the number of columns is always uniform; APL+Win pads all strings with spaces, where necessary.
Other languages return the number of columns as 1, irrespective of the number of characters on each
row and they do not pad the rows with spaces. Therefore, whenever such arrays are transferred or
received, APL+Win needs to transfer the array as a nested variable (without padding) and disclose
them on receipt.

 APL+Win is row-major; if the target language is not also row-major, the acquisition and transfer
process needs to transpose the array either at the client or the server. Unlike APL+Win, R is column-
major10.

Note that the term ‘array’ is used here in the APL+Win sense; in R jargon, an APL+Win array of rank 2 is called
a ‘matrix’ and those of higher rank are called ‘array’.

2.2.6.1. String Arrays

This is a simple illustration of the two issues with string arrays. The following creates the variables in R.

> # String Arrays in R

> weekDaysVector<-c('Monday','Tue','Wed','Thu','Fri','Sat','Sun');

> weekDaysVector;

[1] "Monday" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun"

> weekDaysMatrix<-matrix(c('Monday','Tue','Wed','Thu','Fri','Sat','Sun'),ncol=1);

> weekDaysMatrix;

 [,1]

[1,] "Monday"

[2,] "Tue"

[3,] "Wed"

[4,] "Thu"

[5,] "Fri"

[6,] "Sat"

[7,] "Sun"

> dim(weekDaysMatrix);

[1] 7 1

Reading the same variables in APL+Win:

 GetStringArrays

 ... first Vector

Getting weekDaysVector

 Monday Tue Wed Thu Fri Sat Sun

Shape and Rank

 7 2

Disclose and shape after Disclose

 Monday 7 6

 Tue

 ’ GetStringArrays

[1] © Ajay Askoolum - APL2000 Conference

April 22-24, 2012

[2] ' ... first Vector'

[3] 'Getting weekDaysVector'

[4] Œwi 'XGetSymbol' 'weekDaysVector'

[5] 'Shape and Rank'

[6] (½Œwi 'XGetSymbol' 'weekDaysVector')

(­Œwi 'XGetSymbol' 'weekDaysVector')

10 Excel is another column-major environment.

R Variables

Page 26 of 79

 Wed

 Thu

 Fri

 Sat

 Sun

Transpose has no effect on vectors

 ... next Matrix

 Monday Tue Wed Thu Fri Sat Sun

Shape and Rank

 1 7 2

Did you notice the transposition?

Need to 1. Ravel 2. Transpose 3. Disclose

the matrix

7 6

Did you notice the padding?

 Check how it looks

Monday

Tue

Wed

Thu

Fri

Sat

Sun

[7] 'Disclose and shape after Disclose'

[8] (œŒwi 'XGetSymbol' 'weekDaysVector')

(½œŒwi 'XGetSymbol' 'weekDaysVector')

[9] 'Transpose has no effect on vectors'

[10] ' ... next Matrix'

[11] Œwi 'XGetSymbol' 'weekDaysMatrix'

[12] 'Shape and Rank'

[13] (½Œwi 'XGetSymbol' 'weekDaysMatrix')

(­Œwi 'XGetSymbol' 'weekDaysMatrix')

[14] 'Did you notice the transposition?'

[15] ' '

[16] 'Need to 1. Ravel 2. Transpose 3.

Disclose the matrix'

[17] (½œ,Œwi 'XGetSymbol'

'weekDaysMatrix')

[18] 'Did you notice the padding?'

[19] ' Check how it looks'

[20] œ,Œwi 'XGetSymbol' 'weekDaysMatrix'

 ’

 Without Ravel, the resulting matrix will be three-dimensional:

 ½œ³Œwi 'XGetSymbol' 'weekDaysMatrix'

7 1 6

 ½³œŒwi 'XGetSymbol' 'weekDaysMatrix'

6 7 1

The most convenient—that is, with least overhead—approach to dealing with string vectors or matrices
acquired from another environment such as R is to keep them as nested vectors of depth 2.

 Œwi 'XGetSymbol' 'weekDaysVector' © As nested vector ... Rank 1,depth 2

 Monday Tue Wed Thu Fri Sat Sun

 ½¨Œwi 'XGetSymbol' 'weekDaysVector' © ... and no padding

 6 3 3 3 3 3 3

 ,[Ð]Œwi 'XGetSymbol' 'weekDaysVector' © As nested matrix ... Rank 2, depth 2

 Monday

 Tue

 Wed

 Thu

 Fri

 Sat

 Sun

 ¹½¨,[Ð]Œwi 'XGetSymbol' 'weekDaysVector' © ... and no padding

6 3 3 3 3 3 3

2.2.6.2. Array collation sequence

For clarification:

 Row-major means that values are used to populate rows first and then columns.

 Column-major means that values are used to populate columns first and then rows. R is column-major by
default but it does have the option to construct row-major matrices.

 Row- or column- major is not indicative of how the matrices are actually stored in memory.

First, construct arrays in R; the dimensions are readable from the results.

> matA<-matrix(c(1,2,3,4,5,6),nrow=2);

> matB<-matrix(c(1,2,3,4,5,6),ncol=3);

> matA;

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> matB;

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> identical(matA,matB);

[1] TRUE

> matC<-matrix(c(1,2,3,4,5,6),ncol=3,byrow=TRUE); # Note collation sequence

> matC;

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

R Server: Foreground or Background instance?

Page 27 of 79

Next, the same results in APL+Win:

 matA„2 3½1 2 3 4 5 6

 matC„³2 3½1 2 3 4 5 6

 matA matC

 1 2 3 1 4

 4 5 6 2 5

 3 6

The impact of the difference in collation sequence is apparent when the R variables are retrieved within
APL+Win.

 matA­½Œwi 'XGetSymbol' 'matA' © Transposition within APL+Win

0

 matA­½Œwi 'XEvaluate' 't(matA)' © Transposition within R

0

 (½matA) (­matA) (½³matA) (­½³Œwi 'XGetSymbol' 'matA')

 2 3 1 3 2 1

So, do the matrices created in APL+Win and retrieved from R match? The answer is in the implicit coercions
that take place transparently.

 Œwi 'XEvaluate' 'typeof(matA)'

double

 Œdr matA © 323 is integer, 645 is double

323

In contrast, when an R variable is created by APL+Win, there is confusion with neither the dimension nor the
type:

 Œwi 'XSetSymbol' 'matAAlt' matA

 matA­Œwi 'XGetSymbol' 'matAAlt' © Note that there is no explicit transposition

1

The problems arise because of the co-existence of variables created in R from within and without, that is, from
APL+Win.

2.2.6.2.1. What transposition?

In the latter example, the COM interface transposes the APL variable before sending it to R and on
receiving it back from R thereby cancelling the effect. Is it safe to conclude that when APL+Win creates a
variable and then retrieves its value, there is no confusion relating to collation sequence?

 (Œwi 'XEvaluate' 'rowSums(matAAlt)') (Œwi 'XEvaluate' 'colSums(matAAlt)')

 5 7 9 6 15

 (+/matA) (+šmatA) © Remember matAAlt is matA

 6 15 5 7 9

Note that the sum of APL+Win rows appears to match the sum of columns returned by R and vice-versa.
Unless I am confusing matters, it appears that the collation sequence has an impact even when APL+Win
creates the variables and needs clarification. A simple investigation is to create two conformable matrices
using APL+Win and to calculate and compare their product from each language.

 MatMult

Do A in APL+Win and R thet

Match?

1

Do B in APL+Win and R thet

Match?

1

 Acid Test Calculate AB

(matrix multiply)

 First in APL+Win

 273 455

 243 235

 244 205

 102 160

 Next in R

ŒWI ERROR: exception 8004000B

MatMult[17] Œwi 'XEvaluate' 'A

%*% B'

 ^

 ’ MatMult

[1] © Ajay Askoolum - APL2000 Conference April 22-24,

2012

[2] A„4 3½14 9 3 2 11 15 0 12 17 5 2 3

[3] B„3 2½12 25 9 10 8 5

[4] Œwi 'XSetSymbol' 'A' A

[5] Œwi 'XSetSymbol' 'B' B

[6] 'Do A in APL+Win and R thet Match?'

[7] A­Œwi 'XGetSymbol' 'A'

[8] 'Do B in APL+Win and R thet Match?'

[9] B­Œwi 'XGetSymbol' 'B'

[10] ' Acid Test Calculate AB (matrix multiply)'

[11] © Remember:

[12] © the number of rows of 1st matrix must match

number of columns of 2nd

[13] © the dimensions of the product matrix is Rows of

1st matrix × Columns of 2nd

[14] ' First in APL+Win'

[15] A+.×B

[16] ' Next in R'

[17] Œwi 'XEvaluate' 'A %*% B'

 ’

R Variables

Page 28 of 79

Why the error? The obvious culprit is that the matrices are not conformable for multiplication—this is
confirmed with R.

>A;

 [,1] [,2] [,3] [,4]

[1,] 14 2 0 5

[2,] 9 11 12 2

[3,] 3 15 17 3

> dim(A);

[1] 3 4

> B;

 [,1] [,2] [,3]

[1,] 12 9 8

[2,] 25 10 5

> dim(B);

[1] 2 3

Within R, the variables are transposed! Therefore the resolution must be to transpose the matrices when
calculations based on them are carried out within R.

> t(A) %*% t(B);

 [,1] [,2]

[1,] 273 455

[2,] 243 235

[3,] 244 205

[4,] 102 160

 A+.×B

 273 455

 243 235

 244 205

 102 160

Therefore, the product of A and B calculated in R and APL+Win must surely match?

 (³Œwi 'XEvaluate' 't(A) %*% t(B)') ­ A+.×B © Either transpose the result in APL+Win

1

 (Œwi 'XEvaluate' 't(t(A) %*% t(B))') ­ A+.×B © Or transpose the result in R

1

The inevitable conclusion is that it is necessary to transpose matrices when transferring or acquiring them
from R using APL+Win—thereby enabling calculations within R without surprises—albeit transposition is
unnecessary—it simply cancels out—when simply sending and receiving matrices to and from R.

2.2.6.2.2. Assigning variables

In general, the following syntax can be used for creating/reading variables.

 Assigning variables Reading Variables

Option 1

Œwi 'XEvaluateNoReturn' 'var<-90'

Œwi 'XEvaluate' 'var'

90

© Simply read

Œwi 'XGetSymbol' 'myVar'

Option 2

Œwi 'XSetSymbol' 'var' 80

10×Œwi 'XGetSymbol' 'var'

800

© Combined read/calculate

Œwi 'XEvaluate' 't(myVar);'

© Indirect read/calculate

Œwi 'XSetSymbol' 'indRead' (Œts)

Œwi 'XSetSymbol' 'varName' 'indRead'

Œwi 'XEvaluate' 'rev(get(varName));'

2012 3 18 8 7 25 515

Of these two options, the second is recommended as it allows better control: you can pass APL+Win
workspace variables and results of expressions with or without coercion. Another benefit for adopting the
second option is that you can add attributes to your variables—this is not possible in a one-pass operation. For
one-pass assignments, you need to collate the R expressions and evaluate them in the R environment or save
all the expressions in a script file and call R to execute the script.

 Œwi 'XEvaluateNoReturn' 'myMat<-matrix(c(1,2,3,4),ncol=2);' © Messy!

 Œwi 'XSetSymbol' 'myMat' (2 2½1 2 3 4) © Clean!

Another aspect of R raises another consideration, namely, the fact that R does not have scalars: R scalars are
vectors of length 1. In general, R’s list data structure and APL+Win’s nested vectors (of depth 2) and nested
arrays (of depth 2 and rank 2) are roughly compatible, given that with APL+Win, a scalar of length 1 and a
scalar of length Ð are conformable. However, the depth of the APL+Win nested vector must be 2: vectors of
higher depth raise an error in R—one more reason for creating variables from scripts and directly in R.

 a„'APL+Win' 'nested' 'vectors/arrays' 'and' 'R' 'lists' 'are' 'comparable'

 Œwi 'XSetSymbol' 'aplNV' a

 Œwi 'XSetSymbol' 'aplNA' (2 4½a)

 © Remember transpose gets cancelled

R Server: Foreground or Background instance?

Page 29 of 79

 aplNV„Œwi 'XGetSymbol' 'aplNV'

 aplNA„Œwi 'XGetSymbol' 'aplNA'

 ^/¨a=aplNV

1 1 1 1 1 1 1 1

 © But, the scalar issue comes into play!

 a­aplNV

0

 (†¨½¨a) (†¨½¨aplNV)

 7 6 14 3 0 5 3 10 7 6 14 3 1 5 3 10

APL+Win nested variables of depth greater than 2 cannot be passed directly into R.

 a„'This' 'happens' 100 ª b„'percent' 'of' 'the' 'time'

 Œwi 'XSetSymbol' 'aplN' (a b)

ŒWI ERROR: 80010105 The server threw an exception.

 Œwi 'XSetSymbol' 'aplN' (a b)

 ^

 ­a b

3

 © Workaround

 Œwi 'XSetSymbol' 'tmpAPL1' a

 Œwi 'XSetSymbol' 'tmpAPL2' b

 Œwi 'XEvaluateNoReturn' 'aplN<-list(c(tmpAPL1,tmpAPL2))'

 Œwi 'XEvaluateNoReturn' 'rm(tmpAPL1,tmpAPL2)'

 © If I try to recover aplN from R, APL+Win freezes!

 Œwi 'XEvaluate' 'typeof(aplN)'

list

The reason APL+Win freezes is because we are now in the realm of R data structures (in this case, aplN is a list)
and the package that sits between R and APL+Win was designed not for APL+Win but for Excel. Data structures
require special care since an R data structure is an object that holds (and displays) values and attributes
together. With APL+Win, the values and attributes must be retrieved separately.

2.2.6.2.3. Indirect reference

Variables may be referred to indirectly; consider this example:

 Œwi 'XSetSymbol' 'abc' (89 78 67)

 Œwi 'XSetSymbol' 'xyz' 'abc'

 Œwi 'XEvaluate' 'get(xyz);'

89 78 67

In this instance, the variable xyz, which holds the string abc, is coerced into returning the value of the variable
abc. Calculations are possible on indirectly referenced variables.

 Œwi 'XEvaluate' 'sum(get(xyz));'

234

2.2.6.2.4. Assigned by value

Like functions, R variables are also objects. However, variables are assigned by value always and not by
reference. In the example below, the variable abcNew inherits the value of the variable abc; and then it is
changed. Whilst the new variable inherits the attributes—in this case it is its comment—of the original
variable, the two variables remain distinct.

 Œwi 'XEvaluateNoReturn' 'abcNew<-abc;'

 Œwi 'XEvaluateNoReturn' 'abcNew[0 == (abcNew %% 2)]<--1;'

 Œwi¨ (››'XGetSymbol'),¨›¨'abc' 'abcNew'

 89 78 67 89 ¯1 67

2.2.7. R Objects: Functions and variables attributes
R objects are endowed with attributes; R combines its objects’ value and attributes when it displays

them in its own session. However, when APL+Win sends or retrieves an object to the R session, R only passes
the values of the objects by default. And, APL+Win variables do not have some of the explicit or user-assigned
attributes that R supports.

Therefore, APL+Win must pass the values and then the attributes whenever it creates an object in R. Equally,
APL+Win must retrieve the values and then the attributes. Consider the following example, it illustrates the
implications.

I have created a matrix of shape 2 3 in R using the following expression:

> # This session of R is the foreground server instance I am using from APL+Win

> # The objects created in this session are available from APL+Win

R Objects: Functions and variables attributes

Page 30 of 79

> myMatrix<-

matrix(c(1,2,3,4,5,6),dimnames=list(c('FirstRow','SecondRow'),c('Col1','Col2','Col3')),nrow=2,

ncol=3);

Its class is:

> class(myMatrix)

[1] "matrix"

In R it displays as follows:

> myMatrix

 Col1 Col2 Col3

FirstRow 1 3 5

SecondRow 2 4 6

In APL+Win, only the values are transmitted
11

:

 Œwi 'XGetSymbol' 'myMatrix'

 1 2

 3 4

 5 6

The attributes must be queried separately.

 Œwi 'XEvaluate' 'dimnames(myMatrix)' © Fails to enumerate

 FirstRow Col1

Alternative methods for recovering the attributes:

]display (œŒwi 'XEvaluate' 'rownames(myMatrix)') (œŒwi 'XEvaluate'

'colnames(myMatrix)') (Œwi 'XEvaluate' 'dim(myMatrix)')

.…---------------------.

|.…--------..…---..…--.|

|‡FirstRow |‡Col1||2 3||

||SecondRow||Col2|'~--'|

|'---------'|Col3| |

| '----' |

'¹---------------------'

 © Note that in R, the shape is 2 3

Another incompatibility is that R is capable of indexing the matrix by the row and column names as well as by
ordinal position in index origin 1 only. APL+Win indexing can be based on index origin 0 or 1 but not by row
and column names—unless the row and column names are pre-assigned appropriate ordinal numbers.

> myMatrix["SecondRow","Col2"]; # Note the use of comma (not semi-colon) to separate planes.

[1] 4

> myMatrix[2,2]

[1] 4

The corresponding APL+Win expressions are:

 myMatrix„³Œwi 'XGetSymbol' 'myMatrix' © Transpose for compatibility

 myMatrix[2;2] © Index origin 1

4

 SecondRow„2 ª Col2„2

 myMatrix[SecondRow;Col2]

4

Bear in mind the following: R holds values and attributes for its objects. APL+Win does not have attributes for
its value objects. In order for APL+Win to hold values and attributes in the same object name, it will need to
use a nested array. However, there is no unique way (natural positional order) to organise the values and
attributes.

Therefore, an expedient solution is for APL+Win to work with values alone and to rely on R to manage the co-
existence of values and attributes.

 œŒwi 'XEvaluate' 'capture.output(myMatrix)'

 Col1 Col2 Col3

FirstRow 1 3 5

SecondRow 2 4 6

A very welcome bonus with this result is that R served an APL+Win nested vector; this introduces a handy
enhancement in the data acquisition and transfer process.

11 For now, ignore the transposition; this is discussed below.

R Server: Foreground or Background instance?

Page 31 of 79

Some attributes, such as row and column names must be unique when applicable to data frames but not when
applicable to matrices. Recurring names can cause unexpected behaviour; for example, when using a row or
column name for indexing a matrix, R only returns the first matching row or column by default. Consider this
example.

> myMatrix<-matrix(seq(1:12),ncol=4);

> rownames(myMatrix)<-c('One','Inb','One');

> colnames(myMatrix)<-c('Col1','Col2','Col3','Col4');

> myMatrix;

 Col1 Col2 Col3 Col4

One 1 4 7 10

Inb 2 5 8 11

One 3 6 9 12

> myMatrix['One',]; # Returns first row with name 'One'

Col1 Col2 Col3 Col4

 1 4 7 10

> myMatrix[rownames(myMatrix)=='One',]; # This returns both rows

 Col1 Col2 Col3 Col4

One 1 4 7 10

One 3 6 9 12

From APL+Win:

 Œwi 'XEvaluate' "t(myMatrix[rownames(myMatrix)=='One',]);"

 1 4 7 10

 3 6 9 12

Note the following:

 XEvaluate evaluates the first statement only and ignores subsequent ones silently.

 Any variable created within R—from the console or by running a script—needs to be transposed when read
into APL+Win.

 Any variable created by APL+Win—using XSetSymbol—within R does not need transposition when read
back into APL: the value is transposed inwards and then again outwards, thereby cancelling the effect.

2.2.8. R homogeneous data structures with APL+Win
In order to eliminate character set encoding issues when dealing with naming conventions between R

and APL+Win, it is advisable to restrict names to the typewriter keys only, that is A...Z, a...z, and 0...9. Avoid
confusion: stick to the APL+Win naming convention and avoid the R flexibility where any name is acceptable,
and, do not use any R reserved word as an identifier.

The specification of literal attributes from APL+Win may involve subtle difficulties since APL+Win pads every
element of a string array with trailing spaces. Use nested vectors rather than arrays of rank 2 in order to avoid
unexpected behaviour.

An R data structure comprises of basic data with attributes beyond rank, length, and shape. Some attributes
are read-only, for example, length. Other attributes have default values, which can be overridden.; such
attributes do not impinge on numerical manipulation of the values. However, they usually have a bearing on
the graphical representation of those values.

R data structures lies at the heart of visualisation in R.

2.2.8.1. Vector

A vector is the basic data type of the R language; it is an ordered collection of numeric or character or
logical values. All other data structures are derived from a vector by the specification of appropriate attributes.

 ’ SendVector;aplVar;aplVarR

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Œwself is ‘rfs created by function RFServer

[3] aplVar„0.01×100|10?19021954

[4] aplVarR„(¹•1²')c(',¯1‡¹aplVar,¨',')~' '

[5] Œwi 'XSetSymbol' 'myVec' aplVar © Allows APL variables to be passed directly

[6] Rexp„'myVec<-#'

[7] Œwi 'XEvaluateNoReturn' (Œ„'myVecAlt<-#;' InLineExpression aplVarR)

[8] Œwi 'XEvaluateNoReturn' 'myVecDirect<-rnorm(10);'

 ’

 SendVector

myVecAlt<-c(0.15,0.58,0.85,0.18,0.32,0.7,0.77,0.09,0.33,0.79);

R homogeneous data structures with APL+Win

Page 32 of 79

The latter line was output by line [7] for visual confirmation of the argument passed in on that line. Note that
there are two ways to pass variables into R, seen on lines [5] and [7]. Clearly, the more efficient method is the
one on line [5] since it allows APL+Win workspace variables to be passed directly. However, the syntax in line
[7] can be useful when creating values in R without requiring them in the APL session and/or using R functions;
line [8] demonstrates this approach.

The function InLineExpression is defined as follows:

 ’ Z„L InLineExpression R

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Build inline expression given function (L) and argument (R) e.g.

[3] R„(•R)~' '

[4] :if 1¹Z„'$'ºL

[5] L„›L,R

[6] :elseif 1¹Z„'#'ºL

[7] (Z/L)„›R

[8] :elseif 1¹Z„'()'ºL

[9] (Z/L)„›'(',R

[10] :elseif 1¹Z„'(,'ºL

[11] (Z/L)„›'(',R

[12] :elseif 1¹Z„'""'ºL

[13] (Z/L)„›'"',R

[14] :elseif 1¹Z„"''"ºL

[15] (Z/L)„›"'",R

[16] :elseif 1¹Z„'[]'ºL

[17] (Z/L)„›"[",R

[18] :else

[19] Z„›L

[20] :endif

[21] Z„¹L

 ’

This is a generic function that combines R keywords and their argument to produce valid R executable
expressions that can be passed in by APL+Win.

The reverse process, that is, the process of recovering R variables into the R session is equally simple.

 ’ ReceiveVector

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Œwself is ‘rfs created by function RFServer

[3] Œ„aplVarfromR„Œwi 'XGetSymbol' 'myVec'

[4] Œ„aplVarfromRAlt„Œwi 'XEvaluate' 'myVecAlt'

[5] Œ„aplVarfromR­aplVarfromRAlt

[6] Œ„Œwi 'XGetSymbol' 'myVecDirect'

 ’

 ReceiveVector

0.51 0.95 0.86 0.12 0.98 0.15 0.78 0.55 0.27 0.58

0.51 0.95 0.86 0.12 0.98 0.15 0.78 0.55 0.27 0.58

1

¯0.143310604 ¯0.5417076592 ¯2.517631838 0.609062457 1.065557654 ¯0.7167182047

¯0.4669290882 ¯0.5883314773 0.3246085037 0.19406793

The output of lines [3] to 6], that is the four lines of output are shown in sequence.

APL+Win can also receive the results of evaluated expressions from R without the need for intermediate
assignment.

 ’ SendReceiveVectorExpression

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Œwself is ‘rfs created by function RFServer

[3] Œ„Œwi 'XEvaluate' 'seq(from = 1, to=5, by=0.25)'

[4] Œ„Œwi 'XEvaluate' 'sample(sample(5),10,replace=TRUE)'

 ’

 SendReceiveVectorExpression

1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25 4.5 4.75 5

5 3 4 5 1 4 4 2 5 1

Line [3] enumerates the range 1 to 5 in steps of 0.25. Line [4] returns a vector of ten elements with replication
from a vector of five elements.

Of course, any vector received from R retains its type.

 ’ Z„ReceiveVectorType

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Œwself is ‘rfs created by function RFServer

[3] Z„›(100×Œwi 'XEvaluate' 'rnorm(5);')

[4] Z„Z,›Œwi 'XEvaluate' 'LETTERS[1:26];'

R Server: Foreground or Background instance?

Page 33 of 79

[5] Z„Z,›Œwi 'XEvaluate' 'sample(c(TRUE,FALSE),6,replace=TRUE);'

 ’

 NValue„ReceiveVectorType

 1×1œNValue © Numeric

99.56755922 ¯13.16180569 ¯10.52660973 ¯139.5063174 26.20100761

 2œNValue © Character

 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

 3œNValue © Logical

1 1 1 1 1 0

Please note:

 Character vectors in R come across as nested values in APL+Win.

 Logical values from R come across as 0 or 1 in APL+Win.

 R has no concept of scalar values; scalars are vectors of length 1.

2.2.8.1.1. Familiar vector operations

R has sorting features comparable with APL+Win.

> y<-c(sample(1:100,8)) # 8 random numbers

between 1 to 10

> y

[1] 97 3 94 34 15 9 49 69

> sort(y) # Ascending order

[1] 3 9 15 34 49 69 94 97

> order(y) # Grade-up

[1] 2 6 5 4 7 8 3 1

> rev(order(y)) # Grade-down

[1] 1 3 8 7 4 5 6 2

> y[rev(order(y))] # Descending order

[1] 97 94 69 49 34 15 9 3

> min(y);

[1] 3

> max(y);

[1] 97

> ceiling(y);

[1] 97 3 94 34 15 9 49 69

> floor(y);

[1] 97 3 94 34 15 9 49 69

> cumsum(y)

[1] 97 100 194 228 243 252 301 370

> cumprod(y)

[1] 97 291 27354 930036 13950540

[6] 125554860 6152188140 424500981660

> cummin(y)

[1] 97 3 3 3 3 3 3 3

> cummax(y)

[1] 97 97 97 97 97 97 97 97

 y„Œwi 'XGetSymbol' 'y'

 y

97 3 94 34 15 9 49 69

 y[“y]

3 9 15 34 49 69 94 97

 “y

2 6 5 4 7 8 3 1

 ”y

1 3 8 7 4 5 6 2

 y[”y]

97 94 69 49 34 15 9 3

 ˜/y

3

 —/y

97

 —y

97 3 94 34 15 9 49 69

 ˜y

97 3 94 34 15 9 49 69

+\y

97 100 194 228 243 252 301 370

×\y

97 291 27354 930036 13950540 125554860

6152188140 4.245009817E11

 ˜\y

97 3 3 3 3 3 3 3

 —\y

97 97 97 97 97 97 97 97

> scale(y)

 [,1]

[1,] 1.35874458

[2,] -1.15794489

[3,] 1.27842470

[4,] -0.32797283

[5,] -0.83666538

[6,] -0.99730513

[7,] 0.07362655

[8,] 0.60909240

attr(,"scaled:center")

[1] 46.25

attr(,"scaled:scale")

[1] 37.35065

> fivenum(y)

[1] 3.0 12.0 41.5 81.5 97.0

> table(y); #frequency counts of entries

y

 3 9 15 34 49 69 94 97

 1 1 1 1 1 1 1 1

R has several other functions with no direct
equivalent—you need to consult the online help file (?
function) to investigate what they do.

#Tukey five numbers min, lower hinge, median, upper
hinge, max

Finally, all the standard statistical functions are
available out of the box; these are accessible from

> mean(y);

[1] 46.25

> median(y);

[1] 41.5

R homogeneous data structures with APL+Win

Page 34 of 79

APL+Win.

 Œwi 'XEvaluate' 'fivenum(y)'

3 12 41.5 81.5 97

 Œwi 'XEvaluate' 'mad(y)'

44.478

> sum(y);

[1] 370

> var(y); #produces the variance covariance

matrix

[1] 1395.071

> sd(y); #standard deviation

[1] 37.35065

> mad(y); #(median absolute deviation)

[1] 44.478

2.2.8.1.2. Unfamiliar vector operations

Some aspects of vector operations can become highly confusing for an APL developer.

> vecA<-c(2,4,3);

> vecB<-c(4,6,7,8,9,10);

> vecC<-vecA+vecB; # Length(s) are conformable in R but not in the APL sense

> length(vecC);

[1] 6

> vecC; # Re-uses vecA

[1] 6 10 10 10 13 13

> vecC[20]<--1; # Can assign to an index that does not exist!

> vecC;

 [1] 6 10 10 10 13 13 NA NA NA NA NA NA NA NA NA NA NA NA NA -1

> # NA is for missing value; vecC has been padded!

2.2.8.2. Matrix

An R matrix is a vector with a dimension attribute and is always of rank 2, that is, is always 2-
dimensional.

 ’ SendMatrix

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Œwself is ‘rfs created by function RFServer

[3] Œwi 'XSetSymbol' 'aplMat' (2 3½1 2 3 4 5 6)

[4] Œwi 'XEvaluateNoReturn' 'aplMatSyn1<-matrix(c(1,2,3,4,5,6),ncol=2,byrow=FALSE);'

[5] Œwi 'XEvaluateNoReturn' 'aplMatSyn2<-matrix(c(1,2,3,4,5,6),nrow=2,byrow=TRUE);'

[6] Œwi 'XEvaluateNoReturn' 'aplMatSyn3<-c(1,2,3,4,5,6);' © Step 1

[7] Œwi 'XEvaluateNoReturn' 'dim(aplMatSyn3)<-c(2,3);' © Step 2

 ’

This function illustrates three methods for passing a matrix into R.

Line [3] illustrates the simplest method for the following reasons:

 The value is passed from an APL variable or expression.

 Sending the value to R transposes it and receiving it back also transposes it: therefore, the effect cancels
out.

 Optionally, the APL value can be transposed, where necessary, to achieve the correct scenario within R.

 (2 3½1 2 3 4 5 6)­Œwi 'xGetSymbol' 'aplMat'

1

Line [4] demonstrates the second method.

 The values are passed in as inline code; this makes for a rather cumbersome approach to building the
expression, especially where the number of elements is large.

 The collating sequence is coerced into the same order as APL+Win, namely, column-wise.

 The problems of transposition is circumvented by an implicit transposition, namely, the number of rows is
specified as the number of columns.

 (2 3½1 2 3 4 5 6)­Œwi 'xGetSymbol' 'aplMatSyn1'

1

Line [5] demonstrates the third method; this extends to line [6] since the XEvaluateNoReturn method acts
upon a single statement at a time and this method involves two statements.

 Line [5] creates a vector of values.

 Line [6] applies the attribute dimension to the values.

Visually and syntactically, the values are identical within APL+Win.

 (2 3½1 2 3 4 5 6) (³Œwi 'xGetSymbol' 'aplMatSyn2')

 1 2 3 1 2 3

R Server: Foreground or Background instance?

Page 35 of 79

 4 5 6 4 5 6

 (2 3½1 2 3 4 5 6)­(³Œwi 'xGetSymbol' 'aplMatSyn2')

1

However, R reports them as different—note the type of the values reported below.

> any(aplMat !=aplMatSyn2) # one is 3 2 the other 2 3

Error in aplMat != aplMatSyn2 : non-conformable arrays

> dim(aplMat) # Verify dimension

[1] 3 2

> dim(aplMatSyn2)# Verify dimension

[1] 2 3

> identical(aplMat,t(aplMatSyn2)) # Transpose. Check if they match

[1] FALSE

> any(aplMat != t(aplMatSyn2)) # Is any element unequal

[1] FALSE

> c(typeof(aplMat),class(aplMat)) # Where is the difference?

[1] "integer" "matrix"

> c(typeof(t(aplMatSyn2)),class(aplMatSyn2))

[1] "double" "matrix"

In conclusion, the optimal method is to pass variables by value from R and APL+Win.

 Passing a value from an APL+Win expression or workspace variable makes for a simpler syntax and is more
reliable. However, remember that the value gets transposed into and out of either environment.

 Passing a value as an argument to a function is much easier by name than by value; this is only possible if
the variable exists in that environment; refer to the call to the identical function above.

The considerations for Boolean values are identical to that of passing numeric values. However, R will see
them as TRUE or FALSE; I believe these are predefined constants that hold 1 or 0 as in APL+Win.

Character data passing is also straightforward.

 Œwi 'XSetSymbol' 'nl23' ('R' Œnl 2 3)

However, there are some subtleties:

 Œwi 'XEvaluate' 'c(length(nl23),typeof(nl23),dim(nl23),class(nl23))'

 6 character 6 array

Remember that everything is a vector by default; the APL+Win enumeration returns a character array of rank
2. Unlike APL which counts every column in the second dimension, R will see a character matrix as comprising
of a single column. Therefore the correct syntax is:

 Œwi 'XEvaluateNoReturn' 'nl23Alt<-as.matrix(nl23,ncol=1);'

2.2.8.2.1. Other matrices features

There are other useful techniques—lacking in APL+Win—for constructing matrices.

> x<-c(1,2,4,8,16); # A numeric vector of 4 elements

> y<-c(1:10); # A numeric vector of 10 elements

> mat=cbind(x,y); # Concatenate on the y axis

> mat2=rbind(x,y); # Concatenate on the x axis

The expressions executed successfully. Let’s examine the results In APL+Win.

 ³Œwi 'XGetSymbol' 'mat'

 1 1

 2 2

 4 3

 8 4

 16 5

 1 6

 2 7

 4 8

 8 9

 16 10

Since the matrices were created within R, they must
be transposed—within R or APL+Win--when read
back into APL.

The expression that created this matrix will execute
successfully if and only if both vectors are the same
length or the length of one vector is an exact multiple
of the length of the other vector.

 Œwi 'XEvaluate' 'dim(mat)'

10 2

 Œwi 'XEvaluate' 't(mat2)'

 1 2 4 8 16 1 2 4 8 16

 1 2 3 4 5 6 7 8 9 10

 Œwi 'XEvaluate' 'dim(mat2)'

2 10

R also has a number of built-in functions for basic computations on matrices.

R homogeneous data structures with APL+Win

Page 36 of 79

Œwi 'XEvaluateNoReturn' 'diaMat<-diag(5)'

(³Œwi 'XGetSymbol' 'diaMat') (5 5½6†1)

 1 0 0 0 0 1 0 0 0 0

 0 1 0 0 0 0 1 0 0 0

 0 0 1 0 0 0 0 1 0 0

 0 0 0 1 0 0 0 0 1 0

 0 0 0 0 1 0 0 0 0 1

 myMat„4 5½20?100

 Œwi 'XSetSymbol' 'myMat' (³myMat

 (+/myMat)÷0ƒ½myMat

41.6 44.6 60.8 60.2

 Œwi 'XEvaluate' 'rowMeans(myMat)'

41.6 44.6 60.8 60.2

 (+šmyMat)÷†½myMat

68 50.75 55.5 37.25 47.5

 Œwi 'XEvaluate' 'colMeans(myMat)'

68 50.75 55.5 37.25 47.5

© Try also: nrow(), ncol(), sum(), mean(),

dim(), det(), solve()

R can assign names to both the rows and columns of matrices; the names can then be used to index the cells.

> thisMat<-c(sample(1:1000,30)); # A vector of 30 elements

> dim(thisMat)<-c(5,6); # Set the dimensions to 5 rows 6 columns

> rownames(thisMat)<-c("Y1","Y2","Y3","Y4","Y5"); # Give each row a name

> colnames(thisMat)<-c("1980","1981","1982","1983","1984","1985"); # Give each column a name

> thisMat; # Verify how it looks

 1980 1981 1982 1983 1984 1985

Y1 946 947 404 549 57 873

Y2 987 617 992 120 361 478

Y3 297 787 389 650 859 897

Y4 445 588 181 387 735 753

Y5 108 956 855 694 172 217

> thisMat[,"1984"]; # Results retains attributes

 Y1 Y2 Y3 Y4 Y5

 57 361 859 735 172

> thisMat[thisMat %in% c(588,855)] # Conditional Selection 1

[1] 588 855>

> thisMat[thisMat>900] # Conditional Selection 2

[1] 946 987 947 956 992

> thisMat[thisMat>900]<-(-1) # Conditional Assignment

> thisMat;

 1980 1981 1982 1983 1984 1985

Y1 -1 -1 404 549 57 873

Y2 -1 617 -1 120 361 478

Y3 297 787 389 650 859 897

Y4 445 588 181 387 735 753

Y5 108 -1 855 694 172 217

Now APL+Win can retrieve the matrix:

 Œ„thisMat„³Œwi 'XGetSymbol' 'thisMat' © Row/Column names do not come across

 ¯1 ¯1 404 549 57 873

 ¯1 617 ¯1 120 361 478

 297 787 389 650 859 897

 445 588 181 387 735 753

 108 ¯1 855 694 172 217

Note that the negative numbers now have high minus. Although the row and column names can be retrieved
separately, they cannot be used for indexing within APL+Win.

 (Œwi 'XEvaluate' 'rownames(thisMat)') (Œwi 'XEvaluate' 'colnames(thisMat)')

 Y1 Y2 Y3 Y4 Y5 1980 1981 1982 1983 1984 1985

However, they can be inside R.

 Œ„thisMat„³Œwi 'XGetSymbol' 'thisMat' © Row/Column names do not come across

 ¯1 ¯1 404 549 57 873

 ¯1 617 ¯1 120 361 478

 297 787 389 650 859 897

 445 588 181 387 735 753

 108 ¯1 855 694 172 217

 (Œwi 'XEvaluate' 'thisMat["Y2","1983"]') (thisMat[2;4])

 (Œwi 'XEvaluate' 'thisMat["Y2","1983"]') (thisMat[2;4])

120 120

 (Œwi 'XEvaluate' 'thisMat["Y2",c("1981","1984")]') (thisMat[2;2 5])

 617 361 617 361

Compare the result of the latter statement executed in R:

> thisMat["Y2",c("1981","1984")]; # The result displays with the column headers

1981 1984

 617 361

Finally, the APL+Win inner product is also available in R:

R Server: Foreground or Background instance?

Page 37 of 79

 vec1„5?100 ª vec2„ 3?10

 (Œwi 'XSetSymbol' 'vec1' vec1) (Œwi 'XSetSymbol' 'vec2' vec2)

 (vec1°.+vec2) (³Œwi 'XEvaluate' 'outer(vec1,vec2,"+")')

 65 57 62 65 57 62

 14 6 11 14 6 11

 86 78 83 86 78 83

 88 80 85 88 80 85

 41 33 38 41 33 38

2.2.8.3. Array

An R array is an ordered collection of values which has more than 2 dimensions. I found that the
simplest option is to pass values into either environment by value; therefore there is no need to investigate
other options.

 aplRank3„2 3 4½24?1999

 Œwi 'XSetSymbol' 'aplRank3R' aplRank3

 aplRank3­Œwi 'XGetSymbol' 'aplRank3R'

1

 Œwi 'XEvaluate' 'range(aplRank3R)'

34 1729

 (˜/,aplRank3),—/,aplRank3

34 1729

Equally, the observations regarding character and Boolean matrices apply to arrays of the same type.

2.2.8.4. Factor and Table

APL+Win does not have a direct equivalent to these data structures. In fact, this data structure holds
information—that is, data derived from data—rather than raw data. This structure is easily simulated within
APL. The function should be self-explanatory as it uses standard APL constructions.

If necessary, run the following function in trace mode and examine each line of code.

 ’ Z„FactorInAPL;depts;freq;dept;factor;q

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] dept„(3†¨'Finance' 'Marketing' 'IT' 'Administration' 'Investment' 'HR'

'Actuarial')~¨' '

[3] dept„((dept¼dept)=¼½dept)/dept © Ensure that each nominal value is unique

[4] dept„dept[“Œav¼œdept]

[5] freq„(½dept)|¼30 © 30 staff allocated arbitrarily to depts

[6] depts„dept[freq+Œio]

[7] depts„depts[“Œav¼œdepts]

[8] factor„dept¼depts © Ordinal value of dept

[9] factor„+šfactor°.=((factor¼factor)=¼½factor)/factor

[10] Z„('From APL+Win') (œ(dept[order]) (factor[order]))

[11] q„'myFactor<-factor(c(#));' InLineExpression CSVWrap depts

[12] Œwi 'XEvaluateNoReturn' q

[13] Œwi 'XEvaluateNoReturn' 'myTable<-table(myFactor);'

[14] Z„œZ (('From R') (œ1‡Œwi 'XEvaluate' 'capture.output(myTable);'))

 ’

The utility function is:

 ’ R„CSVWrap R

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] R„¯1‡¹'"',¨R,¨›'",'

 ’

 FactorInAPL

 From APL+Win Mar HR Act Inv Fin IT Adm

 4 4 4 4 5 4 5

 From R Act Adm Fin HR Inv IT Mar

 4 5 5 4 4 4 4

Note that the order of the results from APL+Win and R are different. Since R has built-in functionality to handle
factors and tables, it is recommended that these data structures be acquired from R. APL+Win simply needs to
supply the raw data. Optionally, R can also order the nominal and ordinal values.

2.2.9. Homogeneous data generation
The basic data types are literals, numbers, and dates. In APL+Win, an identifier that holds data of the

same type are generally simple, that is, of depth 1. Like APL, R is a type-inferred language; that is, it is not
possible to declare the type of identifiers. Identifiers come to exist upon assignment. Homogeneous identifiers
hold data of the same type.

Homogeneous data generation

Page 38 of 79

Except for the list data structure, the R data structures comprise of data of several types; however, each
component is of the same type. As R is a statistical—that is, sampling is a recurring theme—language, it is
appropriate to illustrate homogeneous data generation techniques in R.

 R has several structures for holding homogeneous data—that is, data of the same type. Given any
structure, an identifier’s structure and data type can be established..

 R’s default data structure is a vector. Note that it does not have a scalar; a scalar is simply a vector of
length 1.

 Each data structure has its own set of attributes; some of vector attributes are demonstrated here.

Any vector may be transformed into another R data structure, by modifying its attributes.

2.2.9.1. Numbers

The following creates a numeric vector of five numbers between 0 and 1. The parameters of the
underlying function, runif, may be used to create numbers with other precision.

> myNumericVector<-runif(5); # Five random numbers between 0 and 1

> myNumericVector; # See its contents

[1] 0.3603916 0.3534813 0.7325422 0.3799669 0.3949394

> class(myNumericVector); # Structure

[1] "numeric"

> typeof(myNumericVector);# Type

[1] "double"

> mode(myNumericVector); # Storage

[1] "numeric"

The numeric vector can be transformed into a matrix.

> myArray<-as.matrix(myNumericVector)

> dim(myArray)

[1] 5 1

2.2.9.2. Literals

The following illustrates an anonymous function, that is, lambda expression that generates a vector of
five ‘random’ strings, each between 5 to 8 characters in length.

> myCharacterData<-(function(i){ret="";

+ for (j in 1:i){

+ thisRet=paste(sample(c(LETTERS,

letters),sample(5:8,1),replace=TRUE),collapse="");

+ ret<-c(ret,thisRet);

+ }

+ return(ret[2:length(ret)])

+ })(5); # Anonymous function to generate 5 random strings 5-8 chars in length

> myCharacterData; # See its contents

[1] "nkJhYpko" "GDOjUa" "sqkfTjbW" "Sjfgi" "eEaEPrvJ"

> class(myCharacterData); # Structure

[1] "character"

> typeof(myCharacterData);# Type

[1] "character"

> mode(myCharacterData); # Storage

[1] "character"

This character can be transformed into another data structure.

> myList<-as.list(myCharacterData);

> length(myList);

[1] 5

2.2.9.3. Dates

The following creates a vector of ‘random’ five dates.

> myDateVector<-as.Date(runif(5,min=12000,max=23400),origin="1900-01-01");# Five random dates

> myDateVector; #See its content

[1] "1942-07-11" "1937-12-28" "1943-11-19" "1963-07-16" "1948-11-27"

> class(myDateVector); # Structure

[1] "Date"

> typeof(myDateVector);# Type

[1] "double"

> mode(myDateVector); # Storage

R Server: Foreground or Background instance?

Page 39 of 79

[1] "numeric"

The date vector can be coerced into another data structure.

> as.factor(myDateVector)

[1] 1942-07-11 1937-12-28 1943-11-19 1963-07-16 1948-11-27

Levels: 1937-12-28 1942-07-11 1943-11-19 1948-11-27 1963-07-16

2.2.10. Homogeneous data coercion
The basic installation of R provides a number of data structures that are handy for exploration of R

features. The function data() exposes the full list—for browsing—in a graphical interface.

The following illustrates the retrieval process for any of the data structures into the session:

> data(AirPassengers)

> AirPassengers

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1949 112 118 132 129 121 135 148 148 136 119 104 118

1950 115 126 141 135 125 149 170 170 158 133 114 140

1951 145 150 178 163 172 178 199 199 184 162 146 166

1952 171 180 193 181 183 218 230 242 209 191 172 194

1953 196 196 236 235 229 243 264 272 237 211 180 201

1954 204 188 235 227 234 264 302 293 259 229 203 229

1955 242 233 267 269 270 315 364 347 312 274 237 278

1956 284 277 317 313 318 374 413 405 355 306 271 306

1957 315 301 356 348 355 422 465 467 404 347 305 336

1958 340 318 362 348 363 435 491 505 404 359 310 337

1959 360 342 406 396 420 472 548 559 463 407 362 405

1960 417 391 419 461 472 535 622 606 508 461 390 432

> typeof(AirPassengers);

[1] "double"

> class(AirPassengers);

[1] "ts"

The sample data sets provide a readily available source for acquisition into APL+Win. Alternatively, generate
random homogeneous data components and assemble them into data structures. With the data generated
above, a data frame is created as follows:

> myDF<-data.frame(myNumericVector,myDateVector,row.names=myCharacterData)

> myDF;

 myNumericVector myDateVector

nkJhYpko 0.3603916 1942-07-11

GDOjUa 0.3534813 1937-12-28

sqkfTjbW 0.7325422 1943-11-19

Sjfgi 0.3799669 1963-07-16

eEaEPrvJ 0.3949394 1948-11-27

Incidentally, in order to retrieve data of type date from R, the data must be converted to character.

 œŒwi 'XEvaluate' 'as.character(myDateVector)'

1942-07-11

1937-12-28

1943-11-19

1963-07-16

1948-11-27

R heterogeneous data structures with APL+Win

Page 40 of 79

2.2.11. R heterogeneous data structures with APL+Win
The data structures that lie at the heart of the power features of R are of mixed types, and each type

has its own set of attributes. These structures can be constructed from APL+Win in steps. However, the end
result is not always directly readable in APL+Win. Why would you want to?

During the investigation of the data structures that are available with R, a sensible step is to examine the
attributes of the data structure. For example, for the data frame constructed in the next section, the attributes
are:

> attributes(classResults)

$names

[1] "subjEnglish" "gradeEnglish" "subjFrench" "gradeFrench"

$row.names

 [1] "Student1" "Student2" "Student3" "Student4" "Student5" "Student6"

 [7] "Student7" "Student8" "Student9" "Student10"

$class

[1] "data.frame"

Note the literals beginning with the $ sign. These can be used to query individual attributes.

> names(classResults)

[1] "subjEnglish" "gradeEnglish" "subjFrench" "gradeFrench"

All data structures do not have attributes.

APL+Win can construct any data structure one step at a time.

 ’ BuildHeteregeneousDataStructure

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Step1: Create each component of the list

[3] Œwi 'XSetSymbol' 'comp1' (1 2 3 4)

[4] Œwi 'XSetSymbol' 'comp2' (³2 3½17 2 3 4 18 19)

[5] Œwi 'XSetSymbol' 'comp3' ("Ajay" "Askoolum")

[6] © Step2: Create the data structure

[7] Œwi 'XEvaluateNoReturn' 'myListx<-list(comp1=comp1,comp2=comp2,comp3=comp3);'

[8] © Step3: Remove the components of the data structure ... the data structure is

unaffected by this

[9] Œwi 'XEvaluateNoReturn' 'rm(list=c("comp1","comp2","comp3"));'

 ’

 Œwi 'XEvaluate' 'exists("myListx");' © Does not exist

0

 BuildHeteregeneousDataStructure © Build it

 Œwi 'XEvaluate' 'exists("myListx");' © Check that it exists

1

 Œwi 'XEvaluate' 'sapply(c("comp1","comp2","comp3"),exists);' © Remove the components

0 0 0

 Œwi 'XGetSymbol' 'myListx' © Fails to bring the list across

 1 17 Ajay

Given that the data structure does not come across, there are several strategies for visually examining its
contents from within APL+Win: note, this shows the content of each component and not its attributes.

 œŒwi 'XEvaluate' 'sapply(names(myListx),function(x)

paste(x,paste(myListx[[x]],collapse=" ")));'

comp1 1 2 3 4

comp2 17 4 2 18 3 19

comp3 Ajay Askoolum

Or, try these expressions—note they show the content and attribute of each component—from within R12:

> str(myListx);

List of 3

 $ comp1: int [1:4(1d)] 1 2 3 4

 $ comp2: int [1:2, 1:3] 17 4 2 18 3 19

 $ comp3: chr [1:2(1d)] "Ajay" "Askoolum"

> dput(myListx);

structure(list(comp1 = structure(1:4, .Dim = 4L), comp2 = structure(c(17L,

12 Do not evaluate either of these expressions from APL+Win: they dump a binary pattern of their result
respective result.

R Server: Foreground or Background instance?

Page 41 of 79

4L, 2L, 18L, 3L, 19L), .Dim = 2:3), comp3 = structure(c("Ajay",

"Askoolum"), .Dim = 2L)), .Names = c("comp1", "comp2", "comp3"

))"

The optimal approach is to write the executable definition of the data structure to a text file, as a script that R
can execute.

2.2.11.1. Data Frames

A data frame holds tabular data, has rank 2, all columns have the same length but can be of different types; it
is the primary date structure in R and, visually, it is an excel sheet or a relational table..

The following function creates a data frame in R.

 ’ DataFrame;studentName;subjEnglish;subjFrench;gradeEnglish;gradeFrench

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © Incremental build-up of R data structure from APL+Win

[3] studentName„(›'Student'),¨•¨+\10/1

[4] subjEnglish„10?100

[5] subjFrench„10?100

[6] gradeEnglish„(,¨'X?UFEDCBA*')[Œio++/subjEnglish°.>19 29 39 49 59 69 79 89 92]

[7] gradeFrench„(,¨ 'X?UFEDCBA*')[Œio++/subjFrench°.>19 29 39 49 59 69 79 89 92]

[8] Œwi 'XSetSymbol' 'subjEnglish' subjEnglish

[9] Œwi 'XSetSymbol' 'subjFrench' subjFrench

[10] Œwi 'XSetSymbol' 'gradeEnglish' gradeEnglish

[11] Œwi 'XSetSymbol' 'gradeFrench' gradeFrench

[12] Œwi 'XSetSymbol' 'studentName' studentName

[13] Œwi 'XEvaluateNoReturn' 'classResults<-

data.frame(subjEnglish,gradeEnglish,subjFrench,gradeFrench);'

[14] Œwi 'XEvaluateNoReturn' 'rownames(classResults)<-studentName;'

[15] © Tidy up by removing intermediate variables

[16] Œwi 'XEvaluateNoReturn' 'rm(studentName)'

[17] Œwi 'XEvaluateNoReturn' 'rm(list=names(classResults));' © Variables in data.frame

 ’

In R, the data frame classResults can be examined.

> classResults

 subjEnglish gradeEnglish subjFrench gradeFrench

Student1 88 B 41 F

Student2 19 X 35 U

Student3 6 X 93 *

Student4 93 * 2 X

Student5 91 A 19 X

Student6 17 X 56 E

Student7 81 B 92 A

Student8 99 * 83 B

Student9 72 C 3 X

Student10 55 E 13 X

> class(classResults);

[1] "data.frame"

2.2.11.2. Time Series

A bare basic time series data structure comprises of a series of values applicable from a starting time
value that specifies the year. The values may be applicable to a frequency; usually this will be one of monthly
(12), quarterly (4), or yearly (1), the default. When frequency is 4 and 12, the labels (Qtr1, Qtr2 … Qtr4) and
(Jan, Feb … Dec) are applied automatically.

2.2.11.2.1. Time Series - yearly

Any given vector of raw values can be coerced into a time series data structure; there are several ways
of doing so:

> values <-c(12,34,54,67,87,34,65,34,32,12,43,89,23,54,23,43,13);

> valuesTS1<-ts(values,start=2000);

> valuesTS2<-ts(values,c(2000),,1);

> valuesTS3<-ts(values,c(2000));

> identical(valuesTS1,valuesTS2,valuesTS3);

[1] TRUE

>

The expressions I have used do not specify the end or frequency of the time series; these are implicitly worked
out by R. This technique sometimes avoids the introduction of unnecessary logic flaws and has no impact of
the result. The full specification of any of the time series variables can be examined:

R heterogeneous data structures with APL+Win

Page 42 of 79

> str(valuesTS2)

 Time-Series [1:17] from 2000 to 2016: 12 34 54 67 87 34 65 34 32 12 ...

> dput(valuesTS4)

structure(c(12, 34, 54, 67, 87, 34, 65, 34, 32, 12, 43, 89, 23,

54, 23, 43, 13), .Tsp = c(2000, 2016, 1), class = "ts")

2.2.11.2.2. Time Series – yearly by quarter

In order to specify that the values apply from a specific year and quarter, a different syntax is required.
The following example specifies that the series starts with the fourth quarter of 2012.

> valuesTS1Q<-ts(values,start=c(2000,4),frequency=4);

> valuesTS1Q;

 Qtr1 Qtr2 Qtr3 Qtr4

2000 12

2001 34 54 67 87

2002 34 65 34 32

2003 12 43 89 23

2004 54 23 43 13

> dput(valuesTS1Q);

structure(c(12, 34, 54, 67, 87, 34, 65, 34, 32, 12, 43, 89, 23,

54, 23, 43, 13), .Tsp = c(2000.75, 2004.75, 4), class = "ts")

Values apply from year 2000, 4th quarter; the preceding quarters will have null values. Depending on the length
of values, there may be trailing null values.

2.2.11.2.3. Time Series – yearly by month

In order to specify that the values apply from a specific year and month, a variation on the syntax is
required.

> valuesTS1M1<-ts(values,start=c(2000,7),frequency=12); # July 2000

> valuesTS1M2<-ts(values,c(2000,7),,12);

> identical(valuesTS1M1,valuesTS1M2);

[1] TRUE

> valuesTS1M1;

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2000 12 34 54 67 87 34

2001 65 34 32 12 43 89 23 54 23 43 13

> dput(valuesTS1M1);

structure(c(12, 34, 54, 67, 87, 34, 65, 34, 32, 12, 43, 89, 23,

54, 23, 43, 13), .Tsp = c(2000.5, 2001.83333333333, 12), class = "ts")

2.2.11.2.4. APL+Win – sending/receiving time series data

Crucially, R time series data is simply a vector of numeric values with other attributes.

 œŒwi¨ (››'XGetSymbol'),¨›¨'valuesTS1' 'valuesTS1Q' 'valuesTS1M1'

 12 34 54 67 87 34 65 34 32 12 43 89 23 54 23 43 13

 12 34 54 67 87 34 65 34 32 12 43 89 23 54 23 43 13

 12 34 54 67 87 34 65 34 32 12 43 89 23 54 23 43 13

In R, I used the dput() function to see the data structure; unfortunately, called from APL+Win, this function
returns a different result.

 Œwi 'XEvaluate' 'dput(valuesTS1)' © Returns raw values in APL+Win, structure in R

12 34 54 67 87 34 65 34 32 12 43 89 23 54 23 43 13

A different tact is required in APL+Win:

 Œwi 'XEvaluate' 'capture.output(valuesTS1)' © Get dput() in APL+Win

 Time Series: Start = 2000 End = 2016 Frequency = 1 [1] 12 34 54 67 87 34 65 34 32 12

43 89 23 54 23 43 13

For this yearly time series variable, the attributes Start, End, and Frequency is now obvious in APL+Win.
However, from APL+Win, these appear to be read-only properties.

> start(valuesTS1)

[1] 2000 1

> end(valuesTS1)

[1] 2016 1

> frequency(valuesTS1)

[1] 1

The read/write property that allows access to all three properties is:

R Server: Foreground or Background instance?

Page 43 of 79

> tsp(valuesTS1)

[1] 2000 2016 1

This function takes three mandatory numeric arguments, specifying the start, end, and frequency. Except for
yearly data, either or both of the first two arguments may contain a fractional part indicating the beginning
and end periods respectively. For yearly data, the first two arguments are integer and the third argument is
always 1.

It is obvious that a simple vector cannot be passed as an R time series data structure: time series attributes
must be specified also. There are two options:

 APL+Win can construct and cause R to evaluate a complete time series expression—which can be a little
contrived when the number of values grows—in its own environment.

 Œwi 'XEvaluateNoReturn' 'myTS<-ts(c(12,23,43,23),start=c(2011,3),frequency=4);'

 APL+Win can pass a workspace variable as a vector and then coerce this vector into an R time series
structure. Although this method is slightly convoluted, it does have the advantage that the values can be
passed from an APL variable and all the attributes must be specified. In the simpler example, only the start
and not the end value was specified; R determined the end value implicitly. A simple APL+Win function can
calculate all the attributes.

 ’ Z„L GetTSP R;StartYear;StartPeriod;Frequency

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] © L = Vector of values, R=StartYear, StartPeriod , Frequency

[3] © For yearly time series, StartPeriod and Frequency are always 1

[4] © For monthly time series, StartPeriod is [1|2|3|4|5|6|7|8|9|10|11|12] and Frequency

is 12

[5] © For quarterly time series, StartPeriod is [1|2|3|4] and Frequency is 4

[6] (StartYear StartPeriod Frequency)„R

[7] R„StartYear+(StartPeriod-1)÷Frequency

[8] R„R,R+(¯1+½L)÷Frequency

[9] R„R,Frequency

[10] Z„'c(#,#,#);'

[11] ((Z='#')/Z)„›¨R

[12] Z„¹•¨Z

 ’

The following code creates the same R time series data structure.

 aplValues„12 23 43 23 © No need to render as CSV

 Œwi 'XSetSymbol' 'myTS' aplValues © Vetor is passed in

 © Coerce myTS into a time series with default attributes

 Œwi 'XEvaluateNoReturn' 'myTS<-ts(myTS);'

 © Set the attributes proper

 Œwi 'XEvaluateNoReturn' ("tsp(myTS)<-#;" InLineExpression aplValues GetTSP 2011 3 4)

The theme of R pathways continues: the latter expression can be substituted by the following one:

Œwi 'XEvaluateNoReturn' ('attr(myTS,"tsp")<-#;' InLineExpression (aplValues GetTSP 2013 3

4))

Note that the attribute tsp requires three mandatory arguments, the start, end, and frequency values. The
start and end values can be floating point numbers- the fractional part indicate that the values are partway
through the year, specified as the integer part.

Within R, the value is:

> myTS

 Qtr1 Qtr2 Qtr3 Qtr4

2011 12 23

2012 43 23

Its tsp attribute is:

> tsp(myTS) # or use attr(myTS,"tsp")

[1] 2013.50 2014.25 4.00

In APL+Win, the attributes that is passed is:

 aplValues GetTSP 2013 3 4

c(2013.5,2014.25,4);

The value of this variable is:

 Œwi 'XGetSymbol' 'myTS'

12 23 43 23

 © Note, the attributes do not transfer

 © Attributes are queried separately

 Œwi 'XEvaluate' 'attr(myTS,"tsp")'

2013.5 2014.25 4

There is a third option for APL+Win: write a script that will create the data structure. R can return an
expression (note there is no assignment):

> dput(myTS) # Executable expression

structure(c(12L, 23L, 43L, 23L), .Dim = 4L, .Tsp = c(2013.5, 2014.25, 4), class = "ts")

> str(myTS) # Compact display of internal structure

R heterogeneous data structures with APL+Win

Page 44 of 79

 'ts' int [1:4(1d)] 12 23 43 23

 - attr(*, "tsp")= num [1:3] 2014 2014 4

Or, it can save the full definition of the data structure to a file:

> dump(c("myTS"),file="c:/myTS.R"); # file is overwritten automatically

> file.show("c:/myTS.R");

Note that R expressions can span multiple lines. R can read this file—that is, re-create the variable—with the
following expression:

> source("c:/myTS.R");

2.2.11.3. List

The list data structure closely corresponds with the APL+Win nested variable type in the sense that it is
the only data structure that can hold values of different types.

> myList<-list(c(1,2,3,4),matrix(c(17,2,3,4,18,19),ncol=2),c("Ajay","Askoolum"));

> myList;

[[1]]

[1] 1 2 3 4

[[2]]

 [,1] [,2]

[1,] 17 4

[2,] 2 18

[3,] 3 19

[[3]]

[1] "Ajay" "Askoolum"

However, only the first element of each component transfers correctly.

 (Œwi 'XGetSymbol' 'myList') (Œwi 'XEvaluate' 'myList')

 1 17 Ajay 1 17 Ajay

In order to read each component correctly, it must be read iteratively.

 ’ Z„ReadList

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Z„0/›''

[3] :for i :in +\(Œwi 'XEvaluate' 'length(myList)')/1 © R has index origin 1

[4] Z„Z,›Œwi 'XEvaluate' ('myList[[#]]' InLineExpression i)

[5] :endfor

 ’

 ReadList

 1 2 3 4 17 2 3 Ajay Askoolum

 4 18 19

]display ½¨ReadList

.…----------.

|.…..…--..….|

||4||2 3||2||

|'~''~--''~'|

'¹----------'

Can you spot the problem? The second component is a matrix and it needs to be transposed; this makes the
retrieval process rather convoluted for several reasons.

 The list can contain other lists, and each component can be a different class. In R, every data structure can
be reduced to a list.

 Each component may have one or more attributes; as noted, attributes need to be queried independently
of the data.

Starting the Server

Page 45 of 79

Perhaps, this is the least useful data structure from the point of view of APL+Win. One available method of
retrieving the list is to get its internal definition from R:

 Œwi 'XEvaluate' 'capture.output(dput(myList))'

 list(c(1, 2, 3, 4), structure(c(17, 2, 3, 4, 18, 19), .Dim = c(3L, 2L)), c("Ajay",

"Askoolum"))

2.3. Starting the Server
This function also sets the ⎕wi context to that instance of R. The workspace that includes this function has its
latent expression set as follows:

'#' ⎕wi 'ReleaseObjects' ⋄ '#' ⎕wi 'Reset' ⋄ ⎕wcall 'SetWindowText' ('#' ⎕wi 'hwndmain') 'Using R as COM
Server' ⋄ RServer

 The instance of R is created as soon as the workspace is loaded.

 The context of ⎕wself is globally set to the instance of R.

 The caption of the APL+Win window is set to ‘Using R as a COM Server’

3. Using R as a Client to an APL+Win Server
If you will, pause for a moment and ponder this question: “What is the inevitable problem in using

APL+Win as a server from a non-APL client?” Of course, it is the APL+Win character set: it is virtually impossible
to enter expressions—which include APL+Win characters—in R for execution by APL+Win. Therefore, on the
face of it, the potential for using APL+Win as a server is restricted: you can but execute function and read
variables whose names do not include any APL+Win characters.

For APL+Win to act as a server that unleashes all the powers of APL, the server must recognize keywords,
perhaps as an option. This might overcome most of the problem; of course, it is not available!

 I am not sure about a solution for \ which is a typewriter key and an APL primitive that denotes the start of
an escape sequence in R, C#, and other languages.

 Unless the client has the facility for transposing matrices or collates elements of a matrix in the same order
as APL+Win—that is, by row—this heralds another potential problem. Perhaps the APL+Win server should
have a user-selectable option for specifying the collation sequence?

R has the facilities for transposing matrices and user-selectable collation sequence; however, the default is by
column in common with Excel.

In order to keep matters simple, I recommend that you keep the server session visible as this allows user
interaction: you will have full access, including the ability to examine objects created by the client.

Ensure that workspaces intended for loading into the server have a clear stack and do not have any graphical
user interface elements: the client cannot interact with user interfaces. If you load a workspace whose stack is
not clear, the client waits for the server; unless, the server is visible, this will appear as a deadlock that
requires both client and server to be closed. When the server is visible, simply execute the)clear command
and the client regains control.

R heterogeneous data structures with APL+Win

Page 46 of 79

A workspace may have a latent expression. This is handy not least because you can change the caption of the
server session in order to identify it easily.

 Œlx„"'#' Œwi 'caption' 'R using APL+Win as COM Server'"

3.1. The ‘Variable’ property of an APL+Win server
Why is ‘Variable’ a property? Conventionally, properties have either read/write or read-only attributes.

In other words, you can read or write its value. The ‘Variable’ property behaves like a method—it requires one
argument for reading and two arguments for writing.

Although this property works fine for an APL+Win client, it does not work for some non-APL clients. With R or
Excel, I have been unable to assign or create a variable in an APL+Win server instance using this property. A C#
client manages to expose the methods set_Variable and get_Variable which, respectively, allow write and read
access; these latter methods are not available with an R or Excel client. Am I missing something here? Or, is
there a need for a method to enable read/write variables in an APL+Win server for non-APL clients?

I wonder whether there is a way to create the server instance in the manner that C# creates it.

3.2. APL+Win as Server
There are at least two methods for creating a server instance of APL+Win.

The first method requires no further tweaking of the R installation; this method uses rcom which is already
installed.

A server instance is created as follows:

> aplWin<-comCreateObject("APLW.WSEngine");

> aplWin[["Visible"]]<-TRUE;

The generic recommended syntax for calling properties, methods, and events is:

comInvoke(serverInstance, property | method | event,[arg1, arg2,.. argN]).

This process automatically instantiates statconnDCOM package that is already loaded/installated with my R
set-up: see the Installation section below.

The second method requires the installation of the SWinTypeLibs package. I am using the version from
http://www.omegahat.org/R/bin/windows/contrib/2.14/,; I am using the package SWinTypeLibs_0.6-0.zip
which requires RDCOMClient_0.93-0.zip also available at the same location.

Download and save both
files locally. In order to
install the package, select
Packages | Install Packages
from local zip files … and
then select the package:
SWinTypeLibs_0.6-0.zip

The package installation process echoes the following to the console:

> utils:::menuInstallLocal()

package ‘SWinTypeLibs’ successfully unpacked and MD5 sums checked

A server instance is created as follows:

> library(SWinTypeLibs)’ # This is required!

Loading required package: RDCOMClient

> apl<-COMCreate("APLW.WSEngine");

> v

http://www.omegahat.org/R/bin/windows/contrib/2.14/
http://www.omegahat.org/R/bin/windows/contrib/2.14/SWinTypeLibs_0.6-0.zip
http://www.omegahat.org/R/bin/windows/contrib/2.14/RDCOMClient_0.93-0.zip
http://www.omegahat.org/R/bin/windows/contrib/2.14/SWinTypeLibs_0.6-0.zip

APL+Win with keywords

Page 47 of 79

The generic recommended syntax for calling properties, methods, and events is:

.COM(serverInstance,property | method | event, arg1, arg2,.. argN).

3.3. APL+Win with keywords
A visible APL+Win server session is also handy for constructing APL expressions. In order to use the full

capability of APL+Win, my approach is to use APL+Win to render APL expressions using keywords and then
pasting them in the R Client; when R calls the server, it can reverse the rendering, execute the expression and
return the result.

A short demonstration will clarify this proposition. Suppose you want to evaluate the following expression
from R:

(+\5/1)°.×3 5.1 23 © Note: expression includes R escape character \

Using my scheme of naming APL primitives, this expression will become:

 APLToR '(+\5/1)°.×3 5.1 23'

(+#expL#5/1)#jot#.#times#3 5.1 23

 R can execute the expression as follows:

> aplWin<-comCreateObject("APLW.WSEngine");

> aplWin[["Visible"]]<-TRUE;

> aplWin$SysCommand("load C:/AJAY/RSTATS/WORKSPACES/RCLIENT");

NULL

> myMatrix<-t(comInvoke(aplWin,"Call","Expr","(+#expL#5/1)#jot#.#times#3 5.1 23"));

> myMatrix

 [,1] [,2] [,3]

[1,] 3 5.1 23

[2,] 6 10.2 46

[3,] 9 15.3 69

[4,] 12 20.4 92

[5,] 15 25.5 115

 (+\5/1)°.×3 5.1 23

 3 5.1 23

 6 10.2 46

 9 15.3 69

 12 20.4 92

 15 25.5 115

Encouraging? I think so, definitely. How is it put together?

 ’ R„Expr R;fn

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] 0 0½Œdef œ'R„fn R' ('R„',RToAPL R)

[3] R„fn R

 ’

This function creates a local
function that contains the
expression after it has had the
keywords replaced by APL+Win
symbols.

 ’ Z„L RToAPL R;i;j

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] (L Z)„APLToRMap R

[3] ((Œio+1)œL)„'#',¨((Œio+1)œL),¨'#'

[4] :for j :in †L © i is target

[5] i„†(Œio+1)œL © j is replacement

[6] R„iºZ

[7] :if 1¹R

[8] Z„(~R)›Z

[9] Z„((1¬½Z)‡›''),Z

[10] R„0=2|+\(½Z)/1

[11] (1‡Z)„(¯1+½i)‡¨1‡Z

[12] (1‡Z)„(›j),¨1‡Z

[13] Z„¹Z

[14] :endif

[15] L„1‡¨L

[16] :endfor

 ’

The function RToAPL translates
tokens/keywords back into
primitives.

The right-hand argument is a
string; if you use double quotes,
prefix the expression by a space.

 ’ Z„L APLToR R;i;j;k

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] (L Z)„APLToRMap R

[3] :for i :in †L © i is target

[4] j„1²'##',¹†(Œio+1)œL © j is replacement

[5] R„(1œL)¹›i

[6] :if 1¹R„iºZ

[7] Z„(~R)›Z

[8] Z„((1¬½Z)‡›''),Z

[9] R„0=2|+\(½Z)/1

[10] :if 1¬½i

The function APLToR translates
APL symbols into keywords.

The right-hand argument is a
string; if you use double quotes,
prefix the expression by a space.

R heterogeneous data structures with APL+Win

Page 48 of 79

[11] Z„(R×¯1+½i)‡¨Z

[12] :endif

[13] (¯1‡Z)„¯1‡Z,¨›j

[14] Z„¹Z

[15] :endif

[16] L„1‡¨L

[17] :endfor

 ’

Both functions use the same primitive to keyword mapping function—this ensures consistency.

This function should be self-explanatory.

The function does not distinguish between lines that are executable and
those that are comments.

It uses a primitive, keyword pair. The keywords must be unique so that
there is a one to one mapping between primitive and keyword.

The commented lines have symbols which are portable between R and
APL+Win. For example, the symbols < > / are not translated; therefore, if a
function that contains XML or HTML strings is mapped, those elements will
remain unaffected.

 Œvr 'Tags'

 ’ Z„Tags R

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Z„›'<html>'

[3] Z„Z,'<body>'

[4] Z„Z,'<table border="1">'

[5] Z„Z,'<tr>'

[6] Z„Z,'<th>Radius</th>'

[7] Z„Z,'<th>Area</th>'

[8] Z„Z,'</tr>'

[9] Z„Z,'<tr>'

[10] Z„Z,'<td>',(•R),'</td>'

[11] Z„Z,'<td>',(•±1×R*2),'</td>'

[12] Z„Z,'</tr>'

[13] Z„Z,'</table>'

[14] Z„Z,'</body>'

[15] Z„Z,'</html>'

 ’

 Z„APLToR ,Œtcnul,Œcr 'Tags' ª œ(Z¬Œtcnul)›Z

Z#assign#Tags R

#comment# Ajay Askoolum - APL2000 Conference April 22-24, 2012

Z#assign##enclose##sq#<html>#sq#

Z#assign#Z,#sq#<body>#sq#

Z#assign#Z,#sq#<table border=#dq#1#dq#>#sq#

Z#assign#Z,#sq#<tr>#sq#

Z#assign#Z,#sq#<th>Radius</th>#sq#

Z#assign#Z,#sq#<th>Area</th>#sq#

Z#assign#Z,#sq#</tr>#sq#

Z#assign#Z,#sq#<tr>#sq#

Z#assign#Z,#sq#<td>#sq#,(#fmt#R),#sq#</td>#sq#

Z#assign#Z,#sq#<td>#sq#,(#fmt##trig#1#times#R*2),#sq#</td>#sq#

Z#assign#Z,#sq#</tr>#sq#

Z#assign#Z,#sq#</table>#sq#

Z#assign#Z,#sq#</body>#sq#

Z#assign#Z,#sq#</html>#sq#

Note: The HTML tags are unaffected.

 Y„RToAPL Z ª œ(Y¬Œtcnul)›Y

Z„Tags R

© Ajay Askoolum - APL2000 Conference April 22-24, 2012

Z„›'<html>'

Z„Z,'<body>'

Z„Z,'<table border="1">'

Z„Z,'<tr>'

Z„Z,'<th>Radius</th>'

Z„Z,'<th>Area</th>'

Z„Z,'</tr>'

Z„Z,'<tr>'

Z„Z,'<td>',(•R),'</td>'

Z„Z,'<td>',(•±1×R*2),'</td>'

Z„Z,'</tr>'

Z„Z,'</table>'

 ’ Z„APLToRMap

[1] © Ajay Askoolum -

APL2000 Conference April

22-24, 2012

[2] Z„0/›''

[3] © The next two are

problematic; first one

has 2 characters and the

second, \ is \\ (escape

character

[4] Z„Z,›'©’ pc'

[5] Z„Z,›'\ expL'

[6] © Hereon, the

commented lines indicate

symbols that transfer

without problem

[7] Z„Z,›'• lock'
[8] © Z„Z,›'# nedt'

[9] Z„Z,›'ƒ base'

[10] © Z„Z,›'! bin'

[11] © Z„Z,›'? deal'

[12] Z„Z,›'÷ div'

[13] Z„Z,›'µ log'

[14] Z„Z,›'Ž divinv'
[15] Z„Z,›'— max'

[16] Z„Z,›'˜ min'

[17] © Z„Z,›'- minus'

[18] © Z„Z,›'+ plus'

[19] © Z„Z,›'* power'

[20] Z„Z,›'‚ rep'

[21] Z„Z,›'| residue'

[22] Z„Z,›'× times'

[23] Z„Z,›'± trig'

[24] © Z„Z,›'^ and'

[25] © Z„Z,›'= eq'

[26] © Z„Z,›'> gt'

[27] Z„Z,›'‰ ge'

[28] © Z„Z,›'< lt'

[29] Z„Z,›'ˆ le'

[30] © Z„Z,›'­ match'

[31] Z„Z,›'Š nand'

[32] © Z„Z,›'~ not'

[33] Z„Z,›'¬ ne'

[34] Z„Z,›'‹ nor'

[35] Z„Z,›'Ÿ Or'

[36] Z„Z,›'½ shape'

[37] Z„Z,›'” down'

[38] Z„Z,›'“ up'

[39] Z„Z,›'¼ index'

[40] Z„Z,›'– exec'

[41] Z„Z,›'• fmt'

[42] Z„Z,›'¨ each'

[43] © Z„Z,›'. dot'

[44] Z„Z,›'° jot'

[45] Z„Z,›'š compF'

[46] © Z„Z,›'/ compL'

[47] Z„Z,›'™ expF'

[48] © Z„Z,›', cat'

[49] Z„Z,›'® catAlt'

[50] Z„Z,›'‡ drop'

[51] Z„Z,›'› enclose'

[52] Z„Z,›'¹ enlist'

[53] Z„Z,›'º find'

[54] Z„Z,›'Þ index'

[55] Z„Z,›'œ disclose'

[56] Z„Z,›'´ rrf'

[57] Z„Z,›'² rrl'

[58] Z„Z,›'† take'

[59] Z„Z,›'³ transpose'

[60] Z„Z,›'„ assign '

APL+Win with keywords

Page 49 of 79

Z„Z,'</body>'

Z„Z,'</html>'

Although, whole functions may be mapped from primitive to keyword and
back again, there is no point in doing so: it would be preferable to save the
function in the workspace that the server will load and have R call the
function.

[61] Z„Z,›'¯ neg'

[62] © Z„Z,›'[li'

[63] © Z„Z,›'] ri'

[64] © Z„Z,›'(lb'

[65] © Z„Z,›') rb'

[66] Z„Z,›'Œ out'

[67] Z„Z,›'• prompt'
[68] Z„Z,›'Ð zilde'

[69] Z„Z,›'… branch'

[70] Z„Z,›'© comment'

[71] ©Z„Z,›': label'

[72] Z„Z,›'ª multis'

[73] © Z„Z,›'; asep'

[74] Z„Z,›"' sq"

[75] Z„Z,›'" dq'

[76] Z„Z,›'’ del'

[77] Z„Z,›'‘ delta'

[78] Z„Z,›'• deltau'
[79] © Z„Z,›'_ uscore'

[80] Z„(Z¬¨' ')›¨Z

[81] Z„(†¨Z)((Œio+1)œ¨Z)

 ’

Another demonstration: this time using the second method of COM invocation.

 APLToR '+/1 1³(¼12)°.×¼12'

+/1 1#transpose#(#index#12)#jot#.#times##index#12

> library(SWinTypeLibs);

Loading required package: RDCOMClient

> apl<-COMCreate("APLW.WSEngine");

> apl[["Visible"]]<-TRUE;

> .COM(apl,"SysCommand","load C:/AJAY/RSTATS/WORKSPACES/RCLIENT");

NULL

> .COM(apl,"Call","Expr","+/1 1#transpose#(#index#12)#jot#.#times##index#12");

[1] 650

It will take some practice—and, of course more field tests—to remember the primitive to keyword map but
when that is achieved, you can edit your APL+Win functions in any text editor

13
.

3.3.1. Using rcom
With the Installation as described, an R session is ready to create the APL+Win server. This is the

recommended approach as it is robust and copes with APL matrices and works much more reliably than the
one relying on SWinTypeLibs14.

> if (!require(rcom)){

+ install.packages("rcom");

+ }

> aplWin<-comCreateObject("APLW.WSEngine");

> aplWin[["Visible"]]<-TRUE;

> comInvoke(aplWin,"SysCommand","load C:\\AJAY\\RSTATS\\WORKSPACES\\RSERVER");

NULL

> utils::setWindowTitle("R with APL+Win COM Server");This script

 Verifies that rcom and dependencies are available and if not, rcom is installed.

 Makes the APL+Win server visible.

 Loads a workspace in the server; the workspace has a latent expression that changes the caption of the
server.

 Changes the caption of the R session.

When the workspace is loaded, the return value is NULL. Depending on the method called and with other COM
servers such as Excel, the return value may be an object; everything in R is an object. However, a return value
of NULL may also indicate an error condition—more about this later. The latent expression is:

13 Incidentally, the latter demonstration was deliberately constructed so that it returned a scalar.
14 This is unable to cope transparently with data transfer.

Using rcom

Page 50 of 79

'#' Œwi 'caption' 'R using APL+Win as COM Server'

Changing the captions of the client and server is not necessary; it is just a precautionary safeguard that allows
identification.

3.3.1.1. Properties

APL+Win server exposes three properties, SysVariable—for managing system variables, Variable—for
managing user-defined variables in the workspace, and Visible. Note that COM interface does not recognise
the X prefix and is case-sensitive.

3.3.1.1.1. SysVariable

APL+Win has a collection of system variables, such as Œio, Œrl,Œts etc. However, reference to
these variables does not require the Œ.

> comGetProperty(aplWin,"SysVariable","IO");

[1] 1

> comGetProperty(aplWin,"SysVariable","IO",0); # Should error

NULL

> !comGetProperty(aplWin,"SysVariable","IO",0); # Should error

Error in !comGetProperty(aplWin, "SysVariable", "IO", 0) :

 invalid argument type

The expression that returned NULL should raise an error: we are reading a property but are providing a value
for it! An un-documented feature of the interface is to prefix expressions with an exclamation mark (!) to elicit
a more verbose response. Use this techniques sparingly a debugging tool.

On changing index origin, the response is again NULL but this time it is not an error.

> comSetProperty(aplWin,"SysVariable","IO",0);

NULL

> comGetProperty(aplWin,"SysVariable","IO");

[1] 0

There is no means of enumerating the collection of system variables via the COM interface: see the APL+Win
help files for the list.

3.3.1.1.2. Variable

Unlike system variables, the list of user—defined variables is not finite and variables can be created
arbitrarily. The syntax for querying this collection is the same as with system variables.

> comSetProperty(aplWin,"Variable","myVal",4); # Create a variable by Value

NULL

> comGetProperty(aplWin,"Variable","myVal"); # Read a variable

[1] 4

When using APL+Win as the client, a variable can be created using an expression. However, although it is not
immediately obvious, it is the client rather than the server that evaluates the expression. Likewise with R;
however, the expression must be a valid R –not APL+Win—expression

See Exec for a means of enumerating the list of variables.

3.3.1.1.3. Visible

This property simply toggles the visibility of the server; it has two values, TRUE or FALSE.

Incidentally, unlike the second COM interface—discussed in Using SWinTypeLibs, this interface evaluates TRUE
to 1 and FALSE to 0.

> 100 * TRUE

[1] 100

3.3.1.1.4. Methods

Invoking methods in the APL+Win server may or may not return a result and may or may not require
one or more arguments. In order to be able to invoke APL+Win methods, some fluency with APL is a must.

APL+Win with keywords

Page 51 of 79

3.3.1.1.5. Call

This method invokes the execution of a user-defined function in the server; that function must exist or
an error occurs. Consider these functions:

 ’ R„Nil

[1] R„Œts

 ’

 ’ R„One R

[1] R„5+R

 ’

 ’ R„L Two R

[1] R„R÷L

 ’

> a<-comInvoke(aplWin,"Call","Nil"); #Expect a vector

> a

[1] 2012 3 23 22 18 47 109

> typeof(a)

[1] "integer"

> b<-comInvoke(aplWin,"Call","One", 1);

> b

[1] 6

> comInvoke(aplWin,"Call","Two",90,1.5);# expect 90/1.5

[1] 60

3.3.1.1.6. Exec

This method invokes the evaluation of an APL expression in the server; the expression may involve an
APL function. Unless the whole expression is valid, an error occurs.

> comInvoke(aplWin,"Exec","ListVariables"); # Enumerate user defined variables

[1] "dept " "depts " "dow " "dowI " "dowdowIdoww"

[6] "doww "

> comInvoke(aplWin,"Exec","ListFunctions"); # Enumeratre user defined variables

[1] "RBServer " "RFServer " "RServerx "

[4] "ReadDefinition " "ReadList " "ReceiveVector "

[7] "ReceiveVectorType"

The two methods—note only a partial list is returned to keep the response to a minimum—are defined as
follows:

 ’ R„ListVariables

[1] R„'d' Œnl 2

 ’

 ’ R„ListFunctions

[1] R„'R' Œnl 3

 ’

Strictly speaking, the appropriate server method to use is Call since Exec is meant to evaluate expressions.
However, a function that takes no arguments is an expression.

3.3.1.1.7. SetOrphanTimeout

Refer to the like named topic in the next section.

3.3.1.1.8. SysCall

This method allows the invocation of APL+Win system functions.

> comInvoke(aplWin,"SysCall","wsid");

[1] "C:\\AJAY\\RSTATS\\WORKSPACES\\RSERVER"

> comInvoke(aplWin,"SysCall","wssize");

[1] 1503920128

> comInvoke(aplWin,"SysCall","sysver");

[1] "11.1.03 Jan 5 2012 14:05:58 Win/32"

3.3.1.1.9. SysCommand

This method allows the invocation of APL+Win system commands—these begin with) I APL but are
omitted when using COM automation.

> comInvoke(aplWin,"SysCommand","wsid newCopy");

NULL

> comInvoke(aplWin,"SysCall","wsid");

[1] "C:\\WINDOWS\\SYSTEM32\\NEWCOPY"

Advanced investigation of the Exec method

Page 52 of 79

3.3.1.2. Events

The rcom interface does not handle interfaces.

3.3.2. Advanced investigation of the Exec method
As stated, the Exec method evaluates APL expressions and returns the result to the client. With R as the

client, the usefulness of this method is severely curtailed because it is impossible to enter APL+Win primitive
symbols from R. During the preceding discussion of this issue, the resolution was to use APL+Win keywords.
What follows is a variation on this theme.

It is quite easy to include APL+Win expressions—with symbols that will map correctly inside APL+Win—with a
little bit of subterfuge. However, this is practical only in circumstances where the expressions are known in
advance. With prior knowledge

 An APL+Win active session can render any APL expression with keywords.

 The converted expression can be pasted into an R script that has a call to the APL+Win server to translate
the expression back into symbols.

 R can then invoke the execution of the expression with symbols.

 A couple of examples might clarify the foregoing.

3.3.2.1. Example 1

Suppose the intention is to execute the following:

 Œrl„1903 ª a„5?10 ª b„3?100 ª a°.+b © Good number of primitives here!

Step 1: Convert the expression into keywords using APL+Win.

 APLToR 'Œrl„1903 ª a„5?10 ª b„3?100 ª a°.+b'

#out#rl#assign#1903 #multis# a#assign#5?10 #multis# b#assign#3?100 #multis# a#jot#.+b

Step 2: Paste the expression in R and call APL+Win to convert it back to symbols.

> aplKeyword<-"#out#rl#assign#1903 #multis# a#assign#5?10 #multis# b#assign#3?100 #multis#

a#jot#.+b";

> aplExp<-comInvoke(aplWin,"Call","Expr2",aplKeyword);

> aplExp;# Wow! That's how R sees the APL primitive symbols

[1] "•rl\0061903 \004 a\0065?10 \004 b\0063?100 \004 aø.+b"

Step3: Invoke the Exec method and have the server evaluate the expression

> myMatrix<-as.matrix(t(comInvoke(aplWin,"Exec",aplExp)));# The results need transposition

The results are the same!

> myMatrix; #Browse the results

 [,1] [,2] [,3]

[1,] 43 57 22

[2,] 40 54 19

[3,] 34 48 13

[4,] 35 49 14

[5,] 41 55 20

> rowSums(myMatrix);

[1] 122 113 95 98 116

 Œrl„1903 ª a„5?10 ª b„3?100 ª

Œ„myMatrix„a°.+b

 43 57 22

 40 54 19

 34 48 13

 35 49 14

 41 55 20

 +/myMatrix

122 113 95 98 116

3.3.2.2. Example 2

The objective is to specify the following expression from R:

 Œrl„1988 ª R„20 50 ª L„10?100 ª (×R[Œio]-L)+×R[Œio+1]-L

Step 1: Convert the expression into keywords using APL+Win15.

 APLToR "Œrl„1988 ª R„20 50 ª L„10?100 ª (×R[Œio]-L)+×R[Œio+1]-L"

#out#rl#assign#1988 #multis# R#assign#20 50 #multis# L#assign#10?100 #multis#

(#times#R[#out#io]-L)+#times#R[#out#io+1]-L

15 The result is a vector, albeit it appears on two physical lines.

APL+Win with keywords

Page 53 of 79

Step 2: Paste the expression in R and call APL+Win to convert it back to symbols.

> aplExp<-comInvoke(aplWin,"Call","Expr2",aplKeyword);aplKeyword<-" #out#rl#assign#1988

#multis# R#assign#20 50 #multis# L#assign#10?100 #multis# (#times#R[#out#io]-

L)+#times#R[#out#io+1]-L ";

> aplExp<-comInvoke(aplWin,"Call","Expr2",aplKeyword);

> aplExp; #See what it looks like

[1] " •rl\0061988 \004 R\00620 50 \004 L\00610?100 \004 (’R[•io]-L)+’R[•io+1]-L "

Step3: Invoke the Exec method and have the server evaluate the expression

> comInvoke(aplWin,"Exec",aplExp);

 [1] -2 -1 -2 1 -2 -2 0 0 -2 -2 Œrl„1988 ª R„20 50 ª L„10?100 ª (×R[Œio]-

L)+×R[Œio+1]-L

¯2 ¯1 ¯2 1 ¯2 ¯2 0 0 ¯2 ¯2

Note the transparent translation of APL negative numbers.

In case this needs to be pointed out, setting the APL+Win random link ensures that APL roll returns the same
numbers.

How is Expr2 defined?

 ’ R„Expr2 R

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] R„RToAPL R

 ’

3.3.2.3. Example 3

Of course with some practice converting the APL+Win primitive to its keyword mapping, it becomes
possible to eliminate step one altogether: you can type the expression directly in R. This creates much more
interesting possibilities.

 Which elements on the diagonal of (¼12)°.×(¼12) are odd? The APL+Win expression that yields
the answer is:

 (2|a)/a„1 1³(¼12)°.×¼12 © Always work in Œio„1 with R

1 9 25 49 81 121

> # Create the transliterated expression directly in R

> # Use a reference card showing the primitive/keyword map, if necessary.

> aplExp<-"(2#residue#a)/a#assign#1 1#transpose#(#index#12)#jot#.#times##index#12"

> aplExpMapped<-comInvoke(aplWin,"Call","Expr2",aplExp);

> aplExpMapped; # What does it look like?

[1] "(2þa)/a\0061 1í(â12)ø.’â12"

> comInvoke(aplWin,"Exec",aplExpMapped); # Evaluate it

[1] 1 9 25 49 81 121

3.3.3. Using SWinTypeLibs
The documentation16 and material you can find on the internet on this option for interfacing R and

other COM servers tend to concentrate on Excel and to a lesser extent on Word. The worked examples
certainly work and they illustrate a means of including R output in documents.

However, with APL+Win, this route to automation is fraught with difficulties and I do not recommend it for
one important reason: the interface is not transparent. It is possible that a later revision of this package will
overcome the issues but for now:

 There appears to be issues with the transfer of some data types17.

 Data structures do not transfer: it is not possible to receive matrices from the APL+Win server unless the
server coerces the result that it passes.

The dynamics of client/server automation works only when data transfers are transparent and data coercion,
where necessary, are silent; in this case they are not.

Consider an example: the objective is to retrieve an array—for definition, see code below—from APL+Win.

16 See http://www.baselr.org/Manipulating%20Office%20Documents%20with%20R%20-%20Jan%202012.pdf.
17 See http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/DCOM.html for the list of data types supported.

http://www.baselr.org/Manipulating%20Office%20Documents%20with%20R%20-%20Jan%202012.pdf
http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/DCOM.html

Using SWinTypeLibs

Page 54 of 79

 ’ Z„RR

[1] Œrl„1924

[2] Z„2 3 5½(0.001×10?1000)×10?123213

[3] Z„'#' Œwi 'VT' (Z) 8204

 ’

 RR

 VT 8204 17354.194 72990.145 5917.305 33087.372 16487.52

 75934.913 42228.795 20019.368 1271.124 31434.48

 17354.194 72990.145 5917.305 33087.372 16487.52

 75934.913 42228.795 20019.368 1271.124 31434.48

 17354.194 72990.145 5917.305 33087.372 16487.52

 75934.913 42228.795 20019.368 1271.124 31434.48

> library(SWinTypeLibs);

> apl<-COMCreate("APLW.WSEngine");

> apl[["Visible"]]<-TRUE;

> apl$SysCommand("load C:/AJAY/RSTATS/WORKSPACES/COM4R");

NULL

> a<-.COM(apl,"Call","RR");

> typeof(a); # It is not an array!

[1] "list"

> dput(a); # It is a list

list(list(list(95774.539, 1507.113, 118665.678, 93102.093, 24878.952),

 list(16098.62, 7460.772, 28692.185, 48949.74, 4621.449),

 list(95774.539, 1507.113, 118665.678, 93102.093, 24878.952)),

 list(list(16098.62, 7460.772, 28692.185, 48949.74, 4621.449),

 list(95774.539, 1507.113, 118665.678, 93102.093, 24878.952),

 list(16098.62, 7460.772, 28692.185, 48949.74, 4621.449)))

> b<-as.array(.COM(apl,"Call","RR")); # Coerce

> typeof(b); # Still a list!

[1] "list"

Even with data coercion in R—note the as.array coercion—the received data is a list rather than an array.

Without data coercion within APL+Win—see line [3] of the APL function—the R session locks up. Therefore,
the investigation of this route is fairly basic: I will restrict examples to scalars. There is some documentation on
this approach at this location: http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/DCOM.html. At
the time of writing, it appears incomplete or unfinished. However, it does elaborate on strategies for handling
events and exposing the collection of properties, methods, and events using Excel as the server.

Note that the COM interface is indifferent as regards the case when property, method, or event names are
specified: all are specified as literals.

The package dependencies are as follows:

SWinTypeLibs Reads meta-information from COM objects; it requires RDOMClient.
RDCOMClient Enables COM from R.
RDCOMServer Exports R functions to other applications; I am not using this package since it depends on yet

more packages and it changes the Registry.
For details, consult http://www.omegahat.org/RDCOMServer/.
And for examples, see http://www.omegahat.org/RDCOMServer/examples/.

This interface uses $ where dot (.) is used with object oriented instances of objects. Therefore, the following
two lines are equivalent:

> apl$Visible(); # Read Only.Note () to indicate that the function is called

[1] -1

> apl[["Visible"]]; # Read Write

[1] -1

Of course, in the realm of R, there are other pathways!

> .COM(apl,"Visible"); # Read Only

[1] -1

3.3.3.1. Properties

Properties or attributes—in plain terms, variables and constants—are either read/write or read-only.
The conventional syntax of this COM interface will allow the R client to query or assign a property.

http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/DCOM.html
http://www.omegahat.org/RDCOMServer/
http://www.omegahat.org/RDCOMServer/examples/

APL+Win with keywords

Page 55 of 79

With this interface, a property that holds a value, such as the Visible property, both read and write are
supported. With a property that holds a collection, such as the SysVariable property, only read access is
permitted.

> apl$SysVariable("io"); # Read Access

[1] 1

> apl$SysVariable("io")<-0;

Error in apl$SysVariable("io") <- 0 :

 target of assignment expands to non-language object

> .COM(apl,"SysVariable","io");

[1] 1

> .COM(apl,"SysVariable","io",0);

Error: Invalid number of parameters.

3.3.3.1.1. SysVariable

This property holds a collection of APL System variables e.g. IO,WA,WSSIZE etc.; they can be read only,
although they are read/write properties.

> .COM(apl,"SysVariable","rl"); # Read only

[1] 16807

3.3.3.1.2. Variable

This property holds a collection—the set of user defined variables in the APL+Win server workspace.
The same restrictions apply.

> .COM(apl,"Variable","ABC");

[1] 90

> apl$Variable("ABC");

[1] 90

3.3.3.1.3. Visible

This property is the only one that behaves as required.

> #Write

> apl[["Visible"]]<-TRUE;

> #Read

> apl[["Visible"]]; # Syntax 1

[1] -1

> apl$Visible(); # Syntax 2

[1] -1

> # Note it returned -1 rather than 1 … reminiscent of Visual Basic 6.0 or Excel VBA!

> .COM(apl,"Visible"); # Syntax 2

[1] -1

3.3.3.2. Methods

The collection of methods has dedicated methods for dealing with user defined and system methods.
For user-defined methods, that is functions, use Call and Exec. For system functions, use SysCall and
SysCommand.

3.3.3.2.1. Call

This method allows you to call user-defined functions available in the server session. APL+Win functions
can take none, one, or two arguments; a single argument is always referred to as the right-hand argument. In
calling a function, the right-hand argument is specified first. Function calls match the arguments by position
only: there is no other option.

 Consider these examples:

 ’ R„Nil

[1] R„µ90

 ’

 ’ R„One R

[1] R„µR

 ’

 ’ R„L Two R

[1] R„LµR

 ’

 ’ NoRes

[1] x„8+9

 ’

> .COM(apl,"Call","Nil"); # Care! Function name is case-sentitive

[1] 4.49981

> .COM(apl,"Call","One",90);

[1] 4.49981

> .COM(apl,"Call","Two",90,2); # 2 is the left-hand argument

[1] 6.491853

Using SWinTypeLibs

Page 56 of 79

The results may be assigned to R variables.

> logBase2<-.COM(apl,"Call","Two",90,2); # Care! Function name is case-sentitive

> logBase2;

[1] 6.491853

If you assign the results of an APL function that returns no result, the interface assigns NULL to the variable;
this is probably more acceptable than an error being raised.

> a<-logBase2<-.COM(apl,"Call","NoRes"); # Care! Function name is case-sentitive

> a;

NULL

3.3.3.2.2. Exec

The Exec method permits the execution of arbitrary but valid APL expressions, irrespective of whether
that expression returns a result. The expression may be a function; however, if it is a function that requires
arguments, none can be specified. Use Call instead.

> .COM(apl,"Exec","3+2");

[1] 5

> .COM(apl,"Exec","NoRes");

NULL

3.3.3.2.3. SetOrphanTimeout

Set orphaned-process timeout and parent process id; returns child process id.

> .COM(apl,"SetOrphanTimeout"); # Read

I expected the following result since R is the child process:

> .COM(apl,"SetOrphanTimeout",10,2180); # Write

[1] 3756

Windows Task Manager confirms the parameter and result.

3.3.3.2.4. SysCall

This method allows the client to execute any system function in the APL+Win Server. A system function
is one that begins with:

Œ © For example Œio

However, the APL symbol is not specified and the function name is not case-sensitive.

> .COM(apl,"SysCall","io"); # Index Origin

[1] 1

> .COM(apl,"SysCall","rl"); # Random Lonk

[1] 500782188

3.3.3.2.5. SysCommand

This method allows the client to execute any system function in the APL+Win Server. A system function
is one that begins with:

) © For example)load

Demonstration 1

Page 57 of 79

3.3.3.3. Events

The APL+Win server has two events, namely, Notify and SysNotify. Refer to
http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/DCOM.html for details on working with events.

4. APL+Win GUI with R plots
One of the most tangible benefits of using R as a server is the option of showing R plots on APL+Win

graphical user interfaces. R can display complex data graphically. Unfortunately, the graphical displays can be
just as complex unless you learn to interpret them. Consider two examples: the data for both examples are
included in the basic R installation.

4.1. Demonstration 1
The first example shows a fairly basic graph that is easily understood.

APL+Win can retrieve the data:

 Œwi 'XEvaluateNoReturn' 'data(presidents);'

R can now plot the data, shown on the right, and save it to a file.

> bmp(filename = "c:/ajay/rstats/plots/presidents.bmp",width

= 600, height = 400, units = "px", pointsize = 12, bg =

"white");

> data(presidents);

> plot(presidents,main=" Quarterly Approval Ratings of US

Presidents");

> dev.off();

As APL+Win can show bitmap files in its ‘Picture’ control, in this instance
the plot is written as a bitmap; several other options are available,

If the file exists, R will overwrite it silently.

The dimensions of the bitmap are chosen to match the preferred
dimensions for the ‘Picture’ control in APL+Win.

Although I have executed the R code in R, it is equally possible to
execute them from APL+Win using the XEvaluateNoReturn method.

Note that the output file is: c:/ajay/rstats/plots/presidents.bmp.

The underlying data structure is time series.

> presidents;

 Qtr1 Qtr2 Qtr3 Qtr4

1945 NA 87 82 75

1946 63 50 43 32

1947 35 60 54 55

1948 36 39 NA NA

1949 69 57 57 51

1950 45 37 46 39

1951 36 24 32 23

1952 25 32 NA 32

1953 59 74 75 60

1954 71 61 71 57

1955 71 68 79 73

1956 76 71 67 75

1957 79 62 63 57

1958 60 49 48 52

1959 57 62 61 66

1960 71 62 61 57

1961 72 83 71 78

1962 79 71 62 74

1963 76 64 62 57

1964 80 73 69 69

1965 71 64 69 62

1966 63 46 56 44

1967 44 52 38 46

1968 36 49 35 44

1969 59 65 65 56

1970 66 53 61 52

1971 51 48 54 49

1972 49 61 NA NA

1973 68 44 40 27

1974 28 25 24 24

The plot instruction is basic: none of the visual attributes that are possible, for example, type of plot, colours
etc. are specified.

The APL+Win function that will show the plot is:

 ’ ShowPlot R;Œwself

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Œwself„'frmR' Œwi 'Create' 'Form'

[3] Œwi 'caption' 'APL+Win Form - R Plot Demonstration'

[4] Œwi 'enabled' 1

[5] Œwi 'where' 16 40 28 76

[6]

[7] Œwself„'frmR.im' Œwi 'New' 'Picture' ('scale' 5)

[8] Œwi 'origin' 50 50

[9] Œwi 'bitmap' R

[10] Œwi 'imagesize' 400 600

[11] Œwi 'extent' ('frmR' Œwi 'extent')

[12] Œwi 'where' 0 0

[13]

[14] 'frmR' Œwi 'Wait'

 ’

ShowPlot"c:\ajay\rstats\plots\presidents.bmp" © Backslash in APL+Win

The plot shows as follows:

http://www.stat.berkeley.edu/~nolan/stat133/Fall05/lectures/DCOM.html

Using SWinTypeLibs

Page 58 of 79

4.2. Demonstration 2
The second example is slightly more complex.

This is based on a data.frame data structure.

> class(OrchardSprays);

[1] "data.frame"

This time, the plot is constructed by calling the R
commands from APL+Win:

 ’ OrchardSprays

[1] © Ajay Askoolum - APL2000 Conference

April 22-24, 2012

[2] Œwi 'XEvaluateNoReturn' 'bmp(filename =

"c:/ajay/rstats/plots/orchardsprays.bmp",width

= 600, height = 400, units = "px", pointsize

 = 12, bg = "white");'

[3] Œwi 'EvaluateNoReturn'

'data(OrchardSprays);'

[4] Œwi 'XEvaluateNoReturn'

'plot(OrchardSprays,main=" Potency of Orchard

Sprays");'

[5] Œwi 'XEvaluateNoReturn' 'dev.off();'

 ’

Warning: Note that I have used Œwi without a left-hand
argument. You will need to ensure that the left-hand
argument defaults to the background or foreground
instance of the R server.

Since the APL+Win form definition also assigns to
Œwself, the danger that some confusion is introduced
does exist.

Note that both the R and APL+Win code have

Œwi 'XEvaluateNoReturn'

'data(OrchardSprays);'

œŒwi 'XEvaluate'

'capture.output(OrchardSprays)'

 decrease rowpos colpos treatment

1 57 1 1 D

2 95 2 1 E

3 8 3 1 B

4 69 4 1 H

5 92 5 1 G

6 90 6 1 F

7 15 7 1 C

8 2 8 1 A

9 84 1 2 C

10 6 2 2 B

11 127 3 2 H

12 36 4 2 D

13 51 5 2 E

14 2 6 2 A

15 69 7 2 F

16 71 8 2 G

17 87 1 3 F

18 72 2 3 H

19 5 3 3 A

20 39 4 3 E

21 22 5 3 D

22 16 6 3 C

23 72 7 3 G

24 4 8 3 B

25 130 1 4 H

26 4 2 4 A

27 114 3 4 E

28 9 4 4 C

29 20 5 4 F

30 24 6 4 G

31 10 7 4 B

Demonstration 2

Page 59 of 79

specification for width and height in pixels: make
adjustments in both places so that the plots show
correctly in APL+Win.

Line [8] of ShowPlot puts the image on the APL+Win
form using the ‘bitmap’ property. The ‘image’ property
has a method ‘Paste’—from the clipboard—but it
accepts a bitmap image only and I have not found a way
to put a bitmap on the clipboard from R18.

32 51 8 4 D

33 43 1 5 E

34 28 2 5 D

35 60 3 5 G

36 5 4 5 A

37 17 5 5 C

38 7 6 5 B

39 81 7 5 H

40 71 8 5 F

41 12 1 6 A

42 29 2 6 C

43 44 3 6 F

44 77 4 6 G

45 4 5 6 B

46 27 6 6 D

47 47 7 6 E

48 76 8 6 H

49 8 1 7 B

50 72 2 7 G

51 13 3 7 C

52 57 4 7 F

53 4 5 7 A

54 81 6 7 H

55 20 7 7 D

56 61 8 7 E

57 80 1 8 G

58 114 2 8 F

59 39 3 8 D

60 14 4 8 B

61 86 5 8 H

62 55 6 8 E

63 3 7 8 A

64 19 8 8 C

The plot shown on an APL+Win form:

 ShowPlot 'c:\ajay\rstats\plots\orchardsprays.bmp'

18 It can put a Windows meta-file on the clipboard.

Using SWinTypeLibs

Page 60 of 79

This is a default plot; the visual representation is quite complex unless you know how to read it. In practice,
researchers would try out several plots before deciding on the one suitable for the target audience.

4.3. Demonstration 3
The ability to put R plots on an APL+Win graphical interface no doubt enhances the APL+Win

application. The fact that the bitmaps that APL+Win shows are stored as files also means that such plots can be
included in formal reports, constructed in, say, Word documents. Remember that in the previous two
demonstrations, R is the server and APL+Win the client. R can put plots directly into Word documents using
COM; certainly, this is one option.

However, for APL+Win, it is almost certain that any report created in Word will contain the bitmap and other
information available from APL+Win. Let me demonstrate another option: APL+Win preparing a very basic
report in Word comprising of one R plot and some data from the APL+Win workspace.

 ’ PlotToClipboard;Œwself;PlotToClipboard;weekDays;xlab;ylab;mainTitle;subTitle

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Œwself„'‘rfs'

[3] Œrl„1989 © So you can rereate the same data

[4] © Create the data and attributes for the plot

[5] myData„7?1000

[6] weekDays„"Mon" "Tue" "Wed" "Thu" "Fri" "Sat" "Sun"

[7] xlab„"April 23-29 2012"

[8] ylab„"Units Sold"

[9] mainTitle„"Daily Sales"

[10] subTitle„"Electronic Mail Orders"

[11] © Send plot data to R

[12] Œwi 'XSetSymbol' 'myData' myData

[13] Œwi 'XSetSymbol' 'weekDays' weekDays

[14] Œwi 'XSetSymbol' 'xlab' xlab © x-axis label

[15] Œwi 'XSetSymbol' 'ylab' ylab © y-axis label

[16] Œwi 'XSetSymbol' 'mainTitle' mainTitle

[17] Œwi 'XSetSymbol' 'subTitle' subTitle

[18] © Now set the clipboard as the graphics device

[19] Œwi 'XEvaluateNoReturn' 'win.metafile(width=6,height=4,pointsize=12);'

[20] ©Œwi 'XEvaluateNoReturn' 'jpeg(width = 600, height = 400, units = "px", pointsize =

12, bg = "white");'

[21] © Plot & save to clipboard & close the device

[22] Œwi 'XEvaluateNoReturn'

'barplot(myData,names.arg=weekDays,col=rainbow(7),main=mainTitle,sub=subTitle,,ylab=ylab,x

lab=xlab);'

[23] Œwi 'XEvaluateNoReturn' 'dev.off();'

[24] © Plot must be ready for pasting

 ’

This function uses R to create a simple plot on the clipboard. All the data used in the plot are created within
APL+Win and passed to R.

Each step in executed incrementally and in a predefined sequence. With an adequate level of fluency in R, the
alternative is to write all the R code to a script file and then simply call on R to execute that script.

> source("drive:/path/filename.R");

I have saved the same plot as R code, and as a function. Now I can re-use the code any number of times from
APL+Win for plotting different data—I just need to supply the data into R:

 ’ PlotReUse

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Œwi 'XEvaluateNoReturn' 'Source("c:/ajay/rstats/scripts/myBarPlot.R");'

[3] Œwi 'XSetSymbol' myData (7?1000)

Demonstration 3

Page 61 of 79

[4] Œwi 'XEvaluateNoReturn' 'myBarPlot(myData);'

 ’

On line [19], the measurement units for width and height are in inches. Line [20], which is commented out,
shows the code for creating jpeg files.

Using the clipboard for holding the plot makes for a speedier alternative to writing it to a file. However, if you
have a series of plots, you need to ‘consume’ the plot as soon as created otherwise each subsequent one
overwrites the clipboard without warning

In order to understand the complexity of the plots that R can produce and indeed to learn how to code them,
refer to existing examples and adapt them. This link provides an exhaustive reference with code:
http://addictedtor.free.fr/graphiques/allgraph.php.

The code that created the content of the Word document is:

 ’ WordReport;Œwself;i;j

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Œwself„'wd' Œwi 'Create' 'Word.Application'

[3] Œwi 'visible' 0 © Leave it hidden for now

[4] 0 0½Œwi 'XDocuments.Add'

[5] Œwi 'xSelection.TypeText' 'A basic APL+Win report created by APL+Win.'

[6] Œwi 'xSelection.TypeParagraph'

[7] Plot © Create a plot in R and save it to the clipboard

[8] Œwi 'xSelection.Paste'

[9] Œwi 'xSelection.TypeParagraph'

[10] Œwi 'xSelection.TypeText' 'Based on the following data:'

[11] Œwi 'xSelection.TypeParagraph'

[12] © 3 Rows(WeekDays, Data) 7 columns (MON ... SUN)

[13] Œwi 'xActiveDocument.Tables.Add(Range,NumRows,NumColumns)' (('wd' Œwi

'Selection.Range')Œwi 'obj') 2 7

[14] :for i :in weekDays

[15] 0 0½Œwi 'xSelection.TypeText' i

[16] Œwi 'xSelection.MoveRight' (Œwi '=wdCell')

[17] :endfor

[18] j„1

[19] :for i :in myData

[20] Œwi 'xSelection.TypeText' (•i)

[21] j„j+1

http://addictedtor.free.fr/graphiques/allgraph.php

Using SWinTypeLibs

Page 62 of 79

[22] :if jˆ½myData © No tab in final cell or it will create another row

[23] 0 0½Œwi 'xSelection.MoveRight' (Œwi '=wdCell')

[24] :endif

[25] :endfor

[26] Œwi 'xSelection.MoveDown' (Œwi '=wdLine')1

[27] Œwi 'ActiveDocument.Paragraphs().Range.Select' 1

[28] Œwi 'xSelection.ParagraphFormat.Alignment' (Œwi '=wdAlignParagraphCenter')

[29] Œwi 'xSelection.Font.Bold' 1

[30] Œwi 'xSelection.Font.Underline' (Œwi '=wdUnderlineSingle')

[31] Œwi 'xSelection.EndKey' (Œwi '=wdStory')

[32] Œwi 'visible' 1

 ’

This function builds the report step-by-step; this is acceptable for a demonstration. In practice, for a working
report, you will need to create and format the report using Word itself. The document should contain
bookmarks as placeholders for the content that APL+Win will fill-in.

5. Saving/Loading R client and server objects
The R client and/or server session accumulates a set of objects—functions, homogeneous and

heterogeneous data structures—during interaction with APL+Win. Unless this interaction is experimental, it is
advisable to save the active R session so that it can be re-loaded during another COM session.

If you are using the foreground server, use either the R or APL+Win code for saving and loading R workspaces
or objects. If you use the APL+Win code, note that the interactive dialogues do not always appear as the top
window; therefore, it is advisable to use the syntax that does not require interaction.

Objects are saved to and loaded from files. Remember that \ is a reserved character in R—it denotes the start
of an escape sequence; therefore, either use / or \\ instead of \. The penalty for any oversight in specifying a
fully qualified file name is liable to be a frozen APL+Win session. In order to counteract this, it might be
preferable to write cover functions which automatically do this substitution.

5.1. As a workspace
You can save the whole workspace to a named file as follows:

> save.image(file="myRWS.RDATA",ascii=FALSE); # Binary format

Or, use the client expression when using R as a background server:

 Œwi 'XEvaluateNoReturn' 'save.image(file="myRWS.RDATA",ascii=FALSE);'

Alternatively, use the following command from the server:

> save.image(file=file.choose(new=TRUE),ascii=FALSE); # Binary format

This allows you to specify a file name at run time; specify a file name as appropriate. If an existing file name is
specified, R will overwrite it without warning.

As a workspace

Page 63 of 79

This will prompt you for a
file name. You can change
the location of the file by
specifying a fully qualified
file name or by changing the
folder visible in the ‘Look in’
box.

Should you click Cancel, the
following self-explanatory
error is raised:

Error in file.choose(new

= TRUE) : file choice

cancelled

Note:

 Specifying new = FALSE allows you to select an existing file.

 Specifying ascii = TRUE allows you to save the file in text form; however, the file is NOT saved in human
readable form.

You must specify a new file name with extension ‘.RDATA’
and click Open.

Should you click No from the dialogue that follows, the
prompt reverts to the original dialogue; if you click Yes, the
workspace is saved in binary format.

A saved workspace may be re-loaded with the following command:

> load(file=file.choose(new=FALSE));

The equivalent APL+Win expression is:

 Œwi 'XEvaluateNoReturn' 'load(file="myfile.RDATA");'

Note that you need to specify the name of the file rather than choose the file dynamically:

 The file.choose() dialogue may not display as the top window, especially if you are using R as a background
server.

 This syntax provides you with an audit trail; in other words, the code tells you what file you have loaded.

In interactive mode, you can type *.RDATA in the File Name box and click Open to display workspace file
names only; this will make file selection easier.

Using SWinTypeLibs

Page 64 of 79

Since it is impossible to load
a file unless it exists already,
set the parameter new to
FALSE.

Select a workspace and click
Open: the file will be loaded
silently; in other words,
unlike APL+Win which tells
you when the file was saved,
there is no response from R.

Warning: Unlike APL+Win,
loading an R workspace does
NOT expunge the contents
of the active workspace first.

Therefore, the ‘load’ action
is like the APL+Win ‘copy’
action.

If you want to clear the active R workspace before loading another, use the following command:

> rm(list=objects()); # Everything is an object!

Or, use the equivalent APL+Win expression:

 Œwi 'XEvaluateNoReturn' 'rm(list=objects())'

5.2. As a script
Script files offer a number of advantages.

 They are text files; therefore, they can be viewed using any text editor such as NOTEPAD.EXE.

 A script file may contain single or multiple objects, as required.

 The makeup of the active server workspace can be assembled from one or several script files.

 From the point of view of exploring R, script files allow you to see the internal definition of objects;
familiarity with the alternative representations of the same object enhances fluency.

 When an object is saved as a script, its values and all its attributes—including those that assume a default
value—are included.

Consider this example:

> myMat=matrix(c(1:4),ncol=2);

> comment(myMat)<-"For Demo";

> myMat

 [,1] [,2]

[1,] 1 3

[2,] 2 4

> str(myMat);

 int [1:2, 1:2] 1 2 3 4

 - attr(*, "comment")= chr "For Demo"

> dput(myMat);

structure(1:4, .Dim = c(2L, 2L), comment = "For

Demo")

> dump("myMat",file="c:/myMat.R");

The file is shown on the right.

On the down side, unlike workspaces, script files do not recreate the server active session exactly as where you
left off and you can create clutter—multiple copies of objects in several files.

In order to save the active session as a script file, consider the following function:

 ’ Z„WriteAllDefinitions

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] Z„2œŒwcall 'GetTempFileName' (Œwi 'XEvaluate' 'getwd()') "apl" Ð (256½Œtcnul)

[3] ((Z="/")/Z)„'\'

[4] Z„((-Œio)+L¼Œtcnul)†Z

[5] 0 0½Œwcall 'DeleteFile' Z

No room for R?

Page 65 of 79

[6] Z„(^\'.'¬Z)/Z

[7] ((Z="\")/Z)„'/'

[8] Z„(Z,'_ALL#.R') InLineExpression 14 0•(1000,5/100)ƒ6†Œts

[9] :if 0¬Œwi 'XEvaluate' 'length(objects());'

[10] Z„Z (Œwi 'XEvaluate' ('dump(objects#,file="",append=TRUE);' InLineExpression

'()' Z))

[11] (("/"=ŒioœZ)/ŒioœZ)„'\'

[12] :else

[13] Z„2/›''

[14] :endif

[15] © Z = fileName (list of objects written)

 ’

 WriteAllDefinitions

 C:\AJAY\RSTATS\SCRIPTS\apl2C_ALL20120320082113.R AllObjects cVector mtcars nMatrix

ObjectSize

This function returns a nested result. The first element is the name of the file: the default location is used as
the path and the file name is unique, not least because it includes the timestamp: see lines [2] and [8].The
second element returns the names of all the objects written to the file. If the active session is empty, both
elements of the result are empty. The file can be loaded in the active session as follows:

 Œwi 'XEvaluateNoReturn' 'rm(list=objects());' © Optional - Clear active workspace

 Œwi 'XEvaluateNoReturn' 'source("C:/AJAY/RSTATS/SCRIPTS/apl2C_ALL20120320082113.R

");' © Load all definitions

Incidentally, a convenient way to delete a file in R, without sending it to the recycle bin, is this:

> unlink("c:/myMat.R"); # Rather counter-intuitive?

This command is silent: if the file does not exist, it does not raise an error.

6. Why use R?
Although R has APL like features, the two languages are not substitutes; therefore, any contention

regarding the exclusive use of one or the other is irrelevant. R seems to be the ultimate self-contained
personal computing tool: subject matter experts—for whom expertise in Statistics and Data Visualisation are
inherent—simply use R as a tool of thought without regard for any technology paradigms or platform
considerations.

For APL+Win users, R offers cost effective ways to incorporate R-like features in APL end-user systems. In
other words, R does not produce applications for end users: the users are also the end-users, and they rely on
either the command line interface or no interface at all (with R running scripts in batch mode). With R's COM
server capabilities, some of the benefits for APL+Win users include the following:

 R provides access to a documented and debugged array of statistical analysis tools.

 The availability of powerful graphing capability and the incorporation of R produced graphs into any
APL+Win driven graphical user interface.

 A formalisation of data structures in APL+Win, along the lines of structures that exist in R. At present,
APL+Win data, especially heterogeneous nested data, is completely free form; that is, structures vary from
application to application or even developer to developer.

 APL+Win can also provide an asynchronous interface to R via script and data files: these files are simple
text files that follow simple layout patterns.

 APL+Win can utilize/acquire R data files and manage that data; this includes archiving, maintenance, and
further processing in contexts where APL+Win may have superior capabilities.

In summary, consider the plausibility and feasibility of the following objectives:

 Enhance APL+Win applications by the incorporation of R as a collaborative and complementary tool.

 Simplify the R experience for users by seamlessly enabling the creation of R data structures and script files,
thereby making it possible to use R in batch or non-interactive mode. APL+Win and R need not co-exist on
the same computer.

6.1. No room for R?
Depending on the subject matter to which you apply APL, this might be a perfectly legitimate response:

there is no room for R or there is no need to learn yet another technology. My personal view is that whether
or not you find any use for R, you can only come to a conclusion after an in-depth look at this language.

Using SWinTypeLibs

Page 66 of 79

 Whatever its design flaws, R is robust, free, and very well documented, albeit you need to learn to get
accustomed to the available material. Initially, concentrate on sources which have worked examples that
you can copy or reproduce and experiment with. R appears to have a more far-reaching momentum than
APL.

 R is very close to APL in that it naturally copes with non scalar calculations. It provides a lot of features that
correspond directly with the hallmarks of APL. In this respect, R provides a ready-made test environment
for debugging or enhancing your APL code and coding style.

 The one compelling reason for using R is its capability with data visualisation, that is, graphs. In this respect,
it is a deserving complement to APL which is lacking in such facilities. R’s graphing capability is many times
superior to those of Excel.

7. R on the internet
The single letter name of this language makes it cumbersome to locate material on the web. This is

especially the case for new starters as they would not have acquired fluency with the R vocabulary, which is
necessary for effective searching. However, there is a wealth of material available. Try the following from an R
session to restrict search results:

> RSiteSearch("string replace",restrict='functions');

 The first argument is the topic and the options for the second arguments are functions|vignettes|views.

The following site http://addictedtor.free.fr/graphiques/allgraph.php provides a lot of sample code—which
you can copy and paste in your own R session—for exploring visualisation of data.

For a quick introduction or overview of the language, refer to http://www.statmethods.net/index.html. This
reference is particularly suitable for programmers of other languages such as APL.

If inclined to do so, subscribe to the R mailing list—read forum—here: https://stat.ethz.ch/mailman/listinfo/r-
help. As an alternative, consider subscribing to http://stackoverflow.com/questions/tagged/r. Forums are a
particularly good and focussed source of inspiration as they provide worked solutions to actual problems
encountered by users. Also, they provide access to free help on demand; you can post your own questions or
problems and generally responses are forthcoming within minutes. A word of warning: be sure to follow the
forum’s posting guide since the regular contributors tend to be rather unforgiving, that is, dismissive of
trespasses.

Alternatively, simply use the following link to browse the R mailing list - http://groups.google.com/group/r-
help-archive/topics.

7.1. CRAN: Comprehensive R Archive Network
All versions of R and its documentation are available at http://www.r-project.org/. This is the obvious

starting point for fact-finding about R. The site has all the links to manuals and provides links to every aspect
of R. When browsing the site, click on the picture to see the source code for all the plots displayed.

http://addictedtor.free.fr/graphiques/allgraph.php
http://www.statmethods.net/index.html
https://stat.ethz.ch/mailman/listinfo/r-help
https://stat.ethz.ch/mailman/listinfo/r-help
http://stackoverflow.com/questions/tagged/r
http://groups.google.com/group/r-help-archive/topics
http://groups.google.com/group/r-help-archive/topics
http://www.r-project.org/

Who uses R?

Page 67 of 79

7.2. Who uses R?

The similarity between APL and R—in terms of core language
functionality—is simply astounding.

Some way into this project, I wondered about the user base and
support that R has. This language became available towards the end
of 1997.

An insight into the user base of R is truly eye-opening!

 http://en.wikipedia.org/wiki/R_(programming_language) provides a brief overview of the language; even if
you have but a casual interest in this area, read this article.

 At http://www.r-project.org/, navigate to the Members and Donors link: this is indicative of the pedigree
of the sponsorship and funding that R attracts.

 At http://rwiki.sciviews.org/doku.php?id=rugs:r_user_groups you will find a list of user groups by country.

 At http://www.dataspora.com/2009/02/predictive-analytics-using-r/ you will find details of how two well-
known organisations are using R. This site also addresses some basic questions regarding the viability of R.

 At http://www.warwick.ac.uk/statsdept/user-2011/participant-list.html, you will find a partial list of
attendees at the 2011 conference; the list contains 430 names. There were 465 attendees at the 2010
conference.

 At http://groups.google.com/group/r-help-archive/topics, you have read-only access to one of the R
forums: if you pay some attention to the credentials of the correspondents, it becomes quite clear that R
has a firm stronghold not only in commercial but also academic circles.

A simple indicator of R’s success is a comparison of the number of posts recorded for APL at
http://groups.google.com/group/comp.lang.apl/topics and those for R at http://groups.google.com/group/r-
help-archive/topics: see the graph below.

http://en.wikipedia.org/wiki/R_(programming_language)
http://www.r-project.org/
http://rwiki.sciviews.org/doku.php?id=rugs:r_user_groups
http://www.dataspora.com/2009/02/predictive-analytics-using-r/
http://www.warwick.ac.uk/statsdept/user-2011/participant-list.html
http://groups.google.com/group/r-help-archive/topics
http://groups.google.com/group/comp.lang.apl/topics
http://groups.google.com/group/r-help-archive/topics
http://groups.google.com/group/r-help-archive/topics

Using SWinTypeLibs

Page 68 of 79

8. Installation
This section reproduces the pages found at http://rcom.univie.ac.at/download.html. I expressly

acknowledge all the intellectual property and copyright of the publishers/owners; I have reproduced the
material purely for illustration and in order to highlight a simple route to getting started with R and APL+Win
OLE/COM investigation.

You will need a working internet connection during the installation of the required software. For a minimal
installation on the Windows platform19, you need to power up your computer with administrator’s privileges.
At this stage, in order to keep things simple, all downloads from this site contain Windows binary–rather than
source—files.

 First, download and install RAndFriendsSetup2142V3.2-4-1; I recommend that you select every option
when given the choice.

 Second, review the licensing terms of all the products and ensure that you are able to abide fully by the
terms and conditions; if not, you will need to uninstall the software.

The whole installation can be removed via Start | Control Panel | Add or Remove Program. Install all the
components under a single directory e.g. c:\Program Files\R\ as this is handy if you have to remove the
installation manually: you simply delete that directory20.

The material at http://rcom.univie.ac.at/download.html, at the time of writing, follows; refer to the

actual site as its content will no doubt be subject to ongoing changes to keep it up to date. It is possible that a
later version of R is available—R version 2.15 is expected to appear at the end of March 2012. The portion
following between the multicolour horizontal lines is reproduced from the site.

8.1. RAndFriends
This package will automatically install and configure:

 R 2.14.2

 rscproxy 1.3-1

 rcom 2.2-1

The R version contained in RAndFriends contains the 32bit and the 64bit version of R. On 32bit versions of
Windows, only the 32bit version of R will be installed, on 64bit versions of Windows, both the 32bit and the

19 Be guided by the web site as more up to date versions may be available.
20 If you do this, you will need other tools to tidy up the registry and remove shortcuts and menu items.

http://rcom.univie.ac.at/download.html
RAndFriendsSetup2142V3.2-4-1
http://rcom.univie.ac.at/download.html

SWord

Page 69 of 79

64bit versions of R will be installed. All the statconn tools (statconnDCOM, rcom, RExcel ..) work only with the
32bit version of R, and RExcel works only with 32bit versions of Excel. RExcel is actively tested and supported
for Excel 2003, Excel 2007, and Excel 2010.

RAndFriendsSetup will also download and install a suitable version of the statconnDCOM server and of RExcel
during installation. Therefore you will need a working Internet connection during the installation process.

The installer named RAndFriends will (among other things) download the most recent release of the free
noncommercial version of RExcel and the most recent release of the noncommercial version of
statconnDCOM. The number after the V in RAndFriendsInstaller indicates the version of RExcel available at the
release of RAndFriends.

If a new version of RExcel was released after the release of RAndFriends, the downloaded version of RExcel will
have a version number higher than this number.

This version of RAndFriends was created 20120308.

Download RAndFriendsSetup2142V3.2-4-1

If you installed RAndFriendsSetup2120V3.1-9-1, you might have problems uninstalling R 2.12.0 contained in
this setup. If that is the case, follow these instructions to uninstall this version of R.

We also give you information how to download all sources for R and the R packages included in RAndFriends.

8.2. RExcel
The current version is RExcel 3.2.4. It works only with 32bit versions of Excel (which can be installed on

64bit versions of Windows). The Excel versions supported are 2003, 2007, and 2010.

RExcel 3.2.4 requires R 2.12.0 (or later). The foreground server might work with earlier versions of R, but we do
not officially support this.

The easiest way to install RExcel is to use the package 'RExcelInstaller' from CRAN. To install RExcel this way,
you have to start R as administrator. On Windows XP you should be logged in as administrator, on Windows
Vista and Windows 7 right-click on the R icon and select 'Run as administrator'.

In R, run the following commands:

 install.packages("RExcelInstaller")

 library(RExcelInstaller)

You will get further instructions on how to install in RExcel. You can also install RExcel without the R package
(RExcelInstaller), although this is not the recommended way.

You will have to install

 a suitable version of R

 a matching version of rscproxy

 statconnDCOM or rcom with statconnDCOM

Download RExcel 3.2.4

Download REXCEL NONCOMMERCIAL USE LICENSE

8.3. SWord
This package contains SWord 0.99-3B3Beta.

You will have to install:

 a suitable version of R

 a matching version of rscproxy

 statconnDCOM or rcom with statconnDCOM

Download SWord 0.99-3B3Beta

Download SWORD PUBLIC LICENSE

http://rcom.univie.ac.at/download/RAndFriends.distro/RAndFriendsSetup2142V3.2-4-1.exe
http://learnserver.csd.univie.ac.at/rcomwiki/doku.php?id=wiki:general_problems_and_solutions#uninstalling_an_uninstallable_version_of_r_2120_manually
http://learnserver2.csd.univie.ac.at/rcomwiki/doku.php?id=wiki:sources_for_r_and_r_packages_in_randfriends
http://rcom.univie.ac.at/download/RExcel.distro/RExcelInst3.2.4_Noncommercial.exe
http://rcom.univie.ac.at/download/licenses/REXCEL_LICENSE_Noncommercial
http://rcom.univie.ac.at/download/current/SWord.latest.exe
http://rcom.univie.ac.at/download/licenses/SWORD_PUBLIC

Using SWinTypeLibs

Page 70 of 79

8.4. statconn.NET
statconn.NET is not yet available. We provide an early version of the documentation for download as a

ZIPped CHM file.

8.5. statconnDCOM
This package contains statconnDCOM3.3-0B2.

You will have to install:

 a suitable version of R (>= 2.12.0)

 a matching version of rscproxy

Download statconnDCOM 3.3-0B2_Noncommercial.

Download STATCONN NONCOMMERCIAL USE LICENSE .

8.6. statconnWS
This package contains statconnWS0.8-0B5Beta for Windows.

You will have to install

 a suitable version of R (>= R 2.12.0)

 a matching version of rscproxy

This beta/test version expires 11-10-01. It will stop working then

Download statconnWS 0.8-0B5Beta.

8.7. ROOo
ROOo is an OpenOffice.org extension. The current version (0.751) works on Mac OSX (10.5 or higher),

Windows (XP, Vista or Windows 7), and Linux x86 (32bit as well as 64bit). To run ROOo you need:

 a suitable version of R (>= 2.12)

 a matching version of rscproxy

 OpenOffice.org 3.0 or higher (ROOo has been testes with LibreOffice and NeoOffice too)

Uninstall any previous version of ROOo by removing the componentes ROOo.oxt, StatConnector.oxt,
ROOoMacro.oxt, RInterface.oxt from the OpenOffice.org extension manager (Tools -> Extension manager,
select the component and press Remove). Restart OpenOffice.org after removing the old extensions. To install
the current version of ROOo, simply open the extension manager of OpenOffice.org (Tools -> Extension
manager), press Add and select the file ROOo.oxt. When the installation has been completed sucessfully, verify
the ROOo options (Options -> ROOo -> Path Settings). Depending on the operating system, several properties
are available:

4. Mac OSX: Verify the directories configured for R-Home and Proxy. Modify these settings if
required. You may also choose between the 32bit and the 64bit version of R.

5. Windows: No options available. R-Home is determined by reading the Windows registry.
Currently only the 32bit version of R is supported by ROOo.

6. Linux: Verify the directories configured for R-Home and Proxy. Modify these settings if
required. 64bit Linux requires 64bit versions of OpenOffice.org and R, hence the 64bit option
cannot be changed for the Linux version of ROOo.

This package contains ROOo 20090112-1 Beta.

You will have to install

 a suitable version of R

 a matching version of rscproxy

Download ROOo.oxt.

http://rcom.univie.ac.at/download/devel/statconn.NET.chm.zip
http://rcom.univie.ac.at/download/devel/statconn.NET.chm.zip
http://rcom.univie.ac.at/download/current/statconnDCOM3.3-0B2_Noncommercial.exe
http://rcom.univie.ac.at/download/licenses/SC_LICENSE_Noncommercial
http://rcom.univie.ac.at/download/devel/statconnWS.latest.exe
http://rcom.univie.ac.at/download/current/ROOo.oxt

Post installation verifications

Page 71 of 79

8.8. Scilab within Excel
An Excel workbook demonstrating how to use Scilab directly from within Excel. This

requires statconnDCOM. The statconnDCOM documentation explains how to install the components needed
to access Scilab through statconnDCOM.

Download ScilabTest.xls

8.9. Creating and Deploying an Application with (R)Excel and R
This is the example code for the article Creating and Deploying an Application with (R)Excel and R:

Recursive Partitioning and Regression Trees. Requires statconnDCOM and RExcel. For a new installation, you
should consider downloading RAndFriends.

 Download RExcelRpartDemo.zip (demo worksheets)

 Download RExcelrpart_1.0.tar.gz (R source package)

 Download RExcelrpart_1.0.zip (R binary package for R 2.10.0, Windows)

8.10. Post installation verifications
The installation procedure suggested above is hassle free; it installs R, RExcel, Sword, and several other

components ensuring compatibility between R and the constituent components. This process also takes care
of registry entries and configures R to start-up in ready mode for OLE/COM client/server tasks.

I am using APL+Win version 11.1 on a computer running Windows XP with Service Pack 3. Following
installation, launch R to see it in interactive mode.

I have highlighted the portions of the interface that details the version, platform and confirmation that the
packages rcom and rscproxy are loaded: the latter packages are essential for the coupling of R and APL+Win in
OLE/COM client/server roles.

8.10.1. Customizing the R shortcut
The next step is to choose the location for storing all R related files. The general recommendation is

that you modify the start in location in the R shortcut.

http://rcom.univie.ac.at/download/scilabextras/ScilabTest.xls
http://rcom.univie.ac.at/download.html#RAndFriends
http://rcom.univie.ac.at/download/div/CART/RExcelRpartDemo.zip
http://rcom.univie.ac.at/download/div/CART/RExcelrpart_1.0.tar.gz
http://rcom.univie.ac.at/download/div/CART/RExcelrpart_1.0.zip

R as the OLE/COM client for an APL+Win server

Page 72 of 79

The recommended method is to modify
the R shortcut, in particular, the ‘Start
in’ option. The path that you specify
must already exist.

Incidentally, you can execute the
following command from an R session
to create a path with ease:

> dir.create("c:/a/b/c/d/e/")

If the argument comprises a valid path,
that is, it does not contain any illegal
characters R will create the whole tree
irrespective of whether none or any
node in the path exists.

This is equivalent to the Win32 API call
MakeSureDirectoryPathExists.

Win32 API DLLs are inaccessible from R
unless you write your own wrapper
around the API calls or simply use
APL+Win as server and call the API from
the server.

Ideally, you should store files relating
to each project in a distinct folder of
your choice.

8.10.2. R as the OLE/COM client for an APL+Win server
R can start a COM server in two ways; the next step is to start APL+Win as the COM server and ensure

that this is working.

The first way:

> aplWin<-comCreateObject("APLW.WSEngine")

> aplWin<-comCreateObject("APLW.WSEngine");

> aplWin[["Visible"]]<-TRUE;

> comInvoke(aplWin,"Exec","2+3 4 5");

[1] 5 6 7

This confirms that the client and server can indeed communicate.

The second way:

> library(SWinTypeLibs);

Loading required package: RDCOMClient

> apl<-COMCreate("APLW.WSEngine");

> apl[["Visible"]]<-TRUE;

> .COM(apl,"Exec","2+3");

[1] 5

Note that a package SWinTypeLibs needs to be loaded before invoking APL+Win as the Server. The installation
of this package ensures that all the packages it depends on are loaded automatically.

The general syntax of the two methods of invoking a COM server is very similar; the keywords are different
and the second method as the overhead of additional packages being required. The important point is that we
have successfully used APL+Win as a server to an R client in two different ways.

Post installation verifications

Page 73 of 79

By the way the following displays all the libraries available.

> library();# no argument specified

The library with my installation is located at C:/Program Files/R/R-2.14.2/library.

A library is unloaded—removed from the search path—as follows.

> detach(package:SWinTypeLibs);

8.10.3. R as the OLE/COM server for an APL+Win client
The following confirms that APL+Win can use R as a COM Server.

 ’ R

[1] © Ajay Askoolum - APL2000 Conference April 22-24, 2012

[2] '#' Œwi 'ReleaseObjects'

[3] '#' Œwi 'Reset'

[4] Œwself„'RServer' Œwi 'Create' 'StatConnectorSrv.StatConnector'

[5] Œwi 'XInit' 'R'

 ’

The enumeration of the properties, methods, and events of the server provide confirmation and the starting
point for investigation.

 ('x'=†¨r)/r„Œwi 'properties' © There are none

 6 3½('X'=†¨r)/r„Œwi 'methods' © There are 18

 XAddGraphicsDevice XClose XEvaluate

 XEvaluateNoReturn XGetConnectorInformation XGetErrorId

 XGetErrorText XGetInterpreterInformation XGetServerInformation

 XGetSupportedTypes XGetSymbol XInit

 XRemoveGraphicsDevice XSetCharacterOutputDevice XSetErrorDevice

 XSetSymbol XSetTracingDevice XSetUserInterfaceAgent

 ('X'=†¨r)/r„Œwi 'events' © There are none

8.10.3.1. R Server characteristics

The instance of the server does not expose a ‘Visible’ property; therefore, the Server cannot be made
visible easily, as instances of Excel.Application and APLW.WSEngine can be. Core R does not have a user
interface; therefore it cannot be made visible.

The instance does not expose any properties or events. The methods that are exposed are listed below. The
documentation of the COM interface is severely lacking in enumerating the possible arguments of the
methods. The documentation is found at http://cran.r-project.org/web/packages/rcom/rcom.pdf and
http://cran.r-project.org/web/packages/rscproxy/rscproxy.pdf

The methods I aim to investigate are shown with a shaded background; they provide the functionality for
investigating the potential for using R.

XAddGraphicsDevice

The syntax is:

pDevice@Object_ISGFX „ ŒWI 'XAddGraphicsDevice' bstrName@String pDevice@Object_ISGFX

XClose

The syntax is :

ŒWI 'XClose'

Terminates the R Session.

XEvaluate

Evaluates a valid R expression and returns the result to APL+Win.

XEvaluateNoReturn

Evaluates a valid R expression and does not return any result to APL+Win.

http://cran.r-project.org/web/packages/rcom/rcom.pdf
http://cran.r-project.org/web/packages/rscproxy/rscproxy.pdf

R as the OLE/COM server for an APL+Win client

Page 74 of 79

XGetConnectorInformation

The syntax is:

Result@String „ ŒWI 'XGetConnectorInformation' lInformationType@Long_InformationType

XGetErrorId

The syntax is:

Result@Long „ ŒWI 'XGetErrorId'

XGetErrorText

The syntax is:

Result@String „ ŒWI 'XGetErrorText'

XGetInterpreterInformation

The syntax is:

Result@String „ ŒWI 'XGetInterpreterInformation' lInformationType@Long_InformationType

XGetServerInformation

The syntax is:

Result@String „ ŒWI 'XGetServerInformation' lInformationType@Long_InformationType

XGetSupportedTypes

The syntax is:

pulTypeMask@Long „ ŒWI 'XGetSupportedTypes' pulTypeMask@Long

Returns information about types supported by the server.

XGetSymbol

The syntax is:

Result „ ŒWI 'XGetSymbol' bstrSymbolName@String

Retrieves the value of a symbol from the server or generates an error if the symbol does

not exist.

XInit

The syntax is:

ŒWI 'XInit' bstrConnectorName@String

 Œwi 'XInit§ R © Initializes the R Language

XRemoveGraphicsDevice

The syntax is:

ŒWI 'XRemoveGraphicsDevice' bstrName@String

XSetCharacterOutputDevice

The syntax is:

pCharDevice@Object_IStatConnectorCharacterDevice „ ŒWI 'XSetCharacterOutputDevice'

pCharDevice@Object_IStatConnectorCharacterDevice

R tour

Page 75 of 79

XSetErrorDevice

The syntax is:

pCharDevice@Object_IStatConnectorCharacterDevice „ ŒWI 'XSetErrorDevice'

pCharDevice@Object_IStatConnectorCharacterDevice

XSetSymbol

Creates or resets a symbol in the Server. The syntax is:

 ŒWI 'XSetSymbol' bstrSymbolName@String vData

This method requires two arguments, a valid name and its value specified as a Variant

type.

XSetTracingDevice

The syntax is:

pCharDevice@Object_IStatConnectorCharacterDevice „ ŒWI 'XSetTracingDevice'

pCharDevice@Object_IStatConnectorCharacterDevice

XSetUserInterfaceAgent

The syntax is:

pUIAgent@Object_IStatConnectorUIAgent „ ŒWI 'XSetUserInterfaceAgent'

pUIAgent@Object_IStatConnectorUIAgent

When the function that creates the instance of R as a server is run, the following pop-up appears momentarily;
it provides further details about licensing terms and options for licensing. During the course of electronic mail
exchanges, the copyright holder was at pain to point out that the basic installation permits non-commercial
use only.

8.11. R tour
The basic installation of R incorporates a handy method for rapidly gaining a sense of R. The following

command invokes a graphical interface that lists a series of pre-prepared demonstrations:

> demo();

R as the OLE/COM server for an APL+Win client

Page 76 of 79

Review each demonstration using the following syntax:

>demo(graphics);

The argument is the name of the package; there are several packages listed, see below. The demonstrations
are robust and provide working code that you can copy and paste into the R session; this promotes confidence
in tackling the R language.

For a serious review of R you need some language manuals, if only to gain an comprehensive overview of R.
Refer to the Installation section for details of where the manuals for the language are available.

 The demonstrations are
fully interactive.

 All the code that
produces what is shown
is listed, together with
comments, in your R
session.

Use history(Inf) to capture the session and then you can run the code with or without customised
modifications.

9. Conclusion
I use C# and SQL Server in the domains of pensions and maritime navigation to put the daily bread on

the table. I have no particular expertise in statistical analyses or data visualisations. Now that I can also put R
on my Curriculum Vitae, I’ll share my own thoughts about the language.

 R, like APL, has avid and dedicated advocates and this creates its own comfort zone. Therefore, it tends to
be used for purposes such as data cleaning—because its practitioners know R—prior to doing the actual
analysis. APL is a more versatile general purpose language, not least because APL is capable of producing
fully-fledged applications with graphical user interfaces.

 R and APL+Win introduce complexities in application design because, by default, their programming
paradigm does not promote tiered application design, especially the separation of the data tier.

 R needs something equivalent to ‘C# LINQ to Objects’, that is, a more generic approach to in-memory data
cleaning and analysis package.

 R is a valuable skill to add to my skills set; this proved to be fairly effortless since R is in many respects like
APL. In other words, with knowledge of APL, no leap of faith was necessary to see R extend naturally to
cope with non-scalar data. The biggest hurdle in learning R is in getting accustomed to its jargon, for
example, sub setting means selection and compression in APL.

 APL is a valuable skill to bring to R; coding R in APL style is a fairly natural way to ease into the R language.
For a concrete example, refer to http://escholarship.org/uc/item/3kw1196f.

 I will use R for incorporating data visualisation into applications; I do not know of any other package that is
free and capable of producing publication quality graphs with so little effort.

 Most of R’s analytical capabilities are based on powerful primitive functions and a handful of specific and
portable data structures, unlike APL where data structures—nested vectors and arrays—are non-portable
and free form. For APL applications, I will investigate the collation of data into structures that optimize
performance and opportunities especially when combined with utility functions tailored for purpose.
Consider an example where diligently or appropriately coded utility functions reduce the coding overhead:

Example<-function(){

 # Simulates rolling two dice

http://escholarship.org/uc/item/3kw1196f

Lest I forget

Page 77 of 79

 numrolls <- 1000000;

 die1 <- sample(6,numrolls,TRUE); # Like APL 6?1000000 but with replacement

 die2 <- sample(6,numrolls,TRUE);

 print(mean(die1 > die2)); # estimated probability die1 greater than die2

 print(mean(die1 + die2)); # estimated expected value of sum of rolls

 print(table(die1 + die2)/numrolls); # estimated distribution of total of two rolls

}

> timeTaken<-system.time(Example());

[1] 0.416113

[1] 6.997967

 2 3 4 5 6 7 8 9

0.027662 0.055934 0.083610 0.111043 0.138424 0.166962 0.138433 0.111544

 10 11 12

0.083253 0.055602 0.027533

> timeTaken; #Seconds

 user system elapsed

 1.34 0.04 1.39

Of course, you can avoid the coding overhead altogether if the solution is accessible from your environment.

 Œwi 'XSetSymbol' 'myNums' (10?1000)

 Œwi 'XGetSymbol' 'myNums'

356 741 973 13 790 1000 438 619 873 546

 œŒwi 'XEvaluate' 'capture.output(summary(myNums))'

 Min. 1st Qu. Median Mean 3rd Qu. Max.

 13.0 465.0 680.0 634.9 852.2 1000.0

I recommend that you take a closer look at R and especially as a server application to an APL+Win client; your
experience with R will yield worthwhile and lasting dividends in your APL+Win application design and
development.

9.1. Lest I forget
 Thank you Varuna for proof-reading and suggesting changes so that what I had written make more sense;
Varuna is my daughter.

 Thank you Joe Blaze for the technical review and feedback.

 The codes—APL+Win and R—I have used in this paper do not include error handling; for this reason alone,
the code is not meant for use in production systems.

 If you have any comments, please post your thoughts on the http://www.apl2000.com forum.

Ajay Askoolum

March 2012

http://www.apl2000.com/

R as the OLE/COM server for an APL+Win client

Page 78 of 79

References

Notes:

 At the time of writing, I am using the latest available version, namely, R for Windows version 2.14.2. I
downloaded the binary files in order to keep matters simple; alternatively, you have the option to
download the source and re-compile.

 If installing on Windows 7, you need to install and run R with administrator privileges for exploring R
without shackles.

 This above is a basic list of reference materials on the installation and usage of R. The internet has many
more references on specific aspects of R.

 You will need to review the licensing terms for R and each package individually before any commercial
deployment of applications based on them.

21 This user group has its own mailing list and offers commercial courses.
22

 This is like forums–you need to register prior to being able to post questions or replies.
23 There are dedicated mailing lists for issues relating to packages from independent package contributors.
24

 FTP site is organised by version. Get versions of package(s) from the most recent version when unavailable in version 2.14.
25 "Directly, no. See CRAN packages rscproxy and rcom as well as RDCOMServer, RDCOMClient, RDCOMEvents and SWinTypeLibs from
http://www.omegahat.org/."

Repositories & Manuals
http://cran.r-project.org/ The Comprehensive R Archive Network
http://www.r-project.org/ R Manuals
http://cran.us.r-project.org/doc/manuals/R-intro.pdf R Introduction
http://cran.us.r-project.org/doc/manuals/R-data.pdf Data Import/Export
http://cran.us.r-project.org/doc/manuals/fullrefman.pdf Full Reference R Manual
http://rwiki.sciviews.org/doku.php?id=rugs:r_user_groups User groups by country
http://rcom.univie.ac.at/ General Information
http://www.omegahat.org/ Other download details
http://www.londonr.org/ UK's User Group21
http://faculty.washington.edu/tlumley/Rcourse/R-
fundamentals.pdf

Tutorial on using R

http://addictedtor.free.fr/graphiques/allgraph.php R Graph Gallery with Source Code

Mailing Lists22
http://groups.google.com/group/r-help-archive/topics R Mailing List

Downloads23
http://rcom.univie.ac.at/download.html Simplified way to install R
http://www.omegahat.org/R/bin/windows/contrib/2.14/24 Other packages for R 2.14.2
http://cran.r-project.org/contrib/extra/dcom/ DCOM for R 2.14.2

userR! 2012 Conference (12–15 June)
http://www.r-bloggers.com/call-for-abstracts-for-user-2012/

R for Windows: Frequently Asked Questions
http://cran.r-project.org/bin/windows/rw-FAQ.html See 2.18 - Does R support automation

(OLE, COM)?
25

R Journals
http://journal.r-project.org/ Includes archive of back issues

http://www.omegahat.org/
http://cran.r-project.org/
http://www.r-project.org/
http://cran.us.r-project.org/doc/manuals/R-intro.pdf
http://cran.us.r-project.org/doc/manuals/R-data.pdf
http://cran.us.r-project.org/doc/manuals/fullrefman.pdf
http://rwiki.sciviews.org/doku.php?id=rugs:r_user_groups
http://rcom.univie.ac.at/
http://www.omegahat.org/
http://www.londonr.org/
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf
http://faculty.washington.edu/tlumley/Rcourse/R-fundamentals.pdf
http://addictedtor.free.fr/graphiques/allgraph.php
http://groups.google.com/group/r-help-archive/topics
http://rcom.univie.ac.at/download.html
http://www.omegahat.org/R/bin/windows/contrib/2.14/
http://cran.r-project.org/contrib/extra/dcom/
http://www.r-bloggers.com/call-for-abstracts-for-user-2012/
http://cran.r-project.org/bin/windows/rw-FAQ.html
http://journal.r-project.org/

Page 79 of 79

Index
COM

rcom ... 5

rsproxy ... 5

	Table of Contents
	1. Introduction
	1.1. R Features out of the box
	1.1.1. R Pathways
	1.1.2. R Anything goes, if it works!

	1.2. R Language structural features
	1.2.1. R Session Attributes
	1.2.2. Globalisation tokens
	1.2.3. Environment Variables

	1.3. R Developer hints
	1.3.1. R Session metrics
	1.3.1.1. Object type: query and coercion

	1.4. R Error handling, debugging & control structures
	1.5. Interaction with the filing system
	1.5.1. tempdir()
	1.5.2. tempfile()

	1.6. Platform interface
	1.6.1. Input box
	1.6.2. Message box
	1.6.3. Progress bar
	1.6.4. Shell
	1.6.5. System

	1.7. Workspace/session management
	1.7.1. Active session profile

	1.8. R data structures
	1.8.1. Built-in structures
	1.8.2. Verifying data type
	1.8.3. Data type coercion

	2. Using R as a Server to an APL+Win Client
	2.1. What is Rserve?
	2.2. R Server: Foreground or Background instance?
	2.2.1. R as a foreground server
	2.2.2. R as background server
	2.2.3. R Server considerations
	2.2.4. Managing R objects from APL+Win
	2.2.5. R Functions
	2.2.5.1. Passing arguments from APL+Win
	2.2.5.2. Functions are objects
	2.2.5.3. Anonymous functions or lambda expressions
	2.2.5.4. Vagaries of R Scoping Rules
	2.2.5.4.1. Closure

	2.2.5.5. Vagaries of R functions and argument matching

	2.2.6. R Variables
	2.2.6.1. String Arrays
	2.2.6.2. Array collation sequence
	2.2.6.2.1. What transposition?
	2.2.6.2.2. Assigning variables
	2.2.6.2.3. Indirect reference
	2.2.6.2.4. Assigned by value

	2.2.7. R Objects: Functions and variables attributes
	2.2.8. R homogeneous data structures with APL+Win
	2.2.8.1. Vector
	2.2.8.1.1. Familiar vector operations
	2.2.8.1.2. Unfamiliar vector operations

	2.2.8.2. Matrix
	2.2.8.2.1. Other matrices features

	2.2.8.3. Array
	2.2.8.4. Factor and Table

	2.2.9. Homogeneous data generation
	2.2.9.1. Numbers
	2.2.9.2. Literals
	2.2.9.3. Dates

	2.2.10. Homogeneous data coercion
	2.2.11. R heterogeneous data structures with APL+Win
	2.2.11.1. Data Frames
	2.2.11.2. Time Series
	2.2.11.2.1. Time Series - yearly
	2.2.11.2.2. Time Series – yearly by quarter
	2.2.11.2.3. Time Series – yearly by month
	2.2.11.2.4. APL+Win – sending/receiving time series data

	2.2.11.3. List

	2.3. Starting the Server

	3. Using R as a Client to an APL+Win Server
	3.1. The ‘Variable’ property of an APL+Win server
	3.2. APL+Win as Server
	3.3. APL+Win with keywords
	3.3.1. Using rcom
	3.3.1.1. Properties
	3.3.1.1.1. SysVariable
	3.3.1.1.2. Variable
	3.3.1.1.3. Visible
	3.3.1.1.4. Methods
	3.3.1.1.5. Call
	3.3.1.1.6. Exec
	3.3.1.1.7. SetOrphanTimeout
	3.3.1.1.8. SysCall
	3.3.1.1.9. SysCommand

	3.3.1.2. Events

	3.3.2. Advanced investigation of the Exec method
	3.3.2.1. Example 1
	3.3.2.2. Example 2
	3.3.2.3. Example 3

	3.3.3. Using SWinTypeLibs
	3.3.3.1. Properties
	3.3.3.1.1. SysVariable
	3.3.3.1.2. Variable
	3.3.3.1.3. Visible

	3.3.3.2. Methods
	3.3.3.2.1. Call
	3.3.3.2.2. Exec
	3.3.3.2.3. SetOrphanTimeout
	3.3.3.2.4. SysCall
	3.3.3.2.5. SysCommand

	3.3.3.3. Events

	4. APL+Win GUI with R plots
	4.1. Demonstration 1
	4.2. Demonstration 2
	4.3. Demonstration 3

	5. Saving/Loading R client and server objects
	5.1. As a workspace
	5.2. As a script

	6. Why use R?
	6.1. No room for R?

	7. R on the internet
	7.1. CRAN: Comprehensive R Archive Network
	7.2. Who uses R?

	8. Installation
	8.1. RAndFriends
	8.2. RExcel
	8.3. SWord
	8.4. statconn.NET
	8.5. statconnDCOM
	8.6. statconnWS
	8.7. ROOo
	8.8. Scilab within Excel
	8.9. Creating and Deploying an Application with (R)Excel and R
	8.10. Post installation verifications
	8.10.1. Customizing the R shortcut
	8.10.2. R as the OLE/COM client for an APL+Win server
	8.10.3. R as the OLE/COM server for an APL+Win client
	8.10.3.1. R Server characteristics

	8.11. R tour

	9. Conclusion
	9.1. Lest I forget

	References
	Index

